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Cerebral magnetic resonance imaging was undertaken, at 3 Tesla field strength, employing magnetization 

transfer (MT) and diffusion-weighted imaging (DWI) sequences, in 26 patients with well-compensated 

cirrhosis, free of overt hepatic encephalopathy.  Results were compared to those from 18 aged-matched healthy 

volunteers.  Cerebral magnetization transfer ratios (MTR) were reduced in the frontal white matter, caudate, 

putamen and globus pallidus in patients with cirrhosis, compared to healthy controls, while the apparent 

diffusion coefficients ( A D C )  o n  D W I  were significantly increased in the genu and body of the 

corpus callosum.  An association between previous excessive alcohol consumption and both MTR and ADCs 

was noted, but this association was lost when controls were exercised for the severity of liver disease and 

psychometric impairment on multivariate analysis.  Eight (31%) of the 26 patient had impaired psychometric 

performance consistent with a diagnosis of minimal hepatic encephalopathy.  No statistically significant 

difference in regional cerebral MTRs or ADCs  were found in relation to neuropsychiatric status, although 

there was a trend towards lower MTRs in patients with impaired psychometric performance.  The alterations 

in MTR and ADC in the patients with functionally compensated cirrhosis are compatible with theories 

governing the genesis of hepatic encephalopathy, including changes in astrocyte membrane permeability, with 

subsequent redistribution of macromolecules. 

 

Key words: apparent diffusion coefficients; diffusion-weighted imaging; hepatic encephalopathy; magnetic 
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Hepatic encephalopathy (HE) is the term used to describe the spectrum of neuropsychiatric changes that can 

be observed in patients with cirrhosis.  In the recent guideline published jointly by the European and American 

Associations for the Study of the Liver hepatic encephalopathy was defined as ‘a brain dysfunction caused 

by liver insufficiency or portal systemic shunting’ (AASLD/EASL, 2014; Vilstrup et al., 2014).  

Clinically apparent or overt HE manifests as a neuropsychiatric syndrome encompassing a wide spectrum of 

mental and motor disorders (Weissenborn, 1998; Ferenci et al., 2002).  Individuals with overt HE also show 

a wide spectrum of other abnormalities, including impaired psychomotor performance (Schomerus & 

Hamster, 1998) and disturbed neurophysiological function (Parsons-Smith et al., 1957; Chu et al., 1997). The 

term minimal HE is used to describe patients with cirrhosis who are ‘clinically normal’, but who show 

abnormalities in neuropsychometric and/or neurophysiological performance (Ferenci et al., 2000).   

The presence of HE, whether minimal or overt, is associated with significant impairment in the performance 

of complex tasks, such as driving (Bajaj et al., 2007; Schomerus et al., 1981; Wein et al., 2004); health-

related quality of life (Groeneweg et al., 1998); earning potential (Schomerus & Hamster 2001); safety 

(Roman et al., 2011); neurocognitive function post-transplantation (Sotil et al. 2009); and, ultimately, 

survival (Amodio et al., 1999; Bustamante et al., 1999; Stewart et al., 2007).  The presence of HE also poses 

a substantial burden for caregivers (Bajaj et al., 2011) and a significant financial burden on health-care 

systems (Poordad, 2007).   

Currently, there is no accepted gold standard for the diagnosis of HE (Ferenci et al., 2002).  Thus, the 

diagnosis of overt, or clinically apparent, HE is based on a careful and detailed neuropsychiatric history and 

examination and exclusion of other potential causes of neuropsychiatric abnormalities; collateral evidence 

may be obtained from psychometric and neurophysiological testing.  The diagnosis of minimal HE relies on 

the exclusion of symptoms and signs of overt HE and the finding of impaired psychomotor performance 

and/or abnormal neurophysiology.   

Cerebral imaging should be undertaken when patients with cirrhosis first present with neuropsychiatric 

abnormalities in order to exclude alternative diagnoses (AASLD/EASL, 2014; Vilstrup et al., 2014) and 

again later if there is any suspicion of alternative neurological pathology.  Less certain, however, is the role 

of cerebral imaging in the diagnosis of HE per se, despite the fact that numerous cerebral imaging studies, 

using increasingly sophisticated technologies, have been undertaken in these patients over the last two 

decades (Alonso et al., 2014). 

