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Abstract 112 

Primary open-angle glaucoma (POAG), the most common optic neuropathy, is a highly heritable 113 

disease. Intraocular pressure (IOP) and optic nerve head characteristics are used clinically to predict 114 

POAG risk. We conducted a genome-wide association meta-analysis of IOP and optic disc parameters 115 

and validated our findings in POAG cases. .   found that pathways involved are not entirely distinct as 116 

assumed. Further, we identified a novel association between CDKN1A and POAG. Using a zebrafish 117 

model we show that six6b (associated with POAG and optic nerve head variation) alters the 118 

expression of cdkn1a.  119 

 120 

 121 

 122 

 123 

 124 

 125 

Introduction 126 

In primary open-angle glaucoma (POAG), loss of retinal ganglion cells and nerve fibers manifests itself 127 

clinically as optic nerve damage, which leads to visual field loss and, eventually, blindness(1-3). The 128 

optic nerve damage is characterized by an increase in cup , the central  of the optic nerve head (or 129 

optic disc). This damage can be quantified by the vertical cup-disc ratio (VCDR), comparing the 130 

vertical diameter of the cup with the vertical diameter of the total optic disc.(4) 131 
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Elevated intraocular pressure (IOP) is a well-recognized risk factor and current POAG therapies lower 132 

IOP by various mechanisms. Sib relative risk analyses suggest that POAG is highly heritable(5)(6) and 133 

several genome-wide association studies (GWAS) have identified new POAG genes by examining 134 

POAG directly or studying endophenotypes like VCDR and IOP(7-16). Several genes associated with 135 

VCDR and IOP - CDKN2B-AS1, SIX6 (VCDR); and CAV1/CAV2, TMCO1, ABCA1 and ARHGEF12 (IOP) - 136 

are highly significantly associated with POAG. Notably, no genes have been significantly (genome-137 

wide) associated with both VCDR and IOP. Charlesworth et al. previously found a genetic correlation 138 

between VCDR and IOP (RhoG = 0.45, P = 0.0012), however, genes underlying this relationship have 139 

not yet been identified(17). 140 

The aims of this study were to (1) identify new genes associated with the POAG endophenotypes IOP, 141 

VCDR, cup area, and disc area, and ultimately POAG, using the 1000 Genomes imputations reference 142 

panel, and (2) investigate the genetic overlap between the different endophenotypes. To accomplish 143 

these aims we performed a meta-analysis of GWAS of these four traits within the International 144 

Glaucoma Genetics Consortium (IGGC). 145 

146 
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Results 147 

Intraocular pressure 148 

After removal of single nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) < 0.01 149 

and low imputation quality, approximately 8 million SNPs were included. Whilst the analysis of 150 

individuals of European descent yielded no novel associations, combined analysis of individuals of 151 

European and Asian descent (n = 37,930, λ = 1.05; Supplementary Material, Figs S1a, S1b and S2b), 152 

yielded nine genomic regions reaching genome-wide significance, of which eight genomic regions 153 

were already known (Supplementary Material, Figs S1a, S1b, S2b, and Table S3)(9, 11, 13). The peak 154 

SNP in the new genomic region was rs55796939 on chromosome 11q25 near ADAMTS8 155 

(Supplementary Material, Figs S3 and S4).(18) 156 

 157 

Vertical cup-disc ratio 158 

In the meta-analysis of individuals of European descent (n = 23,899, λ = 1.08), 21 genomic regions 159 

were genome-wide significant (Supplementary Material, Figs S5a, S6a and Table S4). Five genomic 160 

regions were novel (near to the genes RPE65 on chr. 1p31, F5 on chr. 1q23, PDZD2 on chr. 5p13.3, 161 

RREB1 on chr. 6p25, and DGKB on chr. 7p21.2) (Supplementary Material, Figs S7 and S8); the other 162 

genomic regions have been previously associated with VCDR or cup area, two highly correlated 163 

traits(19-21). Of the five novel genomic regions, RREB1 (p-value = 4.13 x 10-3) was nominally 164 

significant in the analysis of individuals of Asian descent (n= 8,373, λ = 1.01). In the combined analysis 165 

(n = 32,272, λ = 1.06), another four novel genomic regions, near to the genes VCAN on chr. 5q14.3, 166 

PSCA on chr. 8q24.2, ENO4 on chr. 10q25.3, and RBM23 on chr. 14q11.2 (Supplementary Material, 167 

Figs S5b and S6b), were genome-wide significant leading to a total of nine (5+4) novel genomic 168 

regions associated with VCDR. Of these novel genomic regions, F5 has been associated with disc area 169 

previously(21). Disc area influences the VCDR(22), and therefore we corrected VCDR for disc area in a 170 
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secondary analysis. After correction for disc area, the β (p-value) decreased from -0.007 (2.15 x 10-9) 171 

to -0.002 (5.60 x 10-2) in the subset with disc area available, suggesting that F5 acts primarily on disc 172 

area and secondary to VCDR through its relation to disc area. The calculated h2 of VCDR using the 173 

European -only meta-analysis was 0.31. 174 

 175 

Cup area 176 

The meta-analysis of individuals of European descent (n = 22,489, λ = 1.06) yielded 17 genome-wide 177 

significant regions of which 14 regions were already implicated for cup area or VCDR (Supplementary 178 

Material, Figs S9a, S10a and Table S5)(20, 21). There were three novel associations on chr. 1q42.11 179 

near CDC42BPA, chr. 8q21.11 near CRISPLD1, and on chr. 15q26.3 near FAM169B (Figs S11 and S12). 180 

CDC42BPA has previously been associated with disc area and the fact that the association with cup 181 

area adjusting for disc area is genome wide significant suggests an independent effect on cup area. In 182 

the combined analysis of European and Asian individuals (n = 29,828, λ = 1.06, Supplementary 183 

Material, Figs S9b and S10b) all loci except FAM169B and CRISPLD1 remained genome-wide 184 

significant, and there was one additional genome-wide significant SNPs at chr. 6p21.2 (CDKN1A) and 185 

one highly suggestive significant SNP at chr. 9q34.2 (ABO; previously associated to IOP). 186 

Disc area 187 

The meta-analysis of individuals of European descent (n = 22,504, λ = 1.06) resulted in 13 genome-188 

wide significant regions, of which two were not previously associated with disc area: UGT8 on chr. 189 

4q26 and CTNNA3 on chr. 10q22.2 (Supplementary Material, Figs S13a, S14a, S15, S16, and Table 190 

S6). These SNPs were not significant in the meta-analysis of individuals of Asian descent (n = 7,307, λ 191 

= 1.02). An additional four SNPs reached genome-wide significance in the combined meta-analysis (n 192 

= 29,811, λ = 1.07): PRDM16 on chr. 1p36.23-p33, GADD45A on chr. 1p31.2, VGLL4 on chr. 3p25.3, 193 

and ASB7 on chr. 15q26.3 (Supplementary Material, Figs S13b and S14b). 194 



8 

 

Characterization of the lead association signals 195 

In total, 82 SNPs were associated with one or more of the above endophenotypes. Functional 196 

characterization of the 82 SNPs was performed using a range of bioinformatics tools (see Methods). 197 

In total, 650 variants in linkage disequilibrium (LD) with the 82 lead SNPs (R2 >0.8) were examined for 198 

functional annotation. Overall, 61% (50/82) of the associated loci are in LD with variants located in 199 

regulatory regions according to the ENCODE data (e.g. DNase I hypersensitive sites, transcription 200 

factor binding sites and motifs; see Supplementary Material, Table S7). We investigated the 201 

expression levels of the identified candidate genes using the UniGene database(23). Of all reviewed 202 

genes, CDKN1A, PAX6 and DUSP1 showed the highest number of transcripts per million in the eye 203 

(Supplementary Material, Table S8). According to the Ocular Tissue database(24), CDKN1A is highly 204 

expressed in the optic nerve head, as well as DUSP1, which also shows high expression in the 205 

trabecular meshwork. Both genes were associated with optic nerve head parameters. PAX6 is highly 206 

expressed in the ciliary body and retina, in this study we found it associated with disc area. Other 207 

highly expressed genes in the optic nerve include EFEMP1 and ABI3BP, which are associated with cup 208 

area and disc area, respectively (Supplementary Material, Table S9). (25) 209 

 210 

Gene-based test 211 

To identify new loci not found through per-SNP tests, we performed gene-based testing using 212 

VEGAS2. Reflecting the smaller number of tests, our gene-based significance threshold is Pgene-based < 213 

0.05/24,769 = 2.02 x 10-6 (24,769 genes tested). Using the gene-based test we found several novel 214 

loci (Supplementary Material, Table S10). C9 was significantly associated with IOP (p-value 1.61 x 10-215 

6); RARB (p-value 1.86 x 10-6) and HORMAD2-AS1 (p-value 1.04 x 10-6) were associated with VCDR. 216 

These genes were previously associated with disc area, so the novel associations with VCDR could 217 

possibly be driven by the influence of disc area on VCDR(21). In the cup area analysis, the genes 218 
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LRP10 (p-value 1.20 x 10-6) and REM2 (p-value 1.55 x 10-6), and THSD4 (p-value 5.44 x 10 8) were 219 

significantly associated. The first two genes are located near to RBM23, which was significant in the 220 

per-SNP test. THSD4 is located near to KPNB1, which was associated with VCDR in our previous meta-221 

analysis(20). In the disc area analysis we found two genes that were significantly associated with disc 222 

area: ANKRA2 (p-value 8.42 x 10-7) and LOC149950 (p-value 3.87 x 10-7). 223 

 224 

Characterizing the overlap in biological pathways involved in glaucoma endophenotypes 225 

In total, 86 SNPs were associated with one or more of the above endophenotypes. The effect 226 

estimates and p-values of these SNPs for all four endophenotypes are shown in Table 1-3. ADAMTS8 227 

(IOP and VCDR, Table 1 and Table2b) and ABO (IOP and cup area, Table 1) were genome-wide 228 

significantly associated with two traits. Of note is that there were different variants involved in 229 

ADAMTS8: rs55796939 for IOP and rs4936099 for VCDR (r2=0.03 between these SNPs in 1000G 230 

European samples). Figure 1 shows the overlap in associations across endophenotypes – we depict 231 

annotated genes for which at least one SNP was genome-wide significant in at least one trait. 232 

Overlap is defined as nominal significance or stronger for the second trait. The figure shows as 233 

expected a strong overlap in variants associated to disc area, cup area and VCDR. Further, overlap is 234 

noted in genes associated to IOP, cup area and VCDR. 235 

To further characterize the overlap in biological functions, gene set enrichment of loci associated 236 

with IOP and optic disc parameters was performed using DEPICT(25). We first investigated enriched 237 

pathways or gene sets using only genome-wide associated SNPs. No significant pathways were found 238 

after FDR correction. However, pathways involved in metabolic processes such as “increased 239 

circulating leptin level”, “abnormal fat cell morphology” and “increased insulin sensitivity” were 240 

suggestive when we analyzed the list of SNPs associated with VCDR, cup area and disc area (FDR<0.2, 241 

see Supplementary Material, Table S11). We next searched for enriched pathways using suggestive 242 
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SNPs (p-value <1.0 x 10-5). We further investigated potential overlap in pathways across the 243 

endophenotypes, and found 57 significant pathways when using VCDR, cup area and IOP variants; 244 

and 100 pathways when analysing suggestive VCDR, cup area and disc area variants. Note that in the 245 

first analysis we investigated pathways enriched when IOP genes are taken into account, while in the 246 

second one we analysed genes influencing the optic nerve head characteristics. Due to a high degree 247 

of redundancy between pathways, we clustered the significant pathways into meta-pathways, 248 

resulting in 11 meta-pathways for VCDR, cup area and IOP (Figure 2a, Supplementary Material, 249 

