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Abstract—In this work we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement
data was recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye
movement characteristics from EOG signals - saccades, fixations, and blinks - and propose a method for assessing repetitive patterns
of eye movements. We then devise 90 different features based on these characteristics and select a subset of them using minimum
redundancy maximum relevance feature selection (mRMR). We validate the method using an eight participant study in an office
environment using an example set of five activity classes: copying a text, reading a printed paper, taking hand-written notes, watching a
video, and browsing the web. We also include periods with no specific activity (the NULL class). Using a support vector machine (SVM)
classifier and person-independent (leave-one-person-out) training, we obtain an average precision of 76.1% and recall of 70.5% over
all classes and participants. The work demonstrates the promise of eye-based activity recognition (EAR) and opens up discussion on
the wider applicability of EAR to other activities that are difficult, or even impossible, to detect using common sensing modalities.

Index Terms—Ubiquitous computing, Feature evaluation and selection, Pattern analysis, Signal processing.
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1 INTRODUCTION

HUMAN activity recognition has become an impor-
tant application area for pattern recognition. Re-

search in computer vision has traditionally been at the
forefront of this work [1], [2]. The growing use of am-
bient and body-worn sensors has paved the way for
other sensing modalities, particularly in the domain of
ubiquitous computing. Important advances in activity
recognition were achieved using modalities such as body
movement and posture [3], sound [4], or interactions
between people [5].

There are, however, limitations to current sensor con-
figurations. Accelerometers or gyroscopes, for example,
are limited to sensing physical activity; they cannot
easily be used for detecting predominantly visual tasks,
such as reading, browsing the web, or watching a video.
Common ambient sensors, such as reed switches or light
sensors, are limited in that they only detect basic activity
events, e.g. entering or leaving a room, or switching an
appliance. Further to these limitations, activity sensing
using subtle cues, such as user attention or intention,
remains largely unexplored.

A rich source of information, as yet unused for activity
recognition, is the movement of the eyes. The movement
patterns our eyes perform as we carry out specific activi-
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ties have the potential to reveal much about the activities
themselves - independently of what we are looking at.
This includes information on visual tasks, such as read-
ing [6], information on predominantly physical activities,
such as driving a car, but also on cognitive processes
of visual perception, such as attention [7] or saliency
determination [8]. In a similar manner, location or a par-
ticular environment may influence our eye movements.
Because we use our eyes in almost everything that we
do, it is conceivable that eye movements provide useful
information for activity recognition.

Developing sensors to record eye movements in daily
life is still an active topic of research. Mobile settings
call for highly miniaturised, low-power eye trackers with
real-time processing capabilities. These requirements are
increasingly addressed by commonly used video-based
systems of which some can now be worn as relatively
light headgear. However, these remain expensive, with
demanding video processing tasks requiring bulky aux-
illiary equipment. Electrooculography (EOG) - the mea-
surement technique used in this work - is an inexpensive
method for mobile eye movement recordings; it is com-
putationally light-weight and can be implemented using
wearable sensors [9]. This is crucial with a view to long-
term recordings in mobile real-world settings.

1.1 Paper Scope and Contributions

The aim of this work is to assess the feasibility of recog-
nising human activity using eye movement analysis, so-
called eye-based activity recognition (EAR)1. The specific
contributions are: (1) the introduction of eye movement

1. An earlier version of this paper was published in [10].
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analysis as a new sensing modality for activity recog-
nition; (2) the development and characterisation of new
algorithms for detecting three basic eye movement types
from EOG signals (saccades, fixations, and blinks) and a
method to assess repetitive eye movement patterns; (3)
the development and evaluation of 90 features derived
from these eye movement types; and (4) the implementa-
tion of a method for continuous EAR, and its evaluation
using a multi-participant EOG dataset involving a study
of five real-world office activities.

1.2 Paper Organisation
We first survey related work, introduce EOG, and de-
scribe the main eye movement characteristics that we
identify as useful for EAR. We then detail and charac-
terise the recognition methodology: the methods used
for removing drift and noise from EOG signals, and the
algorithms developed for detecting saccades, fixations,
blinks, and for analysing repetitive eye movement pat-
terns. Based on these eye movement characteristics, we
develop 90 features; some directly derived from a partic-
ular characteristic, others devised to capture additional
aspects of eye movement dynamics.