Bilateral, symmetrical T1 signal hyperintensity of the globus pallidus is observed, using conventional MR 

techniques, in b e t we e n  5 0  to  1 0 0 % o f  patients with cirrhosis (Inoue et al., 1991; Pujol et al., 1996; 

Taylor-Robinson et al., 1995; Weissenborn et al., 1995).  Signal hyperintensity has also been observed in 

areas adjacent to the globus pallidus in several studies (Inoue et al., 1991; Syh et al., 1991; Taylor-Robinson 

et al. 1995; Weissenborn et al., 1995).  No significant correlations have been observed between the cerebral 

T1 hyperintensity and the severity of underlying liver disease in the majority of studies (Pujol et al., 1993; 

Rovira et al., 2001; Spahr et al., 1996; Taylor-Robinson et al., 1995; Weissenborn et al., 1995), although 

the pallidal hyperintensity lessens or resolves completely following liver transplantation (Pujol et al,. 1991; 

Pujol et al., 1993; Weissenborn et al., 1995).  There is evidence of a positive relationship between cerebral 

https://archie.cochrane.org/sections/documents/view?version=z1502110811122514315333345917702&format=REVMAN&download=true#REF-EASL-and-AASLD-guideline-2014b#REF-EASL-and-AASLD-guideline-2014b
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T1 signal hyperintensity and the degree of portal systemic shunting (Inoue et al., 1991; Kulisevsky et al., 

1992; Pujol et al., 1993) and the hyperintensity has been shown to increase following insertion of transjugular 

intrahepatic portosystemic stents (TIPS) (Krieger et al., 1997).  Greater difficulties have arisen in defining 

the relationship between the cerebral T1 signal abnormalities and neuropsychiatric status.  Nevertheless, 

there appears to be a consensus that cerebral T1 signal changes can be observed in patients who are 

neuropsychiatrically unimpaired and that the intensity of the change does not correlate with the degree 

of neuropsychiatric impairment (Inoue et al., 1991; Pujol et al., 1991; Thuluvath et al., 1997; Taylor-

Robinson et al., 1995; Weissenborn et al., 1995). 

Several lines of evidence support the view that the pallidal T1 signal hyperintensity observed in patients 

with cirrhosis results from the deposition of manganese (Alonso et al., 2014).  Thus, increases in manganese 

concentrations have been observed in whole blood and CSF in these patients (Katsuragi et al., 1999; Kreiger 

et al., 1995; Spahr et al., 1996) and in pallidal tissue obtained at post-mortem (Krieger et al., 1995; Pomier-

Layrargues et al., 1995; Rose et al., 1999).  In addition, strong collateral evidence is provided by observations 

in individuals with chronic manganese toxicity, resulting from industrial exposure (Nelson et al., 1993; 

Josephs et al., 2005) or long-term parenteral nutrition (Mirowitz et al., 1991), who show similar cerebral T1 

signal abnormalities wh i c h  reverse with specific therapy or cessation of long-term nutritional support 

(Mirowitz et al., 1991; Mirowitz & Westrich 1992; Nelson et al., 1993; Nagatomo et al., 1999). 

Magnetization transfer (MT) is a quantitative MRI technique, based on interactions and exchanges between 

mobile protons in a free water pool and those bound to macromolecules.  By using MR sequences with and 

without an off-resonance saturation pulse, MT allows calculation of an index, the magnetization transfer ratio 

(MTR).  Decreases in the MTR indicate that protons bound to the brain tissue matrix have a diminished 

capacity to exchange magnetization with the surrounding free water. Thus, this index provides an estimate of 

the extent of tissue structure disruption and affords a potential window into the macromolecular environment 

that is not directly visible using conventional MRI techniques (Grover et al., 2006), because it provides 

additional contrast in MR images and can be used to better characterize cerebral white matter.   

Taylor-Robinson and colleagues (Taylor-Robinson et al., 1995) were the first to use T1-weighted MT 

imaging to study the brain in patients with cirrhosis.  They found that while MT imaging highlighted the basal 

ganglia and showed a correlation between globus pallidus contrast and blood ammonia levels, MT contrast 

measurements did not correlate with the severity of liver dysfunction or the presence or degree of HE.  

Subsequently, Iwasa and colleagues reported their findings using the MTR index; they found a reduction in 

the ratio in the globus pallidus, which correlated with the reduction in functional hepatic reserve. (Iwasa et al., 

1998) and also reported similar findings in the surrounding white matter (Iwasa et al., 1999).  Similar 

findings of a reduction in MTR have been reported by others (Balata et al., 2003; Cordoba et al., 2001; Iwasa 

et al., 1999; Rovira et al., 2001; Taylor-Robinson et al., 1995), with the exception of one group (Restuccia 

et al., 2004), who found no difference in MTR between patients and controls, but they used a different MR 

sequence to the majority of other groups.  These changes have been ascribed to the presence of manganese, 

but also of low-grade cerebral oedema.  