Table S12); and 17 for VCDR, cup area, and disc area (Figure 2b, Supplementary Material, Table 250 

S13). Most of the gene sets found in both analyses highlighted pathways involved in cell 251 

differentiation, notch signaling, regulatory DNA binding and embryonic development, which reflects 252 

the pathways found when VCDR and CA variants are analyzed (Supplementary Material, Fig S17). 253 

Furthermore, we found “abnormal fat cell morphology” and “abnormal liver morphology” 254 

significantly enriched; a key gene in these pathways is ABCA1. When IOP genes are included the 255 

elongation factor, RNA Polymerase II (ELL2) protein complex” shows an enrichment. When disc area 256 

genes are included, pathways such as “blood vessel development”, “protein import into nucleus”, 257 

“Thrombospondin 1 (THBS1) and SMAD3 protein complex”, and “abnormal eye morphology” were 258 

significant. Key genes in the latter include: CDKN2B, FAT4, LRIG3, SIX6, COL8A1, SOX11, RND3, BOC, 259 

WNT2B and CYP26A1. 260 

 261 

From endophenotypes to primary open-angle glaucoma 262 

 75 independent (i.e. R2 < 0.8) SNPs associated with one or more of the endophenotypes, 32 were 263 

nominal significantly associated with POAG in a meta-analysis of 6,429 cases and 41,404 controls (p-264 

value <0.05; the chance that 32 SNPs of 75 SNPs have a p-value <0.05 is < 2.2 x 10-16), and 11 265 

independent SNPs were Bonferroni significantly associated with POAG (p-value 0.05/75 = 6.67 x 10-4) 266 

(Table 4). Of these, the rs2487048 in the ABCA1 gene and the 11:120357425 in the ARHGEF12 267 
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showed high heterogeneity (I2). To estimate the common effect size we performed a random effect 268 

meta-analysis. The odds ratio (OR) remained almost the same for both variants, although p-values 269 

were not significant after adjusting for multiple testing, which is in line with the heterogeneity 270 

observed. All other nine SNPs surpassed the Bonferroni threshold for significance in both fixed and 271 

random-effect models. The association between CDKN1A and POAG is novel (OR = 1.14, p-value = 7.4 272 

x 10-7). In our previous paper, the SNP rs6054374 near to BMP2 was already associated with POAG 273 

(OR = 0.92, p-value 3.74 x 10-3), but the most significantly associated SNP in the current meta-analysis 274 

rs6107845 near to BMP2 shows a slightly larger effect on POAG (OR = 0.89, p-value = 8.52 x 10-6). 275 

CDKN1A  gene family as CDKN2B,  276 

 277 

Expression of cdkn1a after knockdown of six6b in zebrafish 278 

(26, 27)(27),nockdown of six6b was achieved using morpholino technology(27). 85% of the 279 

knockdown embryos showed a small eye phenotype, reduced optic nerve thickness and an up-280 

regulation of the expression levels of cdkn2a/cdkn2b, as observed in previous studies (n=220)(27, 281 

28). In zebrafish, there is only one gene which is analogous to the human CDKN2A and CDKN2B and it 282 

is referred to in this paper as cdkn2a/cdkn2b. We evaluated the expression levels of cdkn1a in six6b 283 

deficient embryos by RT-qPCR. A 41-fold overexpression of cdkn1a in the eye of six6b knockdown 284 

embryos was found (p-value = 0.001) (Figure 3), showing that in vivo downregulation of six6b affects 285 

the expression levels not only of cdkn2a/cdkn2b but also of cdkn1a, likely by binding to their 286 

sequence, repressing their expression. 287 

 288 

Discussion 289 

This meta-analysis within the IGGC identified a novel genomic region associated with IOP, nine 290 

genomic regions associated with VCDR, five with cup area, and six with disc area. Eleven genomic 291 
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regions were associated with POAG. Of these regions, the association between CDKN1A and POAG is 292 

novel.  293 

We identify some specific loci that underlie the genetic correlation between IOP and VCDR described 294 

earlier(17). ADAMTS8 and ABO were genome-wide significant for both IOP and VCDR or cup area. 295 

Variants found close to ABO (rs8176672 for cup area and rs8176741 for IOP) are in LD (r2 >0.85) with 296 

rs12216891, which lies in an enhancer and promoter histone mark, suggesting a potential regulatory 297 

mechanism in that region. Furthermore, TRIOBP is genome-wide significant for cup area, and reached 298 

a p-value of 3.42 x 10-6 for IOP. Interestingly, TRIOBP is approximately 180 kb away from CARD10 299 

which is associated with disc area. There is a large overlap between VCDR/cup area and disc area. 300 

Since VCDR is related to disc area, it might be that the effect found for VCDR is due to the effect of 301 

disc area. Most of these overlapping genes are still Bonferroni significant in the cup area analysis in 302 

which we corrected for disc area. Only CDC7/TGFBR3 and F5 are genome-wide significant for VCDR as 303 

well as for disc area, but the effect is negligible after correction for disc area, suggesting that these 304 

two genes play primarily a role in disc area. 305 

When suggestive SNPs (p-value <1.0 x 10-5) for VCDR and cup area are analyzed together using 306 

DEPICT, we found an enrichment of pathways involved in cell differentiation, development, 307 

regulatory DNA binding and Notch signaling. Including disc area SNPs to the VCDR and cup area 308 

analysis reveals additional joint pathways: 1) eye and blood vessel development, 2) cancer, 3) protein 309 

import into nucleus, and 4) thrombospondin 1 and SMAD3 complexes, related to the extracellular 310 

matrix. Of interest, known POAG genes also fit in these pathways identified in this paper based on 311 

endophenotypes: GAS7 and SIX6 play a role during development(27, 29), TGFBR3 has been 312 

implicated in extracellular matrix regulation(30) and in cancer as well as GMDS(31).  313 

The extracellular matrix pathway has been previously implicated in optic nerve degeneration(20), 314 

and emerges in the DEPICT analyses. Both ADAMTS8 and COL8A1 have a role in this pathway. The 315 

encoded protein of the novel identified gene VCAN (versican) is also a major component of the 316 
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extracellular matrix. Another member of the ADAMTS family (ADAMTS5) plays a role in the 317 

regulation of versican(32). Interestingly, mutations in VCAN have been implicated in several 318 

ophthalmologic disorders(33). 319 

. The gene CDKN1A, also known as p21, CIP-1 or WAF-1, the same family as CDKN2B and also 320 

encodes a cyclin-dependent kinase inhibitor. Upregulation of CDKN1A causes G1 arrest and inhibits 321 

proliferation of the cell. Herein, for the first time, we provide genome-wide significant evidence for 322 

association of CDKN1A variants with cup area. Two prior small cohort studies suggested a possible 323 

role of CDKN1A in POAG. Tsai et al.(34) found an association between a codon 31 polymorphism in 324 

CDKN1A and POAG in 58 patients and 59 controls from China (OR = 2.39 [1.14-5.01]). Saglar et al. 325 

found no statistically significant association between the codon 31 polymorphism and POAG in 75 326 

patients and 119 controls from Turkey (OR = 1.70, p-value = 0.25)(35). Our study provides strong 327 

evidence for the role of CDKN1A in POAG risk in a large sample consisting of 6,429 cases and 41,404 328 

controls and shows the first convincing evidence for association of CDKN1A and POAG in individuals 329 

of European descent. (26, 27)in vivo studies in embryonic zebrafish eye  that knockdown of six6b 330 

upregulates both cdkn2a/cdkn2b and cdkn1an a recent study, Skowronska-Krawczyk et al. showed 331 

that SIX6 regulates the expression of CDKN2A (26).More comprehensive studies at the individual 332 

tissue level e.g. retinal ganglion cell layer or optic nerve should be performed to 333 

evaluate(36)(37)(38)(39)(40)(41)(42)(43)(44)(45)(46) 334 

The synthesis of CDKN1A is increased by the binding of p53 to p53-specific DNA consensus 335 

sequence(47, 48). It has been suggested that p53 plays a role in POAG, especially in POAG with 336 

paracentral visual field loss(49).In a p53 knockout mouse model, less apoptosis was observed after 337 

induction of high IOP. Suggesting that the downregulation of p53 could attenuate the cell damage 338 

caused by high IOP levels(26). Other genes also play a role in p53. GADD45A is involved in growth 339 

arrest through p53 dependent and independent mechanisms(47, 50) and can interact via 340 

CDKN1A(51). Other novel identified genes might also play a role in p53-induced apoptosis. It has 341 
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been shown that the secreted pdzd2 protein activates p53 by transcriptional regulation(52). Also 342 

RREB1 has an effect on p53 by binding to its promotor and transactivates its expression(53). This 343 

gene encodes a zinc finger transcription factor. This can bind to the RAS-responsive element of the 344 

calcitonin gene promotor which subsequently increases the expression of calcitonin. Calcitonin may 345 

be involved in the Ras/Raf signaling cascade that plays a role in the morphogenesis of retinal ganglion 346 

cells, the cell type affected by glaucoma, during neurogenesis(54). Also PSCA is probably involved in 347 

p53-related pathways(55). Other genes play a role in apoptosis or cell growth via other pathways 348 

than p53: VGLL4 inhibits Bax- and TNFa-induced apoptosis(56) and DGKB is a regulator of 349 

diacylglycerol, which is important for cell growth and differentiation. UGT8 plays a role in the 350 

biosynthesis of the sphingolipids of myelin membranes of the central and peripheral nervous system; 351 

sphingolipids are also implicated in apoptosis(57). 352 

Another interesting novel gene is RPE65 (retinal pigment epithelium -specific protein 65kDa). This 353 

gene has been associated with retinitis pigmentosa (RP) (58, 59) and Leber congenital amaurosis type 354 

2 (LCA2)(60). As the name implies, the encoded protein is located in the retinal pigment 355 

epithelium(61). It is involved in the conversion of all-trans retinal to 11-cis retinal, which is a 356 

necessary step in the visual cycle. Both diseases (RP and LCA2) are not characterized by an excavation 357 

of the optic nerve head. However, we have checked several online databases for expression in 358 

different tissues. In the eye, it is also highly expressed in the optic nerve head (S8 and S9 Tables) 359 

suggesting that this gene could be involved in other ocular processes. Little expression is found in the 360 

brain, with no expression in other tissues or organs in the body. Future studies are necessary to 361 

confirm our finding. 362 

Of the genes identified by gene-based testing, C9 (complement component 9) is especially 363 

interesting. Its protein is part of the membrane attack complex (MAC), together with the proteins 364 

C5b, C6, C7, and C8. This complex activates several steps that lead to cell death, and cells protect 365 

themselves by removing the complex through endocytosis. Caveolin is one of the proteins involved in 366 
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endocytosis and the CAV1/CAV2 genes are associated with IOP and POAG. It has been shown that 367 

inhibition of caveolin-1 inhibits the endocytosis of MAC(62). 368 

To our best knowledge, this meta-analysis is the largest study of IOP and optic nerve head 369 

parameters to date, using well-characterized datasets from populations world-wide. A limitation of 370 

our study is the lack of an available dataset for replication of the novel associations detected by 371 

combined European and Asian ancestry samples. However, the heterogeneity of these novel genomic 372 

regions is generally low in the meta-analysis. For VCDR, cup area, and disc area we have identified 373 

novel SNPs in the analysis of individuals with European ancestry. Of the nine novel associations found 374 

in these populations (RPE65, PDZD2, RREB1, DGKB for VCDR; CDC42BPA, CRISPLD1 and FAM169B for 375 

cup area; and CTNNA3 and UGT8 for disc area), only RREB1 was nominally significant in the 376 

individuals with Asian ancestry. Five of the seven non-significant SNPs in the individuals with Asian 377 

ancestry had an effect estimate in the same direction. As the analysis in individuals with Asian 378 

ancestry contains a smaller number of individuals, this could be due to lack of power.  379 