We rank these features using minimum redundancy
maximum relevance feature selection (mRMR) and a
support vector machine (SVM) classifier. To evaluate
both algorithms on a real-world example, we devise an
experiment involving a continuous sequence of five of-
fice activities, plus a period without any specific activity
(the NULL class). Finally, we discuss the findings gained
from this experiment and give an outlook to future work.

2 RELATED WORK

2.1 Electrooculography Applications
Eye movement characteristics such as saccades, fixations,
and blinks, as well as deliberate movement patterns
detected in EOG signals, have already been used for
hands-free operation of static human-computer [11] and
human-robot [12] interfaces. EOG-based interfaces have
also been developed for assistive robots [13] or as a
control for an electric wheelchair [14]. Such systems
are intended to be used by physically disabled people
who have extremely limited peripheral mobility but still
retain eye-motor coordination. These studies showed
that EOG is a measurement technique that is inexpensive,
easy to use, reliable, and relatively unobtrusive when
compared to head-worn cameras used in video-based
eye trackers. While these applications all used EOG as a
direct control interface, our approach is to use EOG as a
source of information on a person’s activity.

2.2 Eye Movement Analysis
A growing number of researchers use video-based eye
tracking to study eye movements in natural environ-
ments. This has led to important advances on our un-
derstanding of how the brain processes tasks, and of

the role that the visual system plays in this [15]. Eye
movement analysis has a long history as a tool to inves-
tigate visual behaviour. In an early study, Hacisalihzade
et al. used Markov processes to model visual fixations of
observers recognising an object [16]. They transformed
fixation sequences into character strings and used the
string edit distance to quantify the similarity of eye
movements. Elhelw et al. used discrete time Markov
chains on sequences of temporal fixations to identify
salient image features that affect the perception of visual
realism [17]. They found that fixation clusters were able
to uncover the features that most attract an observer’s
attention. Dempere-Marco et al. presented a method for
training novices in assessing tomography images [18].
They modelled the assessment behaviour of domain
experts based on the dynamics of their saccadic eye
movements. Salvucci et al. evaluated means for auto-
mated analysis of eye movements [19]. They described
three methods based on sequence-matching and hidden
Markov models that interpreted eye movements as accu-
rately as human experts but in significantly less time.

All of these studies aimed to model visual behaviour
during specific tasks using a small number of well-
known eye movement characteristics. They explored the
link between the task and eye movements, but did not
recognise the task or activity using this information.

2.3 Activity Recognition

In ubiquitous computing, one goal of activity recognition
is to provide information that allows a system to best
assist the user with his or her task [20]. Traditionally,
activity recognition research has focused on gait, posture,
and gesture. Bao et al. used body-worn accelerometers
to detect 20 physical activities, such as cycling, walking
and scrubbing the floor, under real-world conditions [21].
Logan et al. studied a wide range of daily activities, such
as using a dishwasher, or watching television, using a
large variety and number of ambient sensors, including
RFID tags and infra-red motion detectors [22]. Ward et al.
investigated the use of wrist worn accelerometers and mi-
crophones in a wood workshop to detect activities such
as hammering, or cutting wood [4]. Several researchers
investigated the recognition of reading activity in sta-
tionary and mobile settings using different eye tracking
techniques [6], [23]. Our work, however, is the first to
describe and apply a general-purpose architecture for
EAR to the problem of recognising everyday activities.

3 BACKGROUND

3.1 Electrooculography

The eye can be modelled as a dipole with its positive
pole at the cornea and its negative pole at the retina.
Assuming a stable corneo-retinal potential difference, the
eye is the origin of a steady electric potential field. The
electrical signal that can be measured from this field is
called the electrooculogram (EOG).
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Fig. 1. Denoised and baseline drift removed horizontal
(EOGh) and vertical (EOGv) signal components. Exam-
ples of the three main eye movement types are marked
in grey: saccades (S), fixations (F), and blinks (B).

If the eye moves from the centre position towards
the periphery, the retina approaches one electrode while
the cornea approaches the opposing one. This change
in dipole orientation causes a change in the electric
potential field and thus the measured EOG signal ampli-
tude. By analysing these changes, eye movements can
be tracked. Using two pairs of skin electrodes placed
at opposite sides of the eye and an additional reference
electrode on the forehead, two signal components (EOGh
and EOGv), corresponding to two movement compo-
nents - a horizontal and a vertical - can be identified.
EOG typically shows signal amplitudes ranging from 5
µV/degree to 20 µV/degree and an essential frequency
content between 0 Hz and 30 Hz [24].