Diffusion-weighted imaging (DWI) is a  powerful MR technique, which allows tissue structure to be 
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probed at the microscopic level, by quantifying the motion of water molecules.  The usual image resolution 

capability of MR is 1-2 mm, but during the  diffusion times used in DWI, typically 50 ms, water molecules 

move on average 10 μm (Le Bihan 2001) and interact with cell membranes, macromolecules and nerve 

fibres.  Thus, DWI allows non-invasive, high resolution probing of brain structure, but does not interfere 

with the diffusion process itself.  Diffusion of water molecules is an intrinsic physical process independent 

of the MR effect of field strength (Le Bihan et al., 2001).  The two common quantitative parameters measured 

in DWI are the mean apparent diffusion coefficient (ADC), which is a measure of tissue water diffusivity, 

and the fractional anisotropy (FA), which is a measure of the overall directionality of water diffusion. The 

ADC is affected primarily by intracellular and extracellular volume change, extracellular tortuosity and 

intracellular water motion, referred to as “streaming” (Duong et al., 1998; Norris 2001).  An increase in 

ADC is likely to occur when the mobility of water molecules in the extracellular space increases,  for 

example, as  a  result  o f  vasogenic or extracellular oedema (Ebisu et al., 1993; Schaefer et al., 2000; 

Schwartz et al., 1998).   

Several cerebral DWI studies have been undertaken in patients with cirrhosis, but the results are inconsistent, 

primarily because the cohorts studied have been small and heterogeneous, particularly in relation to the 

severity of the liver disease and the degree of neuropsychiatric impairment, which was variously assessed, 

and the MR techniques which were not standardized ( Kale et al., 2006; Khalek et al., 2014; Lodi et al., 

2004; Sugimoto et al., 2008).    

Thus, currently the consensus appears to be that while studies using structural and functional cerebral imaging 

techniques have undoubtedly helped unravel the pathophysiology of HE, they are not thought to offer 

anything diagnostically (Berding et al., 2009; Grover et al., 2006).  Notably, however, all the cerebral MR 

studies undertaken in patients with cirrhosis to date have used magnetic field strengths of 1.5T.  The improved 

signal to noise ratio offered by 3T field strengths might, at least theoretically, enhances any differences in 

MR characteristics not previously apparent. 

The hypothesis informing this present study is that cerebral MRI, undertaken at 3 Tesla field strength, 

employing MT and DWI sequences will reveal pathology in the basal ganglia and other vulnerable regions of 

the brain in patients with cirrhosis, and particularly those with underlying HE, which is independent of other 

potential confounding variables such as the aetiology and severity of the underlying liver disease, alcohol 

misuse and current hydration status.  The specific aim of this study was, therefore, to examine the relationship 

between changes observed in high field strength, multimodal MRI and the presence and degree of 

psychometric abnormalities in a group of well-characterized patients with cirrhosis and no clinical evidence 

of HE exercising controls for other potential confounders.   MT was used to derive a quantitative measure 

of brain water content and membrane fluidity, and DWI to provide insight into intracellular and extracellular 

water changes and structural integrity.  

 

Methods 

 
Subjects  
 
Patients were recruited sequentially from those attending outpatient clinics at the Imperial College 



6 
 

Healthcare Trust, London.  The population comprised of 26 patients (19 men: seven women; mean [range] 

age 51 [37-64] yr) with biopsy-proven cirrhosis.  The aetiology of the liver injury was determined using 

clinical, laboratory, radiological and histological variables, while its severity was assessed using the Pugh 

modification of the Child’s grading system (Pugh et al., 1971) (Table 1).  All patients were clinically stable 

at the time of the study with Child-Pugh Grade A cirrhosis.  Patients were excluded if they were under 30 or 

over 70 years of age; if they had evidence of clinically overt hepatic encephalopathy or had suffered an 

episode of major hepatic decompensation within 7 days of the assessment date; had significant cardiac, 

respiratory or renal failure; insulin-dependent diabetes mellitus; cerebrovascular disease; epilepsy; a history 

of significant head injury or other conditions likely to affect cerebral function.  Patients were also excluded 

if they had misused alcohol or drugs in the previous three months; if their manual dexterity was impaired; if 

they could not speak English or obey spoken commands; or were taking psychoactive medications, including 

hypnotic drugs. 

 

Healthy volunteers were recruited, by advertisement, from amongst visitors and staff at Imperial College 

Healthcare Trust, London.  The population comprised of 18 individuals (nine men; nine women; mean age 

49.0 [34-64] yr).  None had a history of liver disease, significant medical co-morbidities, drank alcohol in 

excess of 20 g daily, and none took prescription or over-the-counter medications. 