We have identified 21 genetic variants associated with POAG endophenotypes. (63)These association 380 

results do not imply that the variants described here have a causal effect. Fine-mapping and 381 

functional studies are required to identify the causal variants tagged by our findings and the exact 382 

molecular mechanisms involved in POAG. In conclusion, we have found novel genomic regions 383 

associated with the POAG endophenotypes: IOP, VCDR, cup area, and disc area. Although the overlap 384 

between IOP-loci and the optic disc parameters-loci is not large , this is the first study showing a 385 

genome-wide significant evidence of the genetic correlation between IOP and VCDR; we expect that 386 

larger sample sizes and improved imputation accuracy may help to find more of the loci underlying 387 

the genetic correlation between these two endophenotypes. Of the novel associations, CDKN1A is 388 

strongly associated with POAG, This finding is in line with other studies(26), pointing to the CDK-389 

inhibitor genes as key players in the development of POAG. The p53 pathway has been implicated in 390 

POAG, intriguingly, p53 has been also related to the CDK-inhibitors and to four of the new genes 391 
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pointed out by this study (GADD45A, PDZD2, RREB1 and PSCA). Functional studies need to be 392 

performed to assess the role of p53 and CDK-inhibitors in the pathophysiology of POAG. A more 393 

comprehensive study of these mechanisms may inform the development of new therapies for POAG. 394 

395 
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Materials and methods 396 

Study design 397 

We performed a meta-analysis on directly genotyped and imputed SNPs to the 1000 Genomes 398 

reference panel. We analyzed four outcomes: IOP, VCDR, cup area, and disc area. In the first stage, 399 

we included 22,489-29,578 individuals with European ancestry. Subsequently, we evaluated the 400 

genome-wide significant SNPs from the first stage in 7,307-8,373 individuals with Asian ancestry. 401 

Finally, we performed a meta-analysis of GWAS summary findings from all individual studies 402 

including individuals with European and Asian ancestry. We subsequently tested the effect of all 403 

genome-wide significant SNPs on POAG in four independent case-control studies(7, 64)(65). 404 

 405 

Subjects, phenotyping and genotyping 406 

All 19 studies included in this meta-analysis are part of the IGGC (S1a Table).Details for each 407 

individual study can be found in Supplementary Material and Tables S1b, S1c and S2. The 408 

ophthalmological examinations included measurements of IOP and optic nerve head assessment. All 409 

19 studies contributed to the IOP mega/meta-analysis, 18 to the VCDR and 16 to the cup area and 410 

disc area mega/meta-analysis .Studies performed genomic imputation using 1000 Genomes phase 1 411 

reference samples . Study-specific quality control can be found in the Supplementary Material. All 412 

studies were performed with the approval of their local medical ethics committee, and written 413 

informed consent was obtained from all participants in accordance with the Declaration of Helsinki. 414 

 415 

Statistical analysis 416 

In the IOP analysis, individuals who underwent IOP-lowering laser or surgery were removed from the 417 

analysis; in individuals receiving IOP-lowering medication, the IOP value was multiplied by 1.3 to 418 
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estimate a pre-medication IOP value(66). The mean IOP, VCDR, cup area, and disc area of both eyes 419 

was used for the analyses. SNPs with MAF < 0.01 and imputation quality scores <0.3 (proper-info of 420 

IMPUTE) or R2<0.3 (MACH) were removed from the analyses. Each individual study performed a 421 

linear regression between each endophenotype (IOP, VCDR, cup area, and disc area) and the SNPs, 422 

under the assumption of an additive model for the effect of the risk allele. Analyses were adjusted 423 

for age, sex and the first five principal components (for population-based studies) or family structure 424 

(for family-based studies). 425 

We performed an inverse variance weighted fixed-effect meta-analysis with METAL software(67). P 426 

values for heterogeneity were calculated by using the Cochran’s Q-test for heterogeneity. SNPs with 427 

a p-value for heterogeneity <0.001 were removed from the results, as well as SNPs only present in 428 

three studies. We used the ‘genomic control’ option in METAL to correct the standard error of each 429 

individual study for estimated genomic inflation.(18) In the meta-analyses of individuals with 430 

European ancestry, a p-value <5.0 x 10-8 (the genome-wide threshold of association) was considered 431 

significant. In the second stage, these genome-wide significant SNPs were validated in individuals 432 

with Asian ancestry, and in this look-up a p value <0.05 was considered significant. Finally, in the 433 

meta-analysis of individuals with European and Asian ancestry a p-value of <5.0 x 10-8 was considered 434 

significant. In total, we identified 75 independent SNPs across different genomic regions for all the 435 

traits together. Therefore, the significance level after Bonferroni correction in the meta-analysis of 436 

POAG cohorts  was = 6.67 x 10-4 (0.05 / 75 independent SNPs). To estimate the common effect size of 437 

the top SNPs associated with IOP, optic disc parameters and their effect in the look-up in the POAG 438 

cohorts a random-effect meta-analysis was performed using plink(68) 439 

http://pngu.mgh.harvard.edu/purcell/plink/ parameter --meta-analysis. Manhattan, regional and 440 

forest plots were made using R(69) and LocusZoom(70). 441 

(18, 71) 442 

Gene-based test using VEGAS 443 
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A gene-based test was performed using the VEGAS2 software(72), with a 50kb gene boundary. We 444 

used the parameter ‘-top 100’ (default) to perform gene-based tests. This parameter considers 445 

association test statistics of all variants mapped to a gene to compute gene-based test statistics. The 446 

1000 Genomes European and Asian populations were used as a reference to calculate LD for 447 

European and Asian ancestry data respectively. After calculation of gene-based test statistics for 448 

Asian and European ancestry populations separately, meta-analyses were conducted using Fisher’s 449 

method for combining p-values. 450 

 451 

Functional characterization, expression data, zebrafish and gene-set enrichment 452 

We investigated for evidence of regulatory functions of associated loci HaploReg version 2(73) and 453 

Regulomedb version 1.1(74). We investigated the expression of the associated genes using NCBI’s 454 

UniGene(23) and The Ocular Tissue Database(24). We also investigated the expression of cdkn1a in a 455 

six6b knockdown zebrafish and used DEPICT to investigate gene-set enrichment. More information 456 

about these analyses can be found in the Supplementary Material. 457 

458 



20 

 

Acknowledgments 459 

We gratefully acknowledge the contributions of all participants who volunteered within each cohort 460 

and the personnel responsible for the recruitment and administration of each study. We also thank 461 

the various funding sources that made this work possible. The funders had no role in study design, 462 

data collection and analysis, decision to publish, or preparation of the manuscript. Complete funding 463 

information and acknowledgments can be found in the Supplementary Material. 464 

 465 

Conflict of interest 466 

Dr. Pasquale has been a paid speaker for Allergan. He also served as a nonpaid consultant to Novartis 467 

and a paid consultant to Bausch + Lomb. He has received support to travel to the Exfoliation 468 

Glaucoma Think Tank Meeting in NYC by the Glaucoma Foundation. 469 

Dr. Jonas: Consultant for MundiPharma Co.; Allergan Inc.; Merck Sharp & Dohme Co., Inc.; Alimera 470 

Co.; Boehringer Ingelheim Co., Sanofi Co., Pfizer Co.; Patent holder with CellMed AG, Alzenau, 471 

Germany and with University of Heidelberg / Germany 472 

 473 

 474 

 475 

 476 

 477 

 478 



21 

 

References 479 

1 Weinreb, R.N., Aung, T. and Medeiros, F.A. (2014) The pathophysiology and treatment of 480 
glaucoma: a review. JAMA, 311, 1901-1911. 481 
2 Ernest, P.J., Busch, M.J., Webers, C.A., Beckers, H.J., Hendrikse, F., Prins, M.H. and Schouten, 482 
J.S. (2013) Prevalence of end-of-life visual impairment in patients followed for glaucoma. Acta 483 
Ophthalmol, 91, 738-743. 484 
3 Peters, D., Bengtsson, B. and Heijl, A. (2014) Factors associated with lifetime risk of open-485 
angle glaucoma blindness. Acta Ophthalmol, 92, 421-425. 486 
4 Ramdas, W.D., Rizopoulos, D., Wolfs, R.C., Hofman, A., de Jong, P.T., Vingerling, J.R. and 487 
Jansonius, N.M. (2011) Defining glaucomatous optic neuropathy from a continuous measure of optic 488 
nerve damage - the optimal cut-off point for risk-factor analysis in population-based epidemiology. 489 
Ophthalmic Epidemiol, 18, 211-216. 490 
5 Wolfs, R.C., Klaver, C.C., Ramrattan, R.S., van Duijn, C.M., Hofman, A. and de Jong, P.T. (1998) 491 
Genetic risk of primary open-angle glaucoma. Population-based familial aggregation study. Arch 492 
Ophthalmol, 116, 1640-1645. 493 
6 Cuellar-Partida, G., Craig, J.E., Burdon, K.P., Wang, J.J., Vote, B.J., Souzeau, E., McAllister, I.L., 494 
Isaacs, T., Lake, S., Mackey, D.A. et al. (2016) Assessment of polygenic effects links primary open-495 
angle glaucoma and age-related macular degeneration. Sci Rep, 6, 26885. 496 
7 Burdon, K.P., Macgregor, S., Hewitt, A.W., Sharma, S., Chidlow, G., Mills, R.A., Danoy, P., 497 
Casson, R., Viswanathan, A.C., Liu, J.Z. et al. (2011) Genome-wide association study identifies 498 
susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet, 43, 574-578. 499 
8 Gharahkhani, P., Burdon, K.P., Fogarty, R., Sharma, S., Hewitt, A.W., Martin, S., Law, M.H., 500 
Cremin, K., Bailey, J.N., Loomis, S.J. et al. (2014) Common variants near ABCA1, AFAP1 and GMDS 501 
confer risk of primary open-angle glaucoma. Nat Genet, 46, 1120-1125. 502 
9 Hysi, P.G., Cheng, C.Y., Springelkamp, H., Macgregor, S., Bailey, J.N., Wojciechowski, R., Vitart, 503 
V., Nag, A., Hewitt, A.W., Hohn, R. et al. (2014) Genome-wide analysis of multi-ancestry cohorts 504 
identifies new loci influencing intraocular pressure and susceptibility to glaucoma. Nat Genet, 46, 505 
1126-1130. 506 
10 Thorleifsson, G., Walters, G.B., Hewitt, A.W., Masson, G., Helgason, A., DeWan, A., 507 
Sigurdsson, A., Jonasdottir, A., Gudjonsson, S.A., Magnusson, K.P. et al. (2010) Common variants near 508 
CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet, 42, 906-909. 509 
11 van Koolwijk, L.M., Ramdas, W.D., Ikram, M.K., Jansonius, N.M., Pasutto, F., Hysi, P.G., 510 
Macgregor, S., Janssen, S.F., Hewitt, A.W., Viswanathan, A.C. et al. (2012) Common genetic 511 
determinants of intraocular pressure and primary open-angle glaucoma. PLoS Genet, 8, e1002611. 512 
12 Ramdas, W.D., van Koolwijk, L.M., Lemij, H.G., Pasutto, F., Cree, A.J., Thorleifsson, G., 513 
Janssen, S.F., Jacoline, T.B., Amin, N., Rivadeneira, F. et al. (2011) Common genetic variants 514 
associated with open-angle glaucoma. Hum Mol Genet, 20, 2464-2471. 515 
13 Springelkamp, H., Iglesias, A.I., Cuellar-Partida, G., Amin, N., Burdon, K.P., van Leeuwen, E.M., 516 
Gharahkhani, P., Mishra, A., van der Lee, S.J., Hewitt, A.W. et al. (2015) ARHGEF12 influences the risk 517 
of glaucoma by increasing intraocular pressure. Hum Mol Genet, 24, 2689-2699. 518 
14 Wiggs, J.L., Kang, J.H., Yaspan, B.L., Mirel, D.B., Laurie, C., Crenshaw, A., Brodeur, W., 519 
Gogarten, S., Olson, L.M., Abdrabou, W. et al. (2011) Common variants near CAV1 and CAV2 are 520 
associated with primary open-angle glaucoma in Caucasians from the USA. Hum Mol Genet, 20, 4707-521 
4713. 522 
15 Wiggs, J.L., Yaspan, B.L., Hauser, M.A., Kang, J.H., Allingham, R.R., Olson, L.M., Abdrabou, W., 523 
Fan, B.J., Wang, D.Y., Brodeur, W. et al. (2012) Common variants at 9p21 and 8q22 are associated 524 
with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet, 8, e1002654. 525 
16 Chen, Y., Lin, Y., Vithana, E.N., Jia, L., Zuo, X., Wong, T.Y., Chen, L.J., Zhu, X., Tam, P.O., Gong, 526 
B. et al. (2014) Common variants near ABCA1 and in PMM2 are associated with primary open-angle 527 
glaucoma. Nat Genet, 46, 1115-1119. 528 