3.2 Eye Movement Types

To be able to use eye movement analysis for activity
recognition, it is important to understand the different
types of eye movement. We identified three basic eye
movement types that can be easily detected using EOG:
saccades, fixations, and blinks (see Fig. 1).

3.2.1 Saccades
The eyes do not remain still when viewing a visual scene.
Instead, they have to move constantly to build up a
mental “map” from interesting parts of that scene. The
main reason for this is that only a small central region of
the retina, the fovea, is able to perceive with high acuity.
The simultaneous movement of both eyes is called a
saccade. The duration of a saccade depends on the
angular distance the eyes travel during this movement:
the so-called saccade amplitude. Typical characteristics
of saccadic eye movements are 20 degrees for the ampli-
tude, and 10 ms to 100 ms for the duration [25].

3.2.2 Fixations
Fixations are the stationary states of the eyes during
which gaze is held upon a specific location in the visual
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Fig. 2. Architecture for eye-based activity recognition on
the example of EOG. Light grey indicates EOG signal
processing; dark grey indicates use of a sliding window.

scene. Fixations are usually defined as the time between
each two saccades. The average fixation duration lies
between 100 ms and 200 ms [26].

3.2.3 Blinks
The frontal part of the cornea is coated with a thin
liquid film, the so-called “precornial tear film”. To spread
this fluid across the corneal surface, regular opening
and closing of the eyelids, or blinking, is required. The
average blink rate varies between 12 and 19 blinks per
minute while at rest [27]; it is influenced by environ-
mental factors such as relative humidity, temperature
or brightness, but also by physical activity, cognitive
workload, or fatigue [28]. The average blink duration
lies between 100 ms and 400 ms [29].

4 METHODOLOGY

We first provide an overview of the architecture for EAR
used in this work. We then detail our algorithms for
removing baseline drift and noise from EOG signals, for
detecting the three basic eye movement types, and for
analysing repetitive patterns of eye movements. Finally,
we describe the features extracted from these basic eye
movement types, and introduce the minimum redun-
dancy maximum relevance feature selection, and the
support vector machine classifier.

4.1 Recognition Architecture
Fig. 2 shows the overall architecture for EAR. The
methods were all implemented offline using MATLAB
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and C. Input to the processing chain are the two EOG
signals capturing the horizontal and the vertical eye
movement components. In the first stage, these signals
are processed to remove any artefacts that might hamper
eye movement analysis. In the case of EOG signals, we
apply algorithms for baseline drift and noise removal.
Only this initial processing depends on the particular eye
tracking technique used; all further stages are completely
independent of the underlying type of eye movement
data. In the next stage, three different eye movement
types are detected from the processed eye movement
data: saccades, fixations, and blinks. The corresponding
eye movement events returned by the detection algo-
rithms are the basis for extracting different eye move-
ment features using a sliding window. In the last stage, a
hybrid method selects the most relevant of these features,
and uses them for classification.

4.2 EOG Signal Processing

4.2.1 Baseline Drift Removal

Baseline drift is a slow signal change superposing the
EOG signal but mostly unrelated to eye movements. It
has many possible sources, e.g. interfering background
signals or electrode polarisation [30]. Baseline drift only
marginally influences the EOG signal during saccades,
however, all other eye movements are subject to baseline
drift. In a five electrode setup, as used in this work
(see Fig. 8), baseline drift may also differ between the
horizontal and vertical EOG signal component.

Several approaches to remove baseline drift from elec-
trocardiography signals (ECG) have been proposed (for
example see [31], [32], [33]). As ECG shows repetitive sig-
nal characteristics, these algorithms perform sufficiently
well at removing baseline drift. However, for signals
with non-repetitive characteristics such as EOG, devel-
oping algorithms for baseline drift removal is still an
active area of research. We used an approach based on
wavelet transform [34]. The algorithm first performed
an approximated multilevel 1-D wavelet decomposition
at level nine using Daubechies wavelets on each EOG
signal component. The reconstructed decomposition co-
efficients gave a baseline drift estimation. Subtracting
this estimation from each original signal component
yielded the corrected signals with reduced drift offset.

4.2.2 Noise Removal

EOG signals may be corrupted with noise from different
sources, such as the residential power line, the measure-
ment circuitry, electrodes and wires, or other interfering
physiological sources such as electromyographic (EMG)
signals. In addition, simultaneous physical activity may
cause the electrodes to loose contact or move on the skin.
As mentioned before, EOG signals are typically non-
repetitive. This prohibits the application of denoising
algorithms that make use of structural and temporal
knowledge about the signal.