 

Patient clinical and psychometric assessment  

All patients underwent detailed, clinical and laboratory assessment.  The aetiology of their liver injury was 

determined using clinical, laboratory, radiological and histological variables.  The functional severity of 

their liver injury was assessed using Pugh’s modification of the Child’s grading system (Pugh et al, 1973) 

and the MELD score (Malinchoc et al, 2000).  Psychometric performance was assessed, by a single 

operator, in a quiet room with constant light level, using the validated CDR® computer-based assessment 

battery (United Bioscience, Goring-on-Thames, United Kingdom).  This system provides information on 

five domains: power of attention (PoA), continuity of attention (CoA), quality of episodic memory (QoEM), 

quality of working memory (QoWM) and speed of memory (SoM).  The raw scores for each of these domains 

were compared to age-and sex-matched normative data from the CDR bank to generate Z scores for each 

individual domain and the sum of Z scores totaled (Table 2).  Patients were classified as 

neuropsychometrically impaired, by CDR criteria, if the total Z score was  -3 (Mardini et al. 2005). On the 

basis of this assessment, eight patients were classified as psycho metr i ca l ly  impaired and hence showing 

evidence of minimal HE (Table 2) 

 

MR imaging 
 
Cerebral MRI was performed on a 3T Philips InteraTM MR system (Philips, Best, Netherlands).  Standard 

volumetric T1-weighted sequences were performed with a three-dimensional (3D) imaging sequence: echo 

time (TE) 3.8 ms, repetition time (TR) 256 ms, 1 NSA, 256 image matrix, 25 cm field of view (FOV) and 

2.0 mm slice thickness.  T2-weighted sequences were performed to exclude structural brain pathology, with 

the following sequence parameters: TE 80 ms, TR 3000 ms, 2 NSA, image matrix of 230, 23 cm FOV, and 

3.0 mm slice thickness. 
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MT was obtained using a two-dimensional gradient-echo pulse sequence (TR 54.7 ms, TE 3.75 ms, flip 

angle 15 degrees, slice thickness 2mm, 1 NSA) with 20 slices positioned over the basal ganglia.  DWI was 

obtained using a standard Philips 32 direction DTI sequence (Philips, Best, The Netherlands).  The sequence 

was constructed to obtain information from an area as small and symmetrical as possible.  The voxel size 

that the sequence probes is 1x1x1.2mm.  Data were obtained in 32 non-collinear directions of sensitisation 

using single-shot echo planar imaging (TR 16000 ms, TE 51 ms, slice thickness 2 mm, 2 NSA,  b=1000  

s/mm2).  A SENSE factor of 2 was used to reduce image distortion.  Philips PRIDE™ software was used to 

co-register the images, correcting for motion and eddy current distortion (Philips, Best, The Netherlands).  

ADC and FA maps were calculated using DTI Studio® version 2.1.  ADC and FA values were 

recorded from specific regions of interest ( ROIs) in the genu, body and splenium of the corpus 

callosum, anterior corona radiata (ACR) and posterior corona radiata (PCR). 

MRI analysis 

MTR maps were calculated, using ImageJ® 
version 1.32j, (www.imagej .nih.gov) with the formula 

MTR=100(SI0-SIRF)/SI0, where SIRF is the signal intensity in the image employing an off-resonance RF 

pulse and SI0 the signal intensity in the initial proton density image.  ROIs were drawn around the (i) 

frontal white matter, (ii) head of caudate, (iii) putamen, (iv) globus pallidus and (v) thalamus bilaterally. 

The same area of ROI was used for each brain region between subjects. 

The pallidal index (PI) was calculated as the ratio of the left/right averaged signal intensity in the globus 

pallidus, to the averaged signal intensity of frontal white matter on T1-weighted imaging multiplied by 

100 (Krieger et al. 1995). Signal intensities were measured using ROIs drawn version 1.32j, 

(www.imagej .nih.gov).  

ADC and FA maps were calculated using DTI Studio version 2.1 (www.dsi-studio.labsolver.org ).  ADC 

and FA values were recorded from specific regions of interest (ROI) in the genu, body and splenium of 

the corpus callosum.  These areas were chosen as they were anatomically highly conspicuous and hence, 

they were easily defined on this imaging sequence.  A standardized area of ROI was used for the individual 

ROIs between different subjects. 

Statistical methods 

 

Data were tested for normality using the Shapiro-Wilk test.  Between group comparisons were made with the 

Mann-Whitney U test.  Correlations were made with the Spearman rank test.  Bonferroni’s correction was 

used to correct for multiple comparisons.  Tests of significance were two-tailed.  Correlation coefficients 

between regional MTRs on MT imaging, or ADC and FA on DWI and individual psychometric domains 

measured by the CDR® system were calculated using Spearman’s rank test.  Univariate linear regression was 

used to determine if age, sex, aetiology and severity of liver disease, history of alcohol misuse, individual 

laboratory variables including liver function tests and serum sodium concentrations and the presence of 

neuropsychometric impairment were associated with observed changes in the MTR and ADC.  Statistical 

analyses were performed using SPSS version 16 (SPSS Inc., USA). 

http://www.imagej.nih.gov/
http://www.imagej.nih.gov/
http://www.dsi-studio.labsolver.org/
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Results 

 

No structural cerebral abnormalities were observed, on standard T2-weighted MRI in any of the patients or 

control subjects.  There were no difference in brain volumes between the patients and the age-matched 

healthy volunteers on T1-weighted volumetric imaging. 