22 

 

17 Charlesworth, J., Kramer, P.L., Dyer, T., Diego, V., Samples, J.R., Craig, J.E., Mackey, D.A., 529 
Hewitt, A.W., Blangero, J. and Wirtz, M.K. (2010) The path to open-angle glaucoma gene discovery: 530 
endophenotypic status of intraocular pressure, cup-to-disc ratio, and central corneal thickness. Invest 531 
Ophthalmol Vis Sci, 51, 3509-3514. 532 
18 Bulik-Sullivan, B.K., Loh, P.R., Finucane, H.K., Ripke, S., Yang, J., Schizophrenia Working Group 533 
of the Psychiatric Genomics, C., Patterson, N., Daly, M.J., Price, A.L. and Neale, B.M. (2015) LD Score 534 
regression distinguishes confounding from polygenicity in genome-wide association studies. Nat 535 
Genet, 47, 291-295. 536 
19 Ramdas, W.D., van Koolwijk, L.M., Ikram, M.K., Jansonius, N.M., de Jong, P.T., Bergen, A.A., 537 
Isaacs, A., Amin, N., Aulchenko, Y.S., Wolfs, R.C. et al. (2010) A genome-wide association study of 538 
optic disc parameters. PLoS Genet, 6, e1000978. 539 
20 Springelkamp, H., Hohn, R., Mishra, A., Hysi, P.G., Khor, C.C., Loomis, S.J., Bailey, J.N., Gibson, 540 
J., Thorleifsson, G., Janssen, S.F. et al. (2014) Meta-analysis of genome-wide association studies 541 
identifies novel loci that influence cupping and the glaucomatous process. Nat Commun, 5, 4883. 542 
21 Springelkamp, H., Mishra, A., Hysi, P.G., Gharahkhani, P., Hohn, R., Khor, C.C., Cooke Bailey, 543 
J.N., Luo, X., Ramdas, W.D., Vithana, E. et al. (2015) Meta-analysis of Genome-Wide Association 544 
Studies Identifies Novel Loci Associated With Optic Disc Morphology. Genet Epidemiol, 39, 207-216. 545 
22 Ramdas, W.D., Wolfs, R.C., Hofman, A., de Jong, P.T., Vingerling, J.R. and Jansonius, N.M. 546 
(2011) Heidelberg Retina Tomograph (HRT3) in population-based epidemiology: normative values 547 
and criteria for glaucomatous optic neuropathy. Ophthalmic Epidemiol, 18, 198-210. 548 
23 Coordinators, N.R. (2015) Database resources of the National Center for Biotechnology 549 
Information. Nucleic Acids Res, 43, D6-17. 550 
24 Wagner, A.H., Anand, V.N., Wang, W.H., Chatterton, J.E., Sun, D., Shepard, A.R., Jacobson, N., 551 
Pang, I.H., Deluca, A.P., Casavant, T.L. et al. (2013) Exon-level expression profiling of ocular tissues. 552 
Exp Eye Res, 111, 105-111. 553 
25 Pers, T.H., Karjalainen, J.M., Chan, Y., Westra, H.J., Wood, A.R., Yang, J., Lui, J.C., Vedantam, 554 
S., Gustafsson, S., Esko, T. et al. (2015) Biological interpretation of genome-wide association studies 555 
using predicted gene functions. Nat Commun, 6, 5890. 556 
26 Skowronska-Krawczyk, D., Zhao, L., Zhu, J., Weinreb, R.N., Cao, G., Luo, J., Flagg, K., Patel, S., 557 
Wen, C., Krupa, M. et al. (2015) P16INK4a Upregulation Mediated by SIX6 Defines Retinal Ganglion 558 
Cell Pathogenesis in Glaucoma. Mol Cell, 59, 931-940. 559 
27 Iglesias, A.I., Springelkamp, H., van der Linde, H., Severijnen, L.A., Amin, N., Oostra, B., Kockx, 560 
C.E., van den Hout, M.C., van Ijcken, W.F., Hofman, A. et al. (2014) Exome sequencing and functional 561 
analyses suggest that SIX6 is a gene involved in an altered proliferation-differentiation balance early 562 
in life and optic nerve degeneration at old age. Hum Mol Genet, 23, 1320-1332. 563 
28 Carnes, M.U., Liu, Y.P., Allingham, R.R., Whigham, B.T., Havens, S., Garrett, M.E., Qiao, C., 564 
Investigators, N.C., Katsanis, N., Wiggs, J.L. et al. (2014) Discovery and functional annotation of SIX6 565 
variants in primary open-angle glaucoma. PLoS Genet, 10, e1004372. 566 
29 Hung, F.C., Cheng, Y.C., Sun, N.K. and Chao, C.C. (2013) Identification and functional 567 
characterization of zebrafish Gas7 gene in early development. J Neurosci Res, 91, 51-61. 568 
30 Coulson-Thomas, V.J., Gesteira, T.F., Coulson-Thomas, Y.M., Vicente, C.M., Tersariol, I.L., 569 
Nader, H.B. and Toma, L. (2010) Fibroblast and prostate tumor cell cross-talk: fibroblast 570 
differentiation, TGF-beta, and extracellular matrix down-regulation. Exp Cell Res, 316, 3207-3226. 571 
31 Nakayama, K., Moriwaki, K., Imai, T., Shinzaki, S., Kamada, Y., Murata, K. and Miyoshi, E. 572 
(2013) Mutation of GDP-mannose-4,6-dehydratase in colorectal cancer metastasis. PLoS One, 8, 573 
e70298. 574 
32 Hattori, N., Carrino, D.A., Lauer, M.E., Vasanji, A., Wylie, J.D., Nelson, C.M. and Apte, S.S. 575 
(2011) Pericellular versican regulates the fibroblast-myofibroblast transition: a role for ADAMTS5 576 
protease-mediated proteolysis. J Biol Chem, 286, 34298-34310. 577 



23 

 

33 Black, G.C., Perveen, R., Wiszniewski, W., Dodd, C.L., Donnai, D. and McLeod, D. (1999) A 578 
novel hereditary developmental vitreoretinopathy with multiple ocular abnormalities localizing to a 579 
5-cM region of chromosome 5q13-q14. Ophthalmology, 106, 2074-2081. 580 
34 Tsai, F.J., Lin, H.J., Chen, W.C., Tsai, C.H. and Tsai, S.W. (2004) A codon 31ser-arg 581 
polymorphism of the WAF-1/CIP-1/p21/tumour suppressor gene in Chinese primary open-angle 582 
glaucoma. Acta Ophthalmol Scand, 82, 76-80. 583 
35 Saglar, E., Yucel, D., Bozkurt, B., Ozgul, R.K., Irkec, M. and Ogus, A. (2009) Association of 584 
polymorphisms in APOE, p53, and p21 with primary open-angle glaucoma in Turkish patients. Mol 585 
Vis, 15, 1270-1276. 586 
36 Sotoodehnia, N., Isaacs, A., de Bakker, P.I., Dorr, M., Newton-Cheh, C., Nolte, I.M., van der 587 
Harst, P., Muller, M., Eijgelsheim, M., Alonso, A. et al. (2010) Common variants in 22 loci are 588 
associated with QRS duration and cardiac ventricular conduction. Nat Genet, 42, 1068-1076. 589 
37 Dunlop, M.G., Dobbins, S.E., Farrington, S.M., Jones, A.M., Palles, C., Whiffin, N., Tenesa, A., 590 
Spain, S., Broderick, P., Ooi, L.Y. et al. (2012) Common variation near CDKN1A, POLD3 and SHROOM2 591 
influences colorectal cancer risk. Nat Genet, 44, 770-776. 592 
38 Scott, L.J., Mohlke, K.L., Bonnycastle, L.L., Willer, C.J., Li, Y., Duren, W.L., Erdos, M.R., 593 
Stringham, H.M., Chines, P.S., Jackson, A.U. et al. (2007) A genome-wide association study of type 2 594 
diabetes in Finns detects multiple susceptibility variants. Science, 316, 1341-1345. 595 
39 Manning, A.K., Hivert, M.F., Scott, R.A., Grimsby, J.L., Bouatia-Naji, N., Chen, H., Rybin, D., Liu, 596 
C.T., Bielak, L.F., Prokopenko, I. et al. (2012) A genome-wide approach accounting for body mass 597 
index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet, 598 
44, 659-669. 599 
40 Foroud, T., Koller, D.L., Lai, D., Sauerbeck, L., Anderson, C., Ko, N., Deka, R., Mosley, T.H., 600 
Fornage, M., Woo, D. et al. (2012) Genome-wide association study of intracranial aneurysms 601 
confirms role of Anril and SOX17 in disease risk. Stroke, 43, 2846-2852. 602 
41 Myocardial Infarction Genetics, C., Kathiresan, S., Voight, B.F., Purcell, S., Musunuru, K., 603 
Ardissino, D., Mannucci, P.M., Anand, S., Engert, J.C., Samani, N.J. et al. (2009) Genome-wide 604 
association of early-onset myocardial infarction with single nucleotide polymorphisms and copy 605 
number variants. Nat Genet, 41, 334-341. 606 
42 Lu, X., Wang, L., Chen, S., He, L., Yang, X., Shi, Y., Cheng, J., Zhang, L., Gu, C.C., Huang, J. et al. 607 
(2012) Genome-wide association study in Han Chinese identifies four new susceptibility loci for 608 
coronary artery disease. Nat Genet, 44, 890-894. 609 
43 Stacey, S.N., Helgason, H., Gudjonsson, S.A., Thorleifsson, G., Zink, F., Sigurdsson, A., Kehr, B., 610 
Gudmundsson, J., Sulem, P., Sigurgeirsson, B. et al. (2015) New basal cell carcinoma susceptibility 611 
loci. Nat Commun, 6, 6825. 612 
44 Turnbull, C., Ahmed, S., Morrison, J., Pernet, D., Renwick, A., Maranian, M., Seal, S., 613 
Ghoussaini, M., Hines, S., Healey, C.S. et al. (2010) Genome-wide association study identifies five new 614 
breast cancer susceptibility loci. Nat Genet, 42, 504-507. 615 
45 Al Olama, A.A., Kote-Jarai, Z., Berndt, S.I., Conti, D.V., Schumacher, F., Han, Y., Benlloch, S., 616 
Hazelett, D.J., Wang, Z., Saunders, E. et al. (2014) A meta-analysis of 87,040 individuals identifies 23 617 
new susceptibility loci for prostate cancer. Nat Genet, 46, 1103-1109. 618 
46 Shete, S., Hosking, F.J., Robertson, L.B., Dobbins, S.E., Sanson, M., Malmer, B., Simon, M., 619 
Marie, Y., Boisselier, B., Delattre, J.Y. et al. (2009) Genome-wide association study identifies five 620 
susceptibility loci for glioma. Nat Genet, 41, 899-904. 621 
47 Smith, M.L., Chen, I.T., Zhan, Q., Bae, I., Chen, C.Y., Gilmer, T.M., Kastan, M.B., O'Connor, 622 
P.M. and Fornace, A.J., Jr. (1994) Interaction of the p53-regulated protein Gadd45 with proliferating 623 
cell nuclear antigen. Science, 266, 1376-1380. 624 
48 Chen, J., Jackson, P.K., Kirschner, M.W. and Dutta, A. (1995) Separate domains of p21 625 
involved in the inhibition of Cdk kinase and PCNA. Nature, 374, 386-388. 626 
49 Wiggs, J.L., Hewitt, A.W., Fan, B.J., Wang, D.Y., Figueiredo Sena, D.R., O'Brien, C., Realini, A., 627 
Craig, J.E., Dimasi, D.P., Mackey, D.A. et al. (2012) The p53 codon 72 PRO/PRO genotype may be 628 