Several EOG signal characteristics need to be pre-
served by the denoising. First, the steepness of signal
edges needs to be retained to be able to detect blinks
and saccades. Second, EOG signal amplitudes need to
be preserved to be able to distinguish between different
types and directions of saccadic eye movements. Finally,
denoising filters must not introduce signal artefacts that
may be misinterpreted as saccades or blinks in subse-
quent signal processing steps.

To identify suitable methods for noise removal we
compared three different algorithms on real and syn-
thetic EOG data: a low-pass filter, a filter based on
wavelet shrinkage denoising [35] and a median filter. By
visual inspection of the denoised signal we found that
the median filter performed best; it preserved edge steep-
ness of saccadic eye movements, retained EOG signal
amplitudes, and did not introduce any artificial signal
changes. It is crucial, however, to choose a window
size Wmf that is small enough to retain short signal
pulses, particularly those caused by blinks. A median
filter removes pulses of a width smaller than about half
of its window size. By taking into account the average
blink duration reported earlier, we fixed Wmf to 150 ms.

4.3 Detection of Basic Eye Movement Types

Different types of eye movements can be detected from
the processed EOG signals. In this work, saccades, fix-
ations, and blinks form the basis of all eye movement
features used for classification. The robustness of the
algorithms for detecting these is key to achieving good
recognition performance. Saccade detection is particu-
larly important because fixation detection, eye move-
ment encoding, and the wordbook analysis are all reliant
on it (see Fig. 2). In the following, we introduce our
saccade and blink detection algorithms and characterise
their performance on EOG signals recorded under con-
strained conditions.

4.3.1 Saccade and Fixation Detection

For saccade detection, we developed the so-called Con-
tinuous Wavelet Transform - Saccade Detection (CWT-SD)
algorithm (see Fig. 3 for an example). Input to CWT-SD
are the denoised and baseline drift removed EOG signal
components EOGh and EOGv. CWT-SD first computes
the continuous 1-D wavelet coefficients at scale 20 using
a Haar mother wavelet. Let s be one of these signal
components and ψ the mother wavelet. The wavelet
coefficient Ca

b of s at scale a and position b is defined:

Ca
b (s) =

∫
R

s(t)
1√
a
ψ

(
t− b
a

)
dt.

By applying an application-specific threshold thsd on
the coefficients Ci(s) = C20

i (s), CWT-SD creates a vector
M with elements Mi:
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Fig. 3. Continuous Wavelet Transform - Saccade Detec-
tion (CWT-SD) algorithm. (a) Denoised and baseline drift
removed horizontal EOG signal during reading with exam-
ple saccade amplitude (SA); (b) the transformed wavelet
signal (EOGwl), with application-specific small (±thsmall)
and large (±thlarge) thresholds; (c) marker vectors for
distinguishing between small (Msmall) and large (Mlarge)
saccades, and (d) example character encoding for part of
the EOG signal.

Mi =


1, ∀i : Ci(s) < −thsd,

−1, ∀i : Ci(s) > thsd,

0, ∀i : −thsd ≤ Ci(s) ≤ thsd.

This step divides EOGh and EOGv in saccadic (M =
1,−1) and non-saccadic (fixational) (M = 0) segments.

Saccadic segments shorter than 20 ms and longer than
200 ms are removed. These boundaries approximate the
typical physiological saccade characteristics described in
literature [25]. CWT-SD then calculates the amplitude,
and direction of each detected saccade. The saccade
amplitude SA is the difference in EOG signal amplitude
before and after the saccade (c.f. Fig. 3). The direction
is derived from the sign of the corresponding elements
in M . Finally, each saccade is encoded into a character
representing the combination of amplitude and direction.
For example, a small saccade in EOGh with negative
direction gets encoded as “r” and a large saccade with
positive direction as “L”.

Humans typically alternate between saccades and fixa-
tions. This allows us to also use CWT-SD for detecting fix-
ations. The algorithm exploits the fact that gaze remains
stable during a fixation. This results in the corresponding
gaze points, i.e. the points in visual scene gaze is directed
at, to cluster together closely in time. Therefore, fixations
can be identified by thresholding on the dispersion of

these gaze points [36]. For a segment S of length n
comprised of a horizontal Sh and a vertical Sv EOG
signal component, the dispersion is calculated as

Dispersion(S) = max(Sh)−min(Sh)+max(Sv)−min(Sv)

Initially all non-saccadic segments are assumed to con-
tain a fixation. The algorithm then drops segments for
which the dispersion is above a maximum threshold thfd

of 10,000, or if its duration is below a minimum threshold
thfdt

of 200 ms. The value of thfd was derived as part of
the CWT-SD evaluation; that of thfdt

approximates the
typical average fixation duration reported earlier.