 

Magnetization transfer ratios 
 
MTRs were significantly decreased in the frontal white matter, caudate, putamen and globus pallidus in 

the patients with cirrhosis (Table 3) even after correction for multiple comparisons.  The greatest 

reductions in MTR were found in the frontal white matter ( 4%) (Figure 1) and the globus pallidus 

(5.8%) (Figure 2).   

 

Diffusion-weighted imaging 

The ADC was measured in nine brain regions.  A significant increase in ADC was found in the genu and 

body of the corpus callosum in the patients with cirrhosis compared to controls (Table 4), even after 

correction for multiple comparisons.  There was no significant difference in fractional anisotropy (FA) 

between patients and controls. 

 

MRI associations: patient populations and degree of psychometric impairment  

There were no statistically significant differences in MTR in any of the cerebral areas studied between 

the unimpaired patients and those classified as having minimal HE.  However there was a non-significant 

between-group trend of reducing MTR between unimpaired patients and those with minimal HE, 

particularly in the frontal white matter and the globus pallidus (Table 3).   

There was an association on univariate analysis between the presence of minimal HE and a reduction in 

regional cerebral MTRs, but this association was lost on multivariate analysis after correction for the 

severity of liver disease and a history of alcohol misuse.  No association was found between the MT imaging 

data and the individual psychometric domains measured by the CDR® system. 

ADC values tended to be higher in the genu and body of the corpus callosum in the unimpaired patients with 

cirrhosis, but the differences between values in the unimpaired patients and those with minimal hepatic 

encephalopathy were not statistically significant.  No association was found between the diffusion-weighted 

imaging data and the individual psychometric domains measured by the CDR® system. 

 

MRI: patient population by aetiology of liver injury  

Patients’ whose liver disease was caused by a combination of chronic HCV infection and alcohol misuse 

were excluded from the by aetiology analyses.  There were no significant differences in regional brain 

MTRs between patients with alcohol-related cirrhosis and those with non-alcohol related cirrhosis 

considered together.  However, there was a trend towards a lower MTR in those with alcohol-related 

disease.   
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There was no significant difference in MTRs between neuropsychometrically impaired and unimpaired 

patients within the alcohol-related cirrhosis and non-alcohol-related cirrhosis cohorts.  There was no 

significant difference in ADC or FA, between impaired and unimpaired patients, within the alcohol-

related cirrhosis and non-alcohol-related cirrhosis cohorts. 

 

In univariate analysis alcohol misuse was the only variable associated with a reduction in MTR in the 

frontal white matter, head of caudate, putamen and globus pallidus and an increase in ADC in the genu and 

body of the corpus callosum..  However, after adjusting for the effects of the severity of liver disease and 

psychometric impairment in multivariate analysis these associations were not sustained.   None of the other 

variables tested was associated with the observed changes in MTR and ADC.   
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Discussion 

 
The main findings in the present study were that mean MTRs were reduced in the frontal white matter and 

basal ganglia structures in the brains of patients with cirrhosis, while mean ADCs were increased in areas of 

the corpus callosum.  

 

There are several possible explanations for the reduction observed in MTR including damage to myelin or to 

the axonal membrane (Lexa et al. 1994; van Waesberghe et al. 1999), deposition of paramagnetic substances 

(Iwasa et al. 1998) and low-grade cellular/cerebral oedema (Balata et al. 2003; Cordoba et al. 2001).  

Damage to myelin or the axonal membranes is an unlikely e x p l a n a t i o n  a s  ( i )  c e r e b r a l  p r o t o n  

magnetic resonance spectroscopy studies (1H MRS) studies in patients with cirrhosis have invariable shown 

no significant changes in the signal for n-acetyl-aspartate, a marker of  neuronal integrity; and (ii) FA was 

unchanged, indicating structural integrity (Taylor-Robinson et al., 1996). 

 

Iwasa and colleagues demonstrated a strong inverse relationship between the manganese concentration in 

manganese chloride phantoms and the MTR, thus supporting the hypothesis that manganese deposition in 

the brain may account for the observed reduction in MTRs.  However, they found no association between 

the whole blood manganese levels and MTRs in the patients studied (Iwasa et al. 1998).  Post-mortem studies 

have confirmed an association between pre-mortem T1 hyperintensity and elevated post-mortem levels of 

manganese in the basal ganglia in patients who died with chronic liver disease (Krieger et al. 1995; Maeda 

et al. 1997).  Given that the MT sequence was T1-weighted, this would also be supportive of an association 

between MTRs and manganese deposition in the context of cirrhosis.  The observation that the reduction in 

MTR rapidly improves after liver transplantation (Cordoba et al. 2001) may be supportive of the 

manganese deposition hypothesis, as cholestasis, which is also associated with pallidal manganese 

deposition, improves post-transplantation.  However, the observation that in occupational manganese 

exposure the resolution in cerebral pallidal T1 hyperintensity is much slower (Josephs et al. 2005) suggests 

that this is a more complex issue.   