24 

 

associated with initial central visual field defects in caucasians with primary open angle glaucoma. 629 
PLoS One, 7, e45613. 630 
50 Kastan, M.B., Zhan, Q., el-Deiry, W.S., Carrier, F., Jacks, T., Walsh, W.V., Plunkett, B.S., 631 
Vogelstein, B. and Fornace, A.J., Jr. (1992) A mammalian cell cycle checkpoint pathway utilizing p53 632 
and GADD45 is defective in ataxia-telangiectasia. Cell, 71, 587-597. 633 
51 Kearsey, J.M., Coates, P.J., Prescott, A.R., Warbrick, E. and Hall, P.A. (1995) Gadd45 is a 634 
nuclear cell cycle regulated protein which interacts with p21Cip1. Oncogene, 11, 1675-1683. 635 
52 Tam, C.W., Liu, V.W., Leung, W.Y., Yao, K.M. and Shiu, S.Y. (2008) The autocrine human 636 
secreted PDZ domain-containing protein 2 (sPDZD2) induces senescence or quiescence of prostate, 637 
breast and liver cancer cells via transcriptional activation of p53. Cancer Lett, 271, 64-80. 638 
53 Liu, H., Hew, H.C., Lu, Z.G., Yamaguchi, T., Miki, Y. and Yoshida, K. (2009) DNA damage 639 
signalling recruits RREB-1 to the p53 tumour suppressor promoter. Biochem J, 422, 543-551. 640 
54 Pimentel, B., Sanz, C., Varela-Nieto, I., Rapp, U.R., De Pablo, F. and de La Rosa, E.J. (2000) c-641 
Raf regulates cell survival and retinal ganglion cell morphogenesis during neurogenesis. J Neurosci, 642 
20, 3254-3262. 643 
55 Feng, H.C., Tsao, S.W., Ngan, H.Y., Xue, W.C., Kwan, H.S., Siu, M.K., Liao, X.Y., Wong, E. and 644 
Cheung, A.N. (2008) Overexpression of prostate stem cell antigen is associated with gestational 645 
trophoblastic neoplasia. Histopathology, 52, 167-174. 646 
56 Jin, H.S., Park, H.S., Shin, J.H., Kim, D.H., Jun, S.H., Lee, C.J. and Lee, T.H. (2011) A novel 647 
inhibitor of apoptosis protein (IAP)-interacting protein, Vestigial-like (Vgl)-4, counteracts apoptosis-648 
inhibitory function of IAPs by nuclear sequestration. Biochem Biophys Res Commun, 412, 454-459. 649 
57 Gomez-Munoz, A., Kong, J.Y., Salh, B. and Steinbrecher, U.P. (2004) Ceramide-1-phosphate 650 
blocks apoptosis through inhibition of acid sphingomyelinase in macrophages. J Lipid Res, 45, 99-105. 651 
58 Flicek, P., Amode, M.R., Barrell, D., Beal, K., Billis, K., Brent, S., Carvalho-Silva, D., Clapham, P., 652 
Coates, G., Fitzgerald, S. et al. (2014) Ensembl 2014. Nucleic Acids Res, 42, D749-755. 653 
59 Gu, S.M., Thompson, D.A., Srikumari, C.R., Lorenz, B., Finckh, U., Nicoletti, A., Murthy, K.R., 654 
Rathmann, M., Kumaramanickavel, G., Denton, M.J. et al. (1997) Mutations in RPE65 cause 655 
autosomal recessive childhood-onset severe retinal dystrophy. Nat Genet, 17, 194-197. 656 
60 Marlhens, F., Bareil, C., Griffoin, J.M., Zrenner, E., Amalric, P., Eliaou, C., Liu, S.Y., Harris, E., 657 
Redmond, T.M., Arnaud, B. et al. (1997) Mutations in RPE65 cause Leber's congenital amaurosis. Nat 658 
Genet, 17, 139-141. 659 
61 Hamel, C.P., Tsilou, E., Pfeffer, B.A., Hooks, J.J., Detrick, B. and Redmond, T.M. (1993) 660 
Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal 661 
protein that is post-transcriptionally regulated in vitro. J Biol Chem, 268, 15751-15757. 662 
62 Moskovich, O., Herzog, L.O., Ehrlich, M. and Fishelson, Z. (2012) Caveolin-1 and dynamin-2 663 
are essential for removal of the complement C5b-9 complex via endocytosis. J Biol Chem, 287, 19904-664 
19915. 665 
63 Ramdas, W.D., Amin, N., van Koolwijk, L.M., Janssens, A.C., Demirkan, A., de Jong, P.T., 666 
Aulchenko, Y.S., Wolfs, R.C., Hofman, A., Rivadeneira, F. et al. (2011) Genetic architecture of open 667 
angle glaucoma and related determinants. J Med Genet, 48, 190-196. 668 
64 Wiggs, J.L., Hauser, M.A., Abdrabou, W., Allingham, R.R., Budenz, D.L., Delbono, E., Friedman, 669 
D.S., Kang, J.H., Gaasterland, D., Gaasterland, T. et al. (2013) The NEIGHBOR consortium primary 670 
open-angle glaucoma genome-wide association study: rationale, study design, and clinical variables. J 671 
Glaucoma, 22, 517-525. 672 
65 Lavanya, R., Jeganathan, V.S., Zheng, Y., Raju, P., Cheung, N., Tai, E.S., Wang, J.J., Lamoureux, 673 
E., Mitchell, P., Young, T.L. et al. (2009) Methodology of the Singapore Indian Chinese Cohort (SICC) 674 
eye study: quantifying ethnic variations in the epidemiology of eye diseases in Asians. Ophthalmic 675 
Epidemiol, 16, 325-336. 676 
66 van der Valk, R., Webers, C.A., Schouten, J.S., Zeegers, M.P., Hendrikse, F. and Prins, M.H. 677 
(2005) Intraocular pressure-lowering effects of all commonly used glaucoma drugs: a meta-analysis 678 
of randomized clinical trials. Ophthalmology, 112, 1177-1185. 679 



25 

 

67 Willer, C.J., Li, Y. and Abecasis, G.R. (2010) METAL: fast and efficient meta-analysis of 680 
genomewide association scans. Bioinformatics, 26, 2190-2191. 681 
68 Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar, 682 
P., de Bakker, P.I., Daly, M.J. et al. (2007) PLINK: a tool set for whole-genome association and 683 
population-based linkage analyses. Am J Hum Genet, 81, 559-575. 684 
69 Team., R.C. (2014) R: a language and environment for statistical computing, 685 

http://www.R-project.org., in press. 686 
70 Pruim, R.J., Welch, R.P., Sanna, S., Teslovich, T.M., Chines, P.S., Gliedt, T.P., Boehnke, M., 687 
Abecasis, G.R. and Willer, C.J. (2010) LocusZoom: regional visualization of genome-wide association 688 
scan results. Bioinformatics, 26, 2336-2337. 689 
71 Bulik-Sullivan, B., Finucane, H.K., Anttila, V., Gusev, A., Day, F.R., Loh, P.R., ReproGen, C., 690 
Psychiatric Genomics, C., Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case 691 
Control, C., Duncan, L. et al. (2015) An atlas of genetic correlations across human diseases and traits. 692 
Nat Genet, 47, 1236-1241. 693 
72 Mishra, A. and Macgregor, S. (2015) VEGAS2: Software for More Flexible Gene-Based Testing. 694 
Twin Res Hum Genet, 18, 86-91. 695 
73 Ward, L.D. and Kellis, M. (2012) HaploReg: a resource for exploring chromatin states, 696 
conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids 697 
Res, 40, D930-934. 698 
74 Boyle, A.P., Hong, E.L., Hariharan, M., Cheng, Y., Schaub, M.A., Kasowski, M., Karczewski, K.J., 699 
Park, J., Hitz, B.C., Weng, S. et al. (2012) Annotation of functional variation in personal genomes using 700 
RegulomeDB. Genome Res, 22, 1790-1797. 701 

 702 

http://www.r-project.org/


26 

 

Legends to Figures 

Figure 1. Overlap between the genes associated with one or more endophenotypes. Genes 

with a genome-wide significant association for at least one trait are shown. These genes are 

counted as overlapping genes if they are Bonferroni significantly associated with the other 

trait(s). Chr 11p11.2 (see intraocular pressure circle) means a region on chromosome 

11p11.2 that is associated with IOP and has many genes in it; the likely causative gene in this 

region is not identified yet. Genes in bold are genes associated with primary open-angle 

glaucoma (POAG) in our meta-analysis of four case-control studies.*Genes associated with 

familial forms of POAG (e.g. MYOC and OPTN) or found in case-control association studies 

which did not show an association with the endophenotypes explored in this study.  

 

Figure 2. Pathways significantly enriched for: A) Loci associated with the vertical cup-disc ratio, 

cup area and intraocular pressure (p-value <7.0 x 10-6 in the GWAS). In total 11 meta-

pathways were identified after clustering the 57 pathways identified by DEPICT. B) Loci 

associated with vertical cup-disc ratio, cup area and disc area (p-value <1.0 x 10-5). In total 

17 meta-pathways were identified after clustering the 100 pathways identified by DEPICT. In 

both figures, meta-pathways are represented by nodes coloured according to statistical 

significance, and edges are scaled according to the correlation between meta-pathways. 

*The pathway “Abnormal eye morphology” clustered with the meta-pathway “Chordate 

embryonic development”. ELL2=Elongation Factor, RNA Polymerase II, DVL3= Dishevelled 

Segment Polarity Protein 3, THBS1=Thrombospondin 1, RFX2= Regulatory Factor X, 2. 

MDFI=MyoD Family Inhibitor.  

 

Figure 3. cdkn1a mRNA expression change 

Overexpression of cdkn1a and cdkn2a/cdkn2b in response to six6b depletion is shown. All 

samples expression were normalized to the control gene sdha. Relative expression was 

calculated by setting the wild-type expression level at 1. Values represent mean ± standard 

error of the mean. *P<0.05; **P<0.005. 
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Table 1. Single nucleotide polymorphisms (SNPs) that are genome-wide significantly associated with IOP and show and association with vertical cup-disc ratio.  

For these SNPs, the associations with the other traits are also included. SNPs that are Bonferroni significantly associated with other traits are shown in bold (p-value < 5.31 x 10-4; 

0.05/94). In the first rows, the SNPs genome-wide significantly associated with intraocular pressure (IOP) are shown. Next, the SNPs associated with IOP, vertical cup-disc ratio 

(VCDR), and cup area are shown. Nearest gene, reference NCBI build37; A1, reference allele; A2, other allele; β, effect size on the endophenotype (IOP, VCDR, cup area or disc area) 

based on allele A1; SE, standard error of the effect size; i, insertion; d, deletion; r, reference.  