A particular activity may require saccadic eye move-
ments of different distance and direction. For example,
reading involves a fast sequence of small saccades while
scanning each line of text while large saccades are re-
quired to jump back to the beginning of the next line.
We opted to detect saccades with two different ampli-
tudes, “small” and “large”. This requires two thresholds
thsdsmall

and thsdlarge
to divide the range of possible

values of C into three bands (see Fig. 3): no saccade
(−thsdsmall

< C < thsdsmall
), small saccade (−thsdlarge

<
C < −thsdsmall

or thsdsmall
< C < thsdlarge

), and large
saccade (C < −thsdlarge

or C > thsdlarge
). Depending on

its peak value, each saccade is then assigned to one of
these bands.

To evaluate the CWT-SD algorithm, we performed
an experiment with five participants - one female and
four male (age: 25 - 59 years, mean = 36.8, sd = 15.4).
To cover effects of differences in electrode placement
and skin contact the experiment was performed on two
different days; in between days the participants took
off the EOG electrodes. A total of twenty recordings
were made per participant, 10 per day. Each experi-
ment involved tracking the participants’ eyes while they
followed a sequence of flashing dots on a computer
screen. We used a fixed sequence to simplify labelling
of individual saccades. The sequence was comprised of
10 eye movements consisting of five horizontal and eight
vertical saccades. This produced a total of 591 horizontal
and 855 vertical saccades.

By matching saccade events with the annotated
ground truth we calculated true positives (TP ), false
positives (FP ) and false negatives (FN ), and from these,
precision ( TP

TP+FP ), recall ( TP
TP+FN ), and the F1 score

(2∗ precision∗recall
precision+recall ). We then evaluated the F1 score across

a sweep on the CWT-SD threshold thsd = 1 . . . 50 (in
50 steps) separately for the horizontal and vertical EOG
signal components. Fig. 4 shows the mean F1 score over
all five participants with vertical lines indicating the
standard deviation for selected values of thsd. What can
be seen from the figure is that similar thresholds were
used to achieve the top F1 scores of about 0.94. It is
interesting to note that the standard deviation across all
participants reaches a minimum for a whole range of
values around this maximum. This suggests that also
thresholds close to this point can be selected that still
achieve robust detection performance.
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Fig. 4. Evaluation of the CWT-SD algorithm for both EOG
signal components using a sweep of its main parameter,
the threshold thsd. The figure plots the mean F1 score
over all five participants; vertical lines show the standard
deviation for selected thsd. Maximum F1 score is indi-
cated by a dashed line.

4.3.2 Blink Detection
For blink detection, we developed the Continuous Wavelet
Transform - Blink Detection (CWT-BD) algorithm. Similar
to CWT-SD, the algorithm uses a threshold thbd on the
wavelet coefficients to detect blinks in EOGv. In contrast
to a saccade, a blink is characterised by a sequence of two
large peaks in the coefficient vector directly following
each other: one positive, the other negative. The time
between these peaks is smaller than the minimum time
between two successive saccades rapidly performed in
opposite direction. This is because typically, two sac-
cades have at least a short fixation in between them.
For this reason, blinks can be detected by applying a
maximum threshold thbdt on this time difference.

We evaluated our algorithm on EOG signals recorded
in a stationary setting from five participants looking at
different pictures (two female and three male, age: 25
- 29 years, mean = 26.4, sd = 1.7). We labelled a total
of 706 blinks by visual inspection of the vertical EOG
signal component. With an average blink rate of 12
blinks per minute, this corresponds to about 1 hour of
eye movement data. We evaluated CWT-BD over sweeps
of its two main parameters: thbd = 100 . . . 50, 000 (in 500
steps), and thbdt = 100 . . . 1000 ms (in 10 steps).