 
Low grade cerebral/cellular oedema is often cited as the explanation for reduced MTRs in patients with 

cirrhosis (Balata et al. 2003; Cordoba et al. 2001; Miese et al. 2006; Poveda et al., 2010; Rovira et al. 2001). 

This is supported by the finding of reduced intracellular levels of the cerebral osmolyte myo-inositol (mI), 

reported in 1H MRS studies (Häussinger et al. 2000). This may result from expulsion of mI from cells, in 

order to try to compensate for cellular oedema. 

 
In the present study, mean ADCs were measured in a total of nine white and grey matter structures. 

There was a statistically significantly increase in the mean ADCs in patients with cirrhosis compared to 

controls in two of these regions, although the ADC was higher in all of the nine regions studied.  The two 

compartment model fo r  t he  interpretation of diffusion suggests that the extracellular fluid, with relatively 

fast and unhindered motion of water molecules, is the main component of the overall diffusivity whereas 

the intracellular compartment, with its cellular structures, is characterised by restricted motion of protons 

and hence contributes less to overall diffusivity (Norris 2001).  Thus, a finding of elevated ADCs would 

usually be attributed to an increase in extracellular fluid.  However, it has been suggested that if the increase 
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in ADC is accompanied by a reduction in MTR, as in the present study, this could reflect minimal cellular 

oedema with an increase of membrane permeability and increased intracellular diffusivity, as well as 

changes in the viscosity of the cytoplasm (Lodi et al. 2004).  Microscopically the most striking feature 

observed in the brains of individuals dying of chronic liver failure is proliferation of the astrocytes with 

development of enlarged nuclei, prominent nucleoli, margination of chromatin and accumulation of 

glycogen — changes referred to as Alzheimer type II astrocytosis (Butterworth, 2002).  These changes are 

found particularly in the cerebral cortex, basal ganglia and cerebellum.  In addition, the expression of glial 

fibrillary acid protein (GFAP), which is a major contributor to the filamentous structures within astrocytes 

(Eng et al. 2000), is reduced in astrocytes in the basal ganglia and cerebral cortex (Sobel et al. 1981).  Thus, 

the astrocytes in HE demonstrate cytoplasmic change and as they occupy one-third of the cerebral volume, 

this may explain the observed reduction in mean MTRs and the increase in mean ADC observed in this 

patient population. 

 

It has been suggested that some of the MR-measurable changes observed in patients with cirrhosis might be 

attenuated in those with a history of alcohol misuse.  Thus, Miese et al. ( 2006) reported a significant 

decrease in the MTR of the thalamus, globus pallidus, putamen, and white matter in patients with non-

alcohol-related cirrhosis which negatively correlated with the severity of HE.  However, in patients with 

alcohol-related cirrhosis the MTR was significantly decreased in all regions assessed, but showed no 

correlation with the severity of HE.  Likewise, in patients with non-alcohol-related cirrhosis, the ADC in the 

occipital white matter was not significantly altered, but showed a tendency toward increased values in the 

thalamus and in normal-appearing white matter in those with overt HE, whereas there were no significant 

differences in ADC in any of the examined regions in patients with alcohol-related cirrhosis. The authors’ 

speculated that the discrepancy between the MRI findings in the patients with alcohol-related and non-

alcohol-related cirrhosis might reflect the presence of alcohol-related microstructural change or alcohol-

related changes in membrane lipid composition.  Thus, alcohol-tolerant membranes in the brains of patients 

with alcohol-related cirrhosis might exhibit a systematically different MT ability than those of non-alcoholic 

patients with cirrhosis. 

 

In the present study, there was a  non-significant trend towards a greater reduction in MTRs in patients 

with alcohol-related cirrhosis and minimal HE. Alcohol misuse was an independent predictor of the 

reduction in MTR in the frontal white matter, head of caudate, putamen and globus pallidus; and of the 

increase in ADC in the genu and body of the corpus callosum.  However, the significance of these 

associations was lost after adjusting for the effects of the presence of liver disease and psychometric 

impairment. There was no statistically significant difference in mean MTRs in patients in relation to the 

presence of psychometric impairment contrasting with the findings of others.  (Cordoba et al. 2001; Restuccia 

et al. 2004; Rovira et al. 2001).  However, this may be a reflection of the small number of patients with 

minimal HE within the group, supported by the fact that there was a tendency for MTRs to be lower in the 

patients with impaired psychometric performance.  This could not have been addressed at enrolment, as the 

study design was to recruit unselected patients who met inclusion criteria without biasing interpretation of 

the MR findings by knowledge of their psychometric status.  No really meaningful comparisons of the 

relationship between MR-measured variables and psychometric status in subgroups by aetiology could 
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be made as the subgroups numbers were very small 