   IOP VCDR Cup area Disc area 

SNP Nearest gene A1/A2 β SE P β SE P β SE P Β SE P 

rs10918274 TMCO1 t/c 0.26 0.04 5.64E-12 0.005 0.002 8.38E-03 0.010 0.003 2.47E-03 0.000 0.006 9.49E-01 

rs7635832 FNDC3B g/t -0.22 0.03 6.61E-13 -0.001 0.001 3.35E-01 -0.004 0.003 1.27E-01 0.002 0.005 7.08E-01 

rs10281637 CAV1/CAV2 c/t 0.20 0.03 3.96E-13 0.004 0.001 5.28E-03 0.006 0.003 1.23E-02 -0.002 0.005 6.01E-01 

8:78380944 PKIA i/r 1.00 0.17 7.54E-09 0.000 0.010 9.74E-01 -0.018 0.017 3.00E-01 0.018 0.031 5.61E-01 

rs7815043 PKIA c/t -0.10 0.03 4.41E-05 -0.001 0.001 3.13E-01 -0.001 0.002 8.32E-01 -0.002 0.004 5.66E-01 

rs7944735 Many genes c/g 0.19 0.03 6.00E-11 0.001 0.001 4.37E-01 0.006 0.003 3.33E-02 0.000 0.005 9.68E-01 

11:120357425 ARHGEF12 d/r 0.18 0.03 2.02E-09 0.001 0.001 6.12E-01 0.001 0.003 6.45E-01 0.001 0.005 8.38E-01 

rs12794618 ARHGEF12 c/t 0.17 0.03 7.86E-09 0.001 0.001 4.14E-01 0.002 0.003 4.84E-01 0.004 0.005 4.53E-01 

rs55796939 ADAMTS8 t/c 0.36 0.06 2.31E-08 0.003 0.003 3.61E-01 0.006 0.006 3.19E-01 -0.003 0.010 7.95E-01 

               

rs2472496 ABCA1 g/a 0.17 0.02 1.93E-13 0.004 0.001 6.83E-05 0.010 0.002 9.63E-07 0.003 0.004 4.75E-01 

rs8176741 ABO a/g 0.24 0.04 3.47E-10 0.007 0.002 4.51E-05 0.019 0.003 7.12E-08 0.004 0.006 5.42E-01 

rs9913911 GAS7 g/a -0.17 0.02 7.01E-12 -0.006 0.001 1.84E-07 -0.008 0.002 2.48E-04 -0.001 0.004 8.41E-01 
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Table 2a. Single nucleotide polymorphisms (SNPs) that are genome-wide significantly associated with vertical cup-disc ratio and show an association with cup area and disc area 

   IOP VCDR   Cup area Disc area 

SNP Nearest 

gene 

A1/A2 β SE P β SE P β SE P Β SE P 

rs6804624 COL8A1 c/t -0.01 0.03 6.54E-01 0.008 0.001 8.63E-12 0.013 0.002 1.99E-08 0.020 0.004 9.67E-07 

rs7916697 ATOH7 a/g 0.01 0.03 7.43E-01 -0.018 0.001 2.46E-45 -0.017 0.002 1.32E-12 -0.094 0.004 1.34E-102 

10:96008348 PLCE1 d/r 0.01 0.03 5.73E-01 0.007 0.001 4.57E-08 0.013 0.002 1.72E-08 0.015 0.004 2.22E-04 

rs324780 TMTC2 g/a 0.03 0.02 2.79E-01 -0.011 0.001 7.16E-23 -0.016 0.002 1.57E-13 -0.029 0.004 8.58E-13 

rs4299136 ASB7 c/g -0.03 0.03 4.22E-01 0.010 0.002 2.68E-12 0.018 0.003 4.09E-10 0.024 0.005 4.02E-06 

16:51461915 SALL1 r/i 0.02 0.03 4.34E-01 0.010 0.001 2.62E-13 0.013 0.003 6.78E-07 0.032 0.005 2.38E-12 

rs4784295 SALL1 c/g 0.02 0.03 5.63E-01 0.009 0.001 3.93E-13 0.013 0.003 1.63E-07 0.031 0.005 1.12E-11 

rs5752773 CHEK2 g/c 0.01 0.03 6.91E-01 -0.012 0.001 1.49E-20 -0.024 0.003 4.12E-21 -0.024 0.005 1.48E-07 

rs2092172 CARD10 a/g 0.00 0.03 8.86E-01 0.009 0.001 3.08E-12 0.011 0.003 3.34E-05 0.032 0.005 1.44E-11 

rs7717697 VCAN c/t 0.01 0.02 7.21E-01 -0.007 0.001 6.66E-09 -0.009 0.002 1.19E-05 -0.018 0.004 4.84E-06 

rs1681739 ENO4 t/c 0.03 0.02 2.23E-01 0.006 0.001 2.44E-08 0.011 0.002 3.70E-07 0.019 0.004 1.85E-06 

rs60779155 ASB7 a/g -0.02 0.04 6.61E-01 0.010 0.002 3.76E-10 0.019 0.003 3.75E-09 0.030 0.006 8.26E-08 

rs1830890 PLCE1 g/a 0.01 0.02 8.14E-01 0.006 0.001 3.02E-08 0.012 0.002 1.06E-07 0.013 0.004 5.51E-04 

rs482507 TMTC2 c/t 0.02 0.02 3.48E-01 -0.011 0.001 2.19E-19 -0.017 0.002 2.56E-14 -0.030 0.004 4.49E-13 

rs4436712 SIX6 t/g -0.04 0.02 1.47E-01 0.009 0.001 5.48E-14 0.025 0.002 1.50E-29 -0.018 0.004 6.59E-06 

rs738722 CHEK2 t/c 0.02 0.03 3.57E-01 -0.012 0.001 4.94E-20 -0.024 0.003 7.81E-22 -0.021 0.005 2.63E-06 

rs2684249 HSF2 c/t 0.03 0.02 2.08E-01 -0.006 0.001 1.64E-07 -0.012 0.002 3.04E-08 -0.015 0.004 1.49E-04 

rs34222435 ASB7 t/c -0.03 0.03 3.86E-01 0.010 0.002 3.07E-12 0.019 0.003 1.07E-10 0.025 0.005 2.98E-06 
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   IOP VCDR Cup area Disc area 

SNP Nearest 

gene 

A1/A2 β SE P β SE P β SE P Β SE P 

rs7916410 ATOH7 t/c 0.00 0.03 9.76E-01 -0.018 0.001 1.14E-45 -0.017 0.002 6.11E-12 -0.097 0.004 7.06E-109 

rs442376 TMTC2 c/t -0.03 0.03 3.09E-01 0.011 0.001 1.50E-17 0.017 0.002 3.18E-12 0.032 0.004 4.92E-14 

rs1345467 SALL1 g/a 0.01 0.03 6.53E-01 0.009 0.001 4.96E-12 0.012 0.003 1.07E-06 0.032 0.005 6.41E-13 

rs5762752 CHEK2 c/g 0.01 0.03 6.61E-01 -0.011 0.001 4.83E-18 -0.021 0.002 6.72E-19 -0.023 0.004 2.26E-08 

rs11129176 RARB a/g 0.02 0.03 4.17E-01 0.005 0.001 3.17E-05 0.010 0.002 1.01E-05 0.023 0.004 3.40E-08 

rs1997404 COL8A1 g/t -0.03 0.03 3.24E-01 0.008 0.001 2.39E-11 0.013 0.002 7.71E-08 0.024 0.004 1.90E-08 

rs34935520 SIX6 g/a -0.04 0.02 1.13E-01 0.009 0.001 7.95E-14 0.025 0.002 6.96E-29 -0.023 0.004 7.61E-08 

For these SNPs, the associations with the other traits are also included. Here the SNPs genome-wide significantly associated with vertical cup-disc ratio that are Bonferroni 

significantly associated with cup area or disc area are shown in bold (p-value < 5.31 x 10-4; 0.05/94).Nearest gene, reference NCBI build37; A1, reference allele; A2, other allele; β, 

effect size on the effect size on the endophenotype (IOP, VCDR, cup area or disc area) based on allele A1; SE, standard error of the effect size; i, insertion; d, deletion; r, reference. 
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Table2b. Single nucleotide polymorphisms (SNPs) that are genome-wide significantly associated with vertical cup-disc ratio and show an association with cup area  

   IOP VCDR Cup area Disc area 

SNP Nearest gene A1/A

2 

β SE P β SE P β SE P Β SE P 

rs1925953 RPE65 t/a -0.02 0.02 3.26E-01 0.006 0.001 1.55E-07 0.010 0.002 1.50E-05 0.006 0.004 1.08E-01 

rs72759609 PDZD2 c/t -0.04 0.05 3.50E-01 -0.012 0.002 7.10E-09 -0.020 0.004 1.98E-06 -0.021 0.008 5.62E-03 

rs11450334

6 

DUSP1 t/c -0.12 0.08 1.27E-01 -0.021 0.004 1.31E-08 -0.035 0.007 2.90E-07 -0.035 0.013 5.83E-03 

rs4960295 RREB1 a/g 0.02 0.02 4.75E-01 0.007 0.001 2.49E-10 0.009 0.002 3.73E-05 0.012 0.004 3.29E-03 

rs10274998 DGKB t/c 0.02 0.03 4.38E-01 0.008 0.001 4.68E-08 0.012 0.003 8.08E-06 0.011 0.005 2.65E-02 

rs2157719 CDKN2B-AS1 c/t -0.04 0.02 9.81E-02 -0.013 0.001 3.75E-35 -0.024 0.002 3.31E-28 -0.008 0.004 3.03E-02 

rs3891783 PLCE1 g/c 0.04 0.02 1.01E-01 0.007 0.001 1.06E-10 0.011 0.002 3.28E-07 0.012 0.004 1.52E-03 

rs1346 SSSCA1 t/a -0.05 0.03 1.20E-01 -0.013 0.002 7.51E-18 -0.019 0.003 9.31E-11 -0.016 0.005 2.10E-03 

rs4936099 ADAMTS8 c/a -0.03 0.03 2.38E-01 -0.007 0.001 6.70E-09 -0.013 0.002 4.96E-08 -0.006 0.004 1.72E-01 

13:3662990

5 

DCLK1 d/r -0.02 0.03 5.70E-01 0.007 0.001 2.98E-08 0.018 0.002 2.20E-14 -0.005 0.004 2.36E-01 

rs7323428 DCLK1 t/g -0.02 0.03 4.13E-01 0.007 0.001 1.86E-08 0.019 0.002 1.67E-15 -0.005 0.004 2.23E-01 

rs8015152 SIX6 t/c -0.06 0.02 2.27E-02 0.010 0.001 2.86E-18 0.024 0.002 8.15E-26 -0.011 0.004 6.18E-03 

rs6107845 BMP2 a/g 0.03 0.02 2.80E-01 -0.009 0.001 3.44E-17 -0.017 0.002 2.90E-15 -0.004 0.004 3.27E-01 

rs6764184 FLNB t/g 0.05 0.03 5.03E-02 0.007 0.001 1.89E-08 0.015 0.002 1.30E-10 0.010 0.004 1.92E-02 

rs7311936 FAM101A c/g -0.03 0.02 1.69E-01 -0.006 0.001 2.48E-09 -0.013 0.002 4.52E-09 0.003 0.004 5.14E-01 