The F1 score was calculated by matching blink events
with the annotated ground truth. Fig. 6 shows the F1
scores for five selected values of thbdt

over all partici-
pants. CWT-BD performs best with thbdt

between 400
ms and 600 ms while reaching top performance (F1
score: 0.94) using a thbdt of 500 ms. Time differences
outside this range, as exemplarily shown for 300 ms and
1000 ms, are already subject to a considerable drop in
performance. This finding nicely reflects the values for
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Fig. 5. (a) Characters used to encode eye movements of
different direction and distance: dark grey indicates basic,
light grey diagonal directions. (b) Saccades detected in
both EOG signal components and mapped to the eye
movement sequence of the jumping point stimulus. Si-
multaneous saccades in both components are combined
according to their direction and amplitude (e.g. “l” and “u”
become “n”, and “R” and “U” become “B”).

the average blink duration cited earlier from literature.

4.4 Analysis of Repetitive Eye Movement Patterns
Activities such as reading typically involve character-
istic sequences of several consecutive eye movements
[6]. We propose encoding eye movements by mapping
saccades with different direction and amplitude to a
discrete, character-based representation. Strings of these
characters are then collected in wordbooks that are anal-
ysed to extract sequence information on repetitive eye
movement patterns.

4.4.1 Eye Movement Encoding
Our algorithm for eye movement encoding maps the
individual saccade information from both EOG compo-
nents onto a single representation comprising 24 discrete
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characters (see Fig. 5a). This produces a representation
that can be more efficiently processed and analysed.

The algorithm takes the CWT-SD saccades from the
horizontal and vertical EOG signal components as its
input. It first checks for simultaneous saccades in both
components as these represent diagonal eye movements.
Simultaneous saccades are characterised by overlapping
saccade segments in the time domain. If no simultaneous
saccades are detected, the saccade’s character is directly
used to denote the eye movement. If two saccades are
detected, the algorithm combines both according to the
following scheme (see Fig. 5b): the characters of two
saccades with equally large EOG signal amplitudes are
merged to the character exactly in between (e.g. “l”
and “u” become “n”, “R” and “U” become “B”). If
simultaneous saccades differ by more than 50% in EOG
signal amplitude, their characters are merged to the
closest neighbouring character (e.g. “l” and “U” become
“O”). This procedure encodes each eye movement into a
distinct character, thus mapping saccades of both EOG
signal components into one eye movement sequence.

4.4.2 Wordbook Analysis

Based on the encoded eye movement sequence, we
propose a wordbook analysis to assess repetitive eye
movement patterns (see Fig. 7). An eye movement pat-
tern is defined as a string of l successive characters. As
an example with l = 4, the pattern “LrBd” translates to
large left (L) → small right (r) → large diagonal right
(B) → small down (d). A sliding window of length l
and a step size of one is used to scan the eye movement
sequence for these patterns. Each newly found eye move-
ment pattern is added to the corresponding wordbook

L u R G L u R K l N r d F K D

L u R G L u R K l N r d F K D

L u R G L u R K l N r d F K D

L u R G L u R K l N r d F K D 

L u R G L u R K l N r d F K D 

L u R

u R G

R G L

G L u

2

1

1

1

... ...
eye movement sequence wordbook

Fig. 7. Example wordbook analysis for eye movement
patterns of length l = 3. A sliding window scans a
sequence of eye movements encoded into characters for
repetitive patterns. Newly found patterns are added to
the wordbook; otherwise only the occurrence count (last
column) is increased by one.

TABLE 1
Naming scheme for the features used in this work. For a

particular feature, e.g. S-rateSPHor, the capital letter
represents the group - saccadic (S), blink (B), fixation (F)
or wordbook(W) - and the combination of abbreviations
after the dash describes the particular type of feature

and the characteristics it covers.

Group Features
saccade
(S-)

mean (mean), variance (var) or maximum (max)
EOG signal amplitudes (Amp) or rate (rate) of
small (S) or large (L), positive (P) or negative
(N) saccades in horizontal (Hor) or vertical (Ver)
direction

fixation (F-) mean (mean) and/or variance (var) of the hori-
zontal (Hor) or vertical (Ver) EOG signal ampli-
tude (Amp) within or duration (Duration) of a
fixation or rate of fixations

blink
(B-)

mean (mean) or variance (var) of the blink
duration or blink rate (rate)

wordbook
(W-)

wordbook size (size) or maximum (max), dif-
ference (diff) between maximum and minimum,
mean (mean) or variance (var) of all occurrence
counts (Count) in the wordbook of length (-lx)

Wbl. For a pattern that is already included in Wbl, its
occurrence count is increased by one.