 

In conclusion, this study has demonstrated the utility of the MT and DWI sequences to detect differences in 

cerebral MTRs and ADCs in patients with cirrhosis and .provides further insights into the pathophysiology 

of HE, in particular the potential effects of changes in astrocyte membrane permeability, with subsequent 

redistribution of macromolecules.  However, future studies which include concurrent functional MRI 

sequences (Ahluwalia et al., 2014) may also shed further light on the meaning and context of the changes 

observed with MTR and DWI. 
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Figure legends 

 

Figure 1 Box plot of cerebral magnetization transfer ratio (MTR) in the frontal white matter in 

patients with cirrhosis (n=24) and age-matched healthy controls (n=15) (median and interquartile 

range values) 

 

Figure 2: Box plot of cerebral magnetization transfer ratio (MTR) in the globus pallidus in patients with 

cirrhosis (n=24) and age-matched healthy controls (n=15) (median and range interquartile values) 
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Table 1 Characteristics of the 26 patients with cirrhosis, free of overt hepatic encephalopathy, 

undergoing cerebral MRI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Hepatitis C RNA positive.  All patients had compensated, Child’s Grade A cirrhosis 

 

 

Study number Sex Age 

(yr) 

Aetiology of cirrhosis 

1 F 52 Alcohol  

2 F 51 Hepatitis C* 

3 F 47 Autoimmune hepatitis 

4 F 56 Hepatitis C 

5 M 48 Alcohol + hepatitis C* 

6 M 49 Alcohol 

7 F 64 Autoimmune hepatitis 

8 M 64 Alcohol 

9 M 63 Hepatitis C 

10 M 61 Alcohol 

11 M 57 Cryptogenic 

12 M 51 Alcohol +Hepatitis C 

13 M 48 Hepatitis C 

14 M 47 Primary biliary cirrhosis 

15 M 46 Alcohol 

16 M 38 Haemochromatosis 

17 M 56 Alcohol + hepatitis C* 

18 M 50 Hepatitis C* 

19 M 39 Hepatitis C* 

20 M 44 Alcohol 

21 M 37 Hepatitis B 

22 M 46 Alcohol + hepatitis C* 

23 M 45 Haemochromatosis 

24 F 62 Primary biliary cirrhosis 

25 F 45 Alcohol 

26 M 58 Hepatitis C* 

 



24 
 

Table 2 Psychometric performance and overall status assessed using the CDR® system in 

the 26 patients with cirrhosis, free of overt hepatic encephalopathy, undergoing cerebral MRI 

 

Subject no 
PoA CoA QoEM QoWM SoM Total Psychometric 

status** 
 (Z score)* 

1 -1.47 -3.62 -2.62 -1.0 -14.07 -22.77 Impaired 

2 -1.54 0.53 -1.45 0.46 -1.09 -3.1 Impaired 

3 -1.21 0.9 -1.31 0.79 -1.9 -2.72 Unimpaired 

4 -0.19 1.11 1.94 0.8 0.68 4.33 Unimpaired 

5 -6.96 -1.53 -2.62 -1.91 -2.49 -15.51 Impaired 

6 1.06 0.21 -1.43 -0.03 -1.71 -1.9 Unimpaired 

7 -1.62 1.15 -0.09 0.94 -2.12 -1.75 Unimpaired 

8 -1.82 1.15 -0.52 0.17 -0.54 -1.55 Unimpaired 

9 -1.64 -0.19 1.22 0.76 -0.64 -0.49 Unimpaired 

10 0.65 0.61 -0.26 0.94 0.59 2.53 Unimpaired 

11 0.59 -0.15 -0.49 0.37 0.33 0.65 Unimpaired 

12 -0.68 -0.65 0.07 0.9 -0.03 -0.39 Unimpaired 

13 0.62 0.9 1.83 0.79 0.43 4.58 Unimpaired 

14 0.86 -0.49 -0.29 -0.03 1.21 1.27 Unimpaired 

15 0.46 0.56 1.2 0.24 -0.42 2.03 Unimpaired 

16 0.76 0.86 0.05 1.05 -1.24 1.48 Unimpaired 

17 -2.26 -0.91 0.33 0.8 -3.60 -5.63 Impaired 

18 0.61 0.9 0.05 0.79 -2.96 -0.61 Unimpaired 

19 -2.46 -0.92 -0.58 -0.94 -2.89 -7.78 Impaired 

20 -0.1 -6.04 0.28 -1.28 -0.65 -7.79 Impaired 

21 -3.17 1.16 1.65 1.05 -1.24 -0.55 Unimpaired 

22 -0.11 0.21 -2.01 -0.16 -1.33 -3.41 Impaired 

23 1.13 -0.03 0.58 1.06 0.81 3.55 Unimpaired 

24 -2.23 0.35 -0.65 0.94 -4.61 -6.20 Impaired 

25 0.81 0.92 0.55 1.06 -1.78 1.56 Unimpaired 

26 -2.65 0.86 0.92 0.8 -2.0 -2.07 Unimpaired 

 
Abbreviations: PoA= power of attention, CoA= continuity of attention, QoEM= quality of episodic memory, 