14:2338879

3 

RBM23 r/d 0.02 0.03 3.99E-01 0.007 0.001 2.56E-08 0.013 0.003 2.01E-07 0.009 0.005 4.29E-02 

rs3794453 RBM23 a/t 0.01 0.02 7.22E-01 0.007 0.001 7.25E-08 0.011 0.002 2.88E-07 0.009 0.004 3.11E-02 

rs2252865 RERE t/c 0.05 0.03 4.11E-02 0.005 0.001 2.66E-05 0.014 0.002 1.33E-09 0.003 0.004 5.08E-01 
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   IOP VCDR Cup area Disc area 

SNP Nearest gene A1/A

2 

β SE P β SE P β SE P Β SE P 

rs4846112 DHRS3 a/g -0.02 0.03 5.12E-01 -0.005 0.001 2.39E-04 -0.012 0.002 2.38E-07 0.005 0.004 2.25E-01 

rs13016883 TRIB2 c/g 0.01 0.03 5.64E-01 0.006 0.001 3.44E-06 0.016 0.002 1.83E-11 0.001 0.004 8.30E-01 

rs35084382 DUSP1 c/t -0.10 0.07 1.32E-01 -0.018 0.003 2.05E-08 -0.033 0.006 2.17E-08 -0.031 0.011 5.51E-03 

rs11759831

0 

CRISPLD1 t/g -0.05 0.05 3.10E-01 0.009 0.002 1.07E-04 0.021 0.004 1.66E-06 0.022 0.008 5.47E-03 

rs1360589 CDKN2B-AS1 c/t -0.04 0.02 8.42E-02 -0.013 0.001 1.43E-34 -0.024 0.002 2.90E-28 -0.008 0.004 4.45E-02 

rs11613189 FAM101A t/c -0.03 0.03 2.27E-01 -0.005 0.001 6.04E-06 -0.016 0.002 2.01E-12 0.002 0.004 6.42E-01 

rs2251069 DDHD1 c/t 0.01 0.02 7.29E-01 -0.006 0.001 7.41E-08 -0.013 0.002 1.20E-09 0.001 0.004 7.11E-01 

rs6598351 FAM169B t/c -0.02 0.03 5.26E-01 0.006 0.001 2.80E-05 0.012 0.003 1.77E-05 -0.004 0.005 3.90E-01 

rs11646917 SALL1 t/g -0.01 0.03 6.65E-01 -0.009 0.001 4.83E-10 -0.015 0.003 4.76E-09 -0.015 0.005 1.30E-03 

rs11867840 BCAS3 g/a 0.04 0.03 1.04E-01 -0.006 0.001 4.86E-06 -0.018 0.002 2.35E-13 0.011 0.004 1.00E-02 

rs6054375 BMP2 t/g 0.03 0.03 2.45E-01 -0.010 0.001 6.92E-15 -0.018 0.002 1.83E-15 -0.003 0.004 4.74E-01 

rs3791679 EFEMP1/PNPT

1 

g/a 0.04 0.03 1.72E-01 -0.005 0.001 1.17E-04 -0.013 0.002 4.92E-08 0.003 0.004 5.14E-01 

rs12494328 FLNB a/g 0.04 0.03 1.52E-01 0.006 0.001 1.56E-06 0.016 0.002 6.03E-11 0.009 0.004 4.50E-02 

6:36592986 CDKN1A d/r -0.02 0.03 5.32E-01 0.006 0.001 1.92E-05 0.015 0.003 1.12E-08 -0.006 0.005 2.09E-01 

rs72852338 CDKN1A c/a -0.02 0.03 5.46E-01 0.006 0.001 3.29E-05 0.014 0.003 3.17E-08 -0.005 0.005 2.97E-01 

rs1074407 TRIOBP t/a 0.11 0.02 4.00E-06 0.006 0.001 3.32E-07 0.012 0.002 1.90E-08 0.008 0.004 3.92E-02 

For these SNPs, the associations with the other traits are also included. Here the SNPs genome-wide significantly associated with vertical cup-disc ratio that are Bonferroni 

significantly associated with cup area are shown in bold (p-value < 5.31 x 10-4; 0.05/94).Nearest gene, reference NCBI build37; A1, reference allele; A2, other allele; β, effect size on 

effect size on the endophenotype (IOP, VCDR, cup area or disc area) based on allele A1; SE, standard error of the effect size; i, insertion; d, deletion; r, reference. 
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Table2c. Single nucleotide polymorphisms (SNPs) that are genome-wide significantly associated with vertical cup-disc ratio and show an association with disc area 

   IOP VCDR Cup area Disc area 

SNP Nearest gene A1/A

2 

β SE P β SE P β SE P Β SE P 

rs1192414 CDC7/TGFBR

3 

a/g 0.06 0.03 5.66E-02 0.014 0.001 1.78E-23 0.007 0.003 1.12E-02 0.087 0.005 7.44E-71 

rs10753787 F5 t/c -0.03 0.02 1.69E-01 -0.007 0.001 2.48E-09 -0.005 0.002 2.14E-02 -0.019 0.004 1.60E-06 

rs2920293 PSCA g/c 0.00 0.02 8.57E-01 -0.006 0.001 5.04E-09 -0.007 0.002 9.17E-04 -0.015 0.004 9.94E-05 

rs4658101 CDC7/TGFBR

3 

a/g 0.06 0.03 4.46E-02 0.013 0.001 5.19E-23 0.007 0.003 1.13E-02 0.089 0.005 8.01E-77 

1:16953052

0 

F5/SELP i/r 0.02 0.03 4.22E-01 0.007 0.001 7.20E-07 0.005 0.003 5.44E-02 0.033 0.005 1.49E-12 

rs2239854 F5/SELP a/g 0.03 0.03 2.64E-01 0.006 0.001 8.37E-07 0.005 0.002 5.04E-02 0.030 0.004 7.60E-13 

rs9843102 ABI3BP a/g 0.00 0.03 9.84E-01 -0.006 0.002 2.18E-04 -0.002 0.003 5.88E-01 -0.036 0.005 1.35E-11 

8:88744441 DCAF4L2 d/r -0.01 0.02 6.98E-01 0.006 0.001 6.66E-07 0.006 0.002 4.53E-03 0.026 0.004 2.04E-11 

rs6468996 DCAF4L2 t/c 0.00 0.02 9.12E-01 0.005 0.001 2.52E-07 0.006 0.002 2.14E-03 0.025 0.004 5.16E-11 

rs61101201 ELP4/PAX6 g/t 0.02 0.03 5.51E-01 0.006 0.001 2.27E-06 0.005 0.002 4.51E-02 0.028 0.004 1.53E-10 

rs56385951 CARD10 a/g -0.06 0.04 9.08E-02 0.011 0.002 1.87E-11 0.008 0.003 8.83E-03 0.047 0.006 1.49E-16 

1:3046430 PRDM16 i/r -0.04 0.04 4.14E-01 0.007 0.002 5.35E-04 -0.002 0.004 7.15E-01 0.044 0.007 1.79E-09 

rs12028027 PRDM16 c/t -0.03 0.04 4.97E-01 0.007 0.002 2.15E-04 -0.001 0.004 8.58E-01 0.043 0.007 1.46E-09 

For these SNPs, the associations with the other traits are also included. Here the SNPs genome-wide significantly associated with vertical cup-disc ratio that are Bonferroni 

significantly associated with disc area are shown in bold (p-value < 5.31 x 10-4; 0.05/94).Nearest gene, reference NCBI build37; β, effect size on effect size on the endophenotype 

(IOP, VCDR, cup area or disc area) based on allele A1; SE, standard error of the effect size; i, insertion; d, deletion; r, reference. 
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Table 3 Single nucleotide polymorphisms (SNPs) that are genome-wide significantly associated with optic nerve head parameters (cup area and disc area) 

   IOP VCDR Cup area Disc area 

SNP Nearest gene A1/A2 β SE P β SE P β SE P Β SE P 

1:227562773 CDC42BPA d/r -0.10 0.05 3.01E-02 0.003 0.002 2.37E-01 0.024 0.004 8.05E-09 -0.055 0.008 3.65E-13 

rs73102394 CDC42BPA t/c -0.09 0.05 4.34E-02 0.003 0.002 1.62E-01 0.022 0.004 4.16E-08 -0.053 0.007 5.01E-13 

rs11811982 CDC42BPA a/c -0.12 0.05 1.35E-02 0.004 0.002 5.54E-02 0.027 0.004 2.31E-10 -0.062 0.008 2.02E-15 

               

rs10021731 UGT8 c/t 0.01 0.02 8.23E-01 -0.002 0.001 5.56E-02 -0.002 0.002 2.68E-01 -0.020 0.004 7.48E-07 

rs12220165 CTNNA3 g/c 0.02 0.03 5.88E-01 -0.004 0.002 1.47E-02 -0.004 0.003 1.92E-01 -0.023 0.005 2.51E-05 

rs787541 U6, GADD45A c/g 0.07 0.03 7.08E-03 0.002 0.001 7.47E-02 0.002 0.002 4.82E-01 0.023 0.004 6.66E-08 

rs1367187 DIRC3 c/t -0.07 0.03 9.74E-03 0.002 0.001 2.46E-01 -0.002 0.003 4.87E-01 0.026 0.005 1.03E-08 

rs2443724 VGLL4 c/g 0.00 0.02 8.62E-01 -0.003 0.001 1.53E-02 0.000 0.002 9.15E-01 -0.022 0.004 4.72E-08 

rs1013830 CTNNA3 t/c 0.00 0.05 9.49E-01 -0.007 0.002 4.80E-03 -0.004 0.005 4.10E-01 -0.046 0.008 5.45E-08 

 

For these SNPs, the associations with the other traits are also included. SNPs that are Bonferroni significantly associated with other traits are shown in bold (p-value < 5.31 x 10-4; 

0.05/94). In the first rows, the SNPs genome-wide significantly associated with cup area are shown. Next, SNPs associated with only disc area, are shown. Nearest gene, reference 

NCBI build37; A1, reference allele; A2, other allele; β, effect size on the endophenotype (IOP, VCDR, cup area or disc area) based on allele A1; SE, standard error of the effect size; i, 

insertion; d, deletion; r, reference. 
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Table 4. Association with primary open-angle glaucoma in a meta-analysis of four independent glaucoma case-

control studies (ANZRAG, NEIGHBORHOOD, Singapore, and Southampton).  

 Nearest gene A1/A2 OR OR 

(R) 

P-value P-value 

(R) 

Direction I2 P-value of 

heterogeneity 
IOP SNPs 
rs10918274 TMCO1 t/c 1.39 1.39 2.75E-19 1.37E-09 ++++ 38.4 1.82E-01 
rs7635832 

FNDC3B 

g/t 

0.89 

0.91 

1.41E-03 

3.65E-02 

---? 