4.5 Feature Extraction

We extract four groups of features based on the detected
saccades, fixations, blinks, and the wordbooks of eye
movement patterns. Table 1 details the naming scheme
used for all of these features. The features are calculated
using a sliding window (window size Wfe and step size
Sfe) on both EOGh and EOGv. From a pilot study, we
were able to fix Wfe at 30 s and Sfe at 0.25 s.

Features calculated from saccadic eye movements
make up the largest proportion of extracted features. In
total, there are 62 such features comprising the mean,
variance and maximum EOG signal amplitudes of sac-
cades, and the normalised saccade rates. These are cal-
culated for both EOGh and EOGv; for small and large
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saccades; for saccades in positive or negative direction;
and for all possible combinations of these.

We calculate five different features using fixations: the
mean and variance of the EOG signal amplitude within a
fixation; the mean and the variance of fixation duration;
and the fixation rate over window Wfe.

For blinks, we extract three features: blink rate, and
the mean and variance of the blink duration.

We use four wordbooks. This allowed us to account
for all possible eye movement patterns up to a length of
four (l = 4), with each wordbook containing the type
and occurrence count of all patterns found. For each
wordbook we extract five features: the wordbook size,
the maximum occurrence count, the difference between
the maximum and minimum occurrence counts, and the
variance and mean of all occurrence counts.

4.6 Feature Selection and Classification
For feature selection, we chose a filter scheme over
the commonly used wrapper approaches because of the
lower computational costs and thus shorter runtime
given the large dataset. We use minimum redundancy
maximum relevance feature selection (mRMR) for dis-
crete variables [37], [38]. The mRMR algorithm selects a
feature subset of arbitrary size S that best characterises
the statistical properties of the given target classes based
on the ground truth labelling. In contrast to other meth-
ods such as the F-test, mRMR also considers relation-
ship between features during the selection. Amongst
the possible underlying statistical measures described
in literature, mutual information was shown to yield
the most promising results and was thus selected in
this work. Our particular mRMR implementation com-
bines the measures of redundancy and relevance among
classes using the mutual information difference (MID).

For classification, we chose a linear support vector ma-
chine. Our SVM implementation uses a fast sequential
dual method for dealing with multiple classes [39], [40].
This reduces training time considerably while retaining
recognition performance.

These two algorithms are combined into a hybrid
feature selection and classification method. In a first step,
mRMR ranks all available features (with S = 90). During
classification, the size of the feature set is then optimised
with respect to recognition accuracy by sweeping S.

5 EXPERIMENT

We designed a study to establish the feasibility of EAR
in a real-world setting. Our scenario involved five office-
based activities - copying a text, reading a printed pa-
per, taking hand-written notes, watching a video, and
browsing the web - and periods during which partic-
ipants took a rest (the NULL class). We chose these
activities for three reasons. First, they are all commonly
performed during a typical working day. Second, they
exhibit interesting eye movement patterns that are both
structurally diverse, and that have varying levels of

v
r

h

copy read write video browse NULL

Fig. 8. (top) Electrode placement for EOG data collection
(h: horizontal, v: vertical, r: reference). (bottom) Contin-
uous sequence of five typical office activities: copying a
text, reading a printed paper, taking hand-written notes,
watching a video, browsing the web, and periods of no
specific activity (the NULL class).

complexity. We believe they represent the much broader
range of activities observable in daily life. Finally, being
able to detect these activities using on-body sensors such
as EOG may enable novel attentive user interfaces that
take into account cognitive aspects of interaction such as
user interruptibility or level of task engagement.

Originally we recorded 10 participants, but two were
withdrawn due to poor signal quality: One participant
had strong pathologic nystagmus. Nystagmus is a form
of involuntary eye movement that is characterised by
alternating smooth pursuit in one direction and saccadic
movement in the other direction. The horizontal EOG
signal component turned out to be severely affected
by the nystagmus and no reliable saccadic information
could be extracted. For the second participant, most
probably due to bad electrode placement, the EOG signal
was completely distorted.

All of the remaining eight participants (two female
and six male), aged between 23 and 31 years (mean =
26.1, sd = 2.4) were daily computer users, reporting 6
to 14 hours of use per day (mean = 9.5, sd = 2.7). They
were asked to follow two continuous sequences, each
composed of five different, randomly ordered activities,
and a period of rest (see bottom of Fig. 8). For these, no
activity was required of the participants but they were
asked not to engage in any of the other activities. Each
activity (including NULL) lasted about five minutes,
resulting in a total dataset of about eight hours.