QoWM= quality of working memory, SoM= speed of memory 

*Z scores represent the number and direction of standard deviations in the patient data compared to those 

from the healthy controls  

** Psychometric performance was classified as impaired if the total Z score for all domains was  -3  
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Table 3 Regional cerebral magnetization transfer ratios (MTR) on MRI in healthy controls and in 

patients with cirrhosis, by psychometric status 

 
 

 
Brain region 

MTR   
Significance 

Controls vs All patients 

 

Healthy 

controls 
 

(n=15) 

     Patients with cirrhosis 

Total 

(n=24) 

Unimpaired 

(n=16) 

Impaired 

(n=8) 

 
Frontal white matter 

57.68 
 

(1.28) 

55.36 
 

(1.61) 

55.67 
 

(1.5) 

54.73 
 

(1.75) 

 
****** 

 
Caudate 

48.12 
 

(1.52) 

46.52 
 

(1.39) 

46.70 
 

(1.47) 

46.16 
 

(1.21) 

 
* 

 
Putamen 

48.48 
 

(1.06) 

47.04 
 

(1.28) 

47.20 
 

(1.25) 

46.72 
 

(1.38) 

 
*** 

Globus pallidus 

52.79 
 

(0.882) 

49.71 
 

(2.93) 

50.11 
 

(2.46) 

48.93 
 

(3.77) 

 
****** 

 
Thalamus 

53.27 
 

(1.83) 

51.93 
 

(1.79) 

51.87 
 

(1.88) 

52.07 
 

(1.71) 

 
NS 

 

Data are expressed as mean and standard deviations. 

 

*significance value between healthy controls and the patient entire population with cirrhosis, corrected for multiple 

comparisons; ****** = p<0.0001;*** = p<0.005; * = p<0.05; NS = non-significant. There were no significant 

differences between the neuropsychometrically unimpaired and the neuropsychometrically impaired patients 
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Table 4 Regional cerebral mean apparent diffusion coefficients (ADC) for healthy controls 

and patients with cirrhosis categorized as impaired or unimpaired by psychometric testing 

(x10-3 mm2/s). 

 
 
 

Brain region 

Mean ADC x10-3 mm2/s (SD) 

Controls 
 
 
 

(n=16) 

Patients with 
 

cirrhosis 
 

(n=25) 

Unimpaired 
 

patients 
 

(n=17) 

Impaired 
 

patients 
 

(n=8) 

 
Genu of CC 

0.809 
 

(0.04) 

0.845* 
 

(0.03) 

0.845 
 

(0.03) 

0.848 
 

(0.03) 

Splenium of 
 

CC 

0.718 
 

(0.03) 

0.737 
 

(0.04) 

0.742 
 

(0.05) 

0.727 
 

(0.03) 

 
CC body 

0.769 
 

(0.03) 

0.816***** 
 

(0.04) 

0.812 
 

(0.03) 

0.824 
 

(0.4) 

 
ACR 

0.740 
 

(0.04) 

0.774 
 

(0.04) 

0.771 
 

(0.04) 

0.780 
 

(0.06) 

 
PCR 

0.805 
 

(0.04) 

0.812 
 

(0.05) 

0.818 
 

(0.05) 

0.798 
 

(0.03) 

 
Caudate 

0.698 
 

(0.03) 

0.720 
 

(0.03) 

0.715 
 

(0.04) 

0.730 
 

(0.3) 

 
Putamen 

0.683 
 

(0.02) 

0.707 
 

(0.04) 

0.704 
 

(0.05) 

0.712^ 
 

(0.04) 

Globus 
 

pallidus 

0.709 
 

(0.04) 

0.724 
 

(0.04) 

0.722 
 

(0.04) 

0.728 
 

(0.04) 

 
Thalamus 

0.721 
 

(0.02) 

0.734 
 

(0.04) 

0.732 
 

(0.04) 

0.741 
 

(0.03) 

CC= corpus callosum; ACR= anterior corona radiata; PCR= posterior corona radiata.p values are 

displayed for the various patient groups where values are significantly different from the healthy 

controls: patients with cirrhosis *p<0.05; *****p<0.0005; neuropsychometrically unimpaired 

patients:  = p<0.05;  = p<0.001; neuropsychometrically impaired patients  ^ = p<0.05 
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Figure 1  
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Figure 2 