33.9 

2.20E-01 

rs10281637 CAV1/CAV2 c/t 1.13 1.13 2.32E-05 2.32E-05 ++++ 0 4.89E-01 
rs2487048 ABCA1 a/g 1.26 1.26 2.65E-15 3.82E-03 ++++ 82.9 5.53E-04 
rs8176741 ABO a/g 1.07 1.04 7.36E-02 5.25E-01 -+-+ 58.5 6.51E-02 
rs7944735 Many genes 

(NUP160, PTPRJ) 

c/g 1.06 1.07 2.99E-02 2.99E-02 ++++ 0 8.99E-01 

11:120357425 ARHGEF12 d/r 1.16 1.19 1.52E-06 3.02E-02 ++++ 83.2 4.65E-04 
rs55796939 ADAMTS8 t/c 1.07 1.17 2.72E-01 4.46E-01 +?-- 78.6 9.35E-03 
rs9913911 GAS7 g/a 0.80 0.80 1.08E-17 1.08E-17 ---- 0 7.50E-01 
 
VCDR SNPs 
rs1925953 RPE65 t/a  1.07 1.10 4.21E-03 2.01E-02 ++++ 46.7 1.31E-01 
rs1192414 CDC7/TGFBR3 a/g 1.08 1.08 9.26E-03 9.26E-03 ++++ 0 7.27E-01 
rs10753787 F5 t/c 0.97 0.97 3.67E-01 3.67E-01 ---- 0 9.92E-01 
rs6804624 COL8A1 c/t 0.99 0.99 8.14E-01 8.14E-01 ---+ 0 8.42E-01 
rs72759609 PDZD2 c/t 0.90 0.91 3.20E-02 3.20E-02 ---- 0 9.53E-01 
rs114503346 DUSP1 t/c 1.00 1.00 9.99E-01 8.80E-01 +?-+ 42 1.78E-01 
rs4960295 RREB1 a/g 0.99 1.00 9.50E-01 9.09E-01 -+-+ 4.6 3.70E-01 
rs10274998 DGKB t/c 1.03 1.04 2.16E-01 2.16E-01 ++-+ 0 5.38E-01 
rs2157719 CDKN2B-AS1 c/t 0.69 0.69 1.29E-40 1.29E-40 ---- 0 5.67E-01 
rs1900005 ATOH7 a/c 1.01 1.01 6.98E-01 6.77E-01 +-++ 5.1 3.67E-01 
10:96008348 PLCE1 d/r 1.02 1.04 3.38E-01 3.15E-01 +-+? 35.3 2.13E-01 
rs1346 SSSCA1 t/a 0.90 0.91 2.41E-03 2.41E-03 ---- 0 9.04E-01 
rs4936099 ADAMTS8 c/a 0.94 0.94 5.75E-02 5.75E-02 ---- 0 9.63E-01 
rs324780 TMTC2 g/a 0.93 0.93 1.35E-02 1.35E-02 ---- 0 7.69E-01 
13:36629905 DCLK1 d/r 0.99 0.99 7.53E-01 8.00E-01 --+- 6.2 3.62E-01 
rs8015152 SIX6 t/c 1.21 1.19 3.90E-15 7.08E-05 ++++ 62.4 4.62E-02 
rs4299136 ASB7 c/g 1.03 1.03 3.55E-01 3.55E-01 ++-+ 0 8.29E-01 
16:51461915 SALL1 i/r 0.94 0.94 3.85E-02 3.85E-02 ---- 0 7.82E-01 
rs6107845 BMP2 a/g 0.89 0.91 1.02E-05 6.94E-03 ---- 43.1 1.53E-01 
rs5752773 CHEK2 g/c 0.92 0.92 4.63E-03 4.63E-03 ---- 0 9.12E-01 
rs2092172 CARD10 a/g 0.97 0.98 4.35E-01 4.35E-01 --+- 0 7.76E-01 
rs6764184 FLNB t/g 1.07 1.02 5.73E-03 7.66E-01 ++-+ 86.1 8.14E-05 
rs7717697 VCAN c/t 0.98 0.98 5.26E-01 5.26E-01 ---? 0 7.30E-01 
rs2920293 PSCA g/c 1.03 1.03 2.25E-01 2.25E-01  ++-? 0 3.79E-01 
rs1681739 ENO4 t/c 1.02 1.03 3.92E-01 3.99E-01 +--+ 49.2 1.16E-01 
rs7311936 FAM101A c/g 0.99 1.00 8.12E-01 8.59E-01 +--- 11 3.38E-01 
14:23388793 RBM23 r/d 1.03 1.03 1.83E-01 1.83E-01 +++? 0 4.61E-01 
 
Cup area  SNPs 
rs2252865 RERE t/c 1.11 1.11 5.76E-05 2.87E-02 ++-+ 59.3 6.10E-02 
rs4846112 DHRS3 a/g 0.95 0.96 1.18E-01 1.18E-01 ---- 0 5.53E-01 
1:227562773 CDC42BPA d/r 0.87 0.90 1.14E-02 2.11E-01 --+? 48.6 1.43E-01 
rs13016883 TRIB2 c/g 1.08 1.08 4.25E-03 4.25E-03 +++? 0 8.63E-01 
rs35084382 DUSP1 c/t 1.04 1.05 6.72E-01 6.72E-01  +?-+ 0 3.91E-01 
rs117598310 CRISPLD1 t/g 1.08 1.09 5.39E-02 5.39E-02 +++ 0 8.01E-01 
rs1360589 CDKN2B-AS1 c/t 0.69 0.69 1.90E-42 1.90E-42 ---- 0 6.47E-01 
rs10998036 ATOH7 c/g 1.01 1.02 5.42E-01 5.72E-01 +--- 26 2.55E-01 
10:96008348 PLCE1 d/r 1.02 1.04 3.38E-01 3.15E-01 +-+? 35.3 2.13E-01 
rs1346 SSSCA1 t/a  0.90 0.91 2.41E-03 2.41E-03 ---- 0 9.04E-01 
rs482507 TMTC2 c/t 0.94 0.94 2.03E-02 2.03E-02 ---- 0 7.46E-01 
rs11613189 FAM101A t/c 0.99 0.99 8.25E-01 7.77E-01 ++-- 18.5 2.98E-01 
rs7323428 DCLK1 t/g 0.99 1.00 7.83E-01 8.87E-01 +-+- 13.6 3.25E-01 
rs2251069 DDHD1 c/t 0.95 0.96 7.62E-02 7.62E-02  --+- 0 4.08E-01 
rs4436712 SIX6 t/g 1.24 1.23 

 

 

 

5.77E-18 1.52E-07 ++++ 48.8 1.19E-01 
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 Nearest gene A1/A2 OR OR 

(R) 

P-value P-value 

(R) 

Direction I2 P-value of 

heterogeneity 

Cup area  SNPs 

rs6598351 FAM169B t/c 0.99 0.99 8.06E-01 8.06E-

01 

-+-- 0 7.11E-01 
rs11646917 SALL1 t/3g 0.98 0.98 5.49E-01 5.49E-

01 

--++ 0 5.97E-01 
rs11867840 BCAS3 g/a 1.06 1.06 1.83E-02 2.12E-

02 

++++ 8.3 3.51E-01 

rs6054375 BMP2 t/g 0.89 0.91 8.52E-06 9.93E-

03 

---- 47.1 1.29E-01 

rs738722 CHEK2 t/c 0.93 0.93 1.26E-02 1.26E-

02 

---- 0 9.05E-01 
rs3791679 EFEMP1/PNPT1 a/g 0.96 0.96 2.23E-01 2.23E-

01 

---- 0 5.51E-01 
rs12494328 FLNB a/g 1.13 1.13 1.28E-05 5.89E-

04 

++-+ 26.9 2.50E-01 
rs6804624 COL8A1 c/t 0.99 0.99 8.14E-01 8.14E-

01 

---+ 0 8.42E-01 
6:36592986 CDKN1A d/r 1.14 1.15 7.74E-07 1.04E-

04 

++++ 36.6 1.93E-01 
rs2684249 HSF2 c/t 0.92 0.94 1.08E-03 1.66E-

01 

---+ 63.3 4.25E-02 
rs8176672 ABO t/c 1.00 1.00 9.49E-01 9.49E-

01 

-+-? 0 3.69E-01 
rs4936099 ADAMTS8 c/a 0.94 0.94 5.75E-02 5.75E-

02 

---- 0 9.63E-01 
rs34222435 ASB7 t/c 1.03 1.03 3.66E-01 3.66E-

01 

++-+ 0 8.74E-01 
rs1074407 TRIOBP t/a 1.04 1.04 4.92E-02 8.66E-

02 

++++ 32.9 2.15E-01 
  
Disc Area SNPs 

rs4658101 CDC7/TGFBR3 a/g 1.08 1.08 7.81E-03 7.81E-03 ++++ 0 7.22E-01 
1:169530520 F5/SELP i/r 1.01 1.02 5.40E-01 5.40E-01 ++-? 0 7.14E-01 
rs11811982 CDC42BPA a/c 0.87 0.90 1.19E-02 8.28E-02 --++ 20.5 2.87E-01 
rs9843102 ABI3BP a/g 0.92 0.92 1.37E-02 1.37E-02 ---- 0 6.24E-01 
rs10021731 UGT8 c/t 1.01 1.01 6.82E-01 6.82E-01  --++ 0 6.50E-01 
8:88744441 DCAF4L2 d/r 1.03 1.04 0.1225 1.39E-01 ++-+ 4.9 3.68E-01 
rs12220165 CTNNA3 g/c 1.08 1.09 1.14E-02 1.14E-02 ++++ 0 9.04E-01 
rs7916410 ATOH7 t/c 1.00 1.00 7.63E-01 7.45E-01 +-++ 3.9 3.73E-01 
rs61101201 ELP4/PAX6 g/t 1.00 1.00 9.77E-01 9.77E-01  -+-? 0 9.63E-01 
rs442376 TMTC2 c/t 1.04 1.05 7.94E-02 7.94E-02  -+++ 0 6.82E-01 
rs1345467 SALL1 g/a  1.07 1.07 1.86E-02 1.86E-02 ++++ 0 8.73E-01 
rs5762752 CHEK2 c/g 0.92 0.92 4.90E-03 4.90E-03 ---- 0 8.29E-01 
rs56385951 CARD10 a/g 0.99 1.00 9.15E-01 9.15E-01 +-+- 0 9.88E-01 
1:3046430 PRDM16 i/r 0.97 0.98 7.13E-01 8.72E-01 +--? 63.9 6.28E-02 
rs787541 U6, GADD45A c/g 0.98 0.98 6.10E-01 9.06E-01 --++ 50.7 1.08E-01 
rs1367187 DIRC3 c/t 0.95 0.96 1.11E-01 4.12E-01  +-+- 46.1 1.35E-01 
rs2443724 VGLL4 c/g 0.91 0.91 1.04E-03 2.61E-02 --+- 38 1.84E-01 
rs11129176 RARB a/g 0.99 1.00 8.85E-01 9.93E-01 +--- 40.4 1.69E-01 
rs1997404 COL8A1 g/t 1.00 1.00 9.60E-01 9.60E-01  -+++ 0 6.18E-01 
rs34935520 SIX6 g/a 1.26 1.26 2.82E-20 6.73E-14 ++++ 21.5 2.81E-01 
rs60779155 ASB7 a/g 1.02 1.03 4.52E-01 4.52E-01 +--+ 0 5.02E-01 

Results are shown for the most significantly associated single nucleotide polymorphisms from the endophenotype analyses. 

Nearest gene, reference NCBI build37; A1, reference allele; A2, other allele; OR, estimated odds ratio for allele A1; OR (R), 

estimated odds ratio for allele A1 in random effect meta-analysis; 95% CI, confidence interval; P-value (R), p-value in 

random effect meta-analysis; I2 statistic measuring heterogeneity on a scale of 0% to 100%; i, insertion; d, deletion; r, 

reference. 
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Abbreviations 

Abbreviation Explanation 

A1 Reference allele  

A2 Other allele 

Chr Chromosome 

CI  confidence interval 

d Deletion  

FDR False Discovery Rate 

GWAS Genome-wide association studies  

h2 Heritability 

i Insertion  

I2  Statistic measuring heterogeneity on a scale of 0% to 100% 

IGGC International Glaucoma Genetics Consortium 

IOP Intraocular pressure  

LCA2 Leber Congenital Amaurosis type 2  

LD Linkage disequilibrium 

MAF Minor allele frequency  

OR Estimated odds ratio for allele A1  

OR (R) Estimated odds ratio for allele A1 in random effect meta-analysis 

POAG Primary open-angle glaucoma 

r  Reference 

RP Retinitis Pigmentosa 

SE  Standard error 

SNPs Single nucleotide polymorphisms  

VCDR Vertical cup-disc ratio  

β  Effect size  

 