5.1 Apparatus
We used a commercial EOG device, the Mobi8, from
Twente Medical Systems International (TMSI). It was
worn on a belt around each participant’s waist and
recorded a four-channel EOG at a sampling rate of 128
Hz. Participants were observed by an assistant who an-
notated activity changes with a wireless remote control.
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Data recording and synchronisation was handled by the
Context Recognition Network Toolbox [41].

EOG signals were picked up using an array of five
24 mm Ag/AgCl wet electrodes from Tyco Healthcare
placed around the right eye. The horizontal signal was
collected using one electrode on the nose and another di-
rectly across from this on the edge of the right eye socket.
The vertical signal was collected using one electrode
above the right eyebrow and another on the lower edge
of the right eye socket. The fifth electrode, the signal
reference, was placed in the middle of the forehead. Five
participants (two female, three male) wore spectacles
during the experiment. For these participants, the nose
electrode was moved to the side of the left eye to avoid
interference with the spectacles (see top of Fig. 8).

The experiment was carried out in an office during
regular working hours. Participants were seated in front
of two adjacent 17 inch flat screens with a resolution of
1280x1024 pixels on which a browser, a video player, a
word processor and text for copying were on-screen and
ready for use. Free movement of the head and upper
body was possible throughout the experiment.

5.2 Procedure
For the text copying task, the original document was
shown on the right screen with the word processor
on the left screen. Participants could copy the text in
different ways. Some touch typed and only checked for
errors in the text from time to time; others continuously
switched attention between the screens or the keyboard
while typing. Because the screens were more than half a
meter from the participants’ faces, the video was shown
full screen to elicit more distinct eye movements. For the
browsing task, no constraints were imposed concerning
the type of website or the manner of interaction. For the
reading and writing tasks, a book (12 pt, one column
with pictures) and a pad with a pen were provided.

5.3 Parameter Selection and Evaluation
The same saccade and blink detection parameters were
used throughout the evaluation: thbd = 23, 438, thbdt

=
390 ms, thsdlarge

= 13, 750, and thsdsmall
= 2, 000. The

selection of thsdsmall
was based on the typical length of

a short scan saccade during reading, and thsdlarge
on the

length of a typical newline movement.
Classification and feature selection were evaluated

using a leave-one-person-out scheme: we combined the
datasets of all but one participant and used this for train-
ing; testing was done using both datasets of the remain-
ing participant. This was repeated for each participant.
The resulting train and test sets were standardised to
have zero mean and a standard deviation of one. Feature
selection was always performed solely on the training
set. The two main parameters of the SVM algorithm, the
cost C and the tolerance of termination criterion ε, were
fixed to C = 1 and ε = 0.1. For each leave-one-person-
out iteration, the prediction vector returned by the SVM
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Fig. 9. Precision and recall for each activity and partici-
pant. Mean performance (P1 to P8) is marked by a star.
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Fig. 10. Summed confusion matrix from all participants,
normalised across ground truth rows.

classifier was smoothed using a sliding majority window.
Its main parameter, the window size Wsm, was obtained
using a parameter sweep and fixed at 2.4 s.

6 RESULTS

6.1 Classification Performance
SVM classification was scored using a frame-by-frame
comparison with the annotated ground truth. For spe-
cific results on each participant, or on each activity, class-
relative precision and recall were used.

Table 2 shows the average precision and recall, and
the corresponding number of features selected for each
participant. The number of features used varied from
only nine features (P8) up to 81 features (P1). The mean
performance over all participants was 76.1% precision
and 70.5% recall. P4 reported the worst result, with both
precision and recall below 50%. In contrast, P7 achieved
the best result, indicated by recognition performance in
the 80s and 90s and using a moderate-sized feature set.
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TABLE 2
Precision, recall and the corresponding number of features selected by the hybrid mRMR/SVM method for each

participant. The participants’ gender is given in brackets; best and worst case results are indicated in bold.

P1 (m) P2 (m) P3 (m) P4 (m) P5 (m) P6 (f) P7 (f) P8 (m) Mean
Precision 76.6 88.3 83.0 46.6 59.5 89.2 93.0 72.9 76.1
Recall 69.4 77.8 72.2 47.9 46.0 86.9 81.9 81.9 70.5
# Features 81 46 64 59 50 69 21 9 50

Fig. 9 plots the classification results in terms of preci-
sion and recall for each activity and participant. The best
results approach the top right corner while worst results
are close to the lower left. For most activities, precision
and recall fall within the top right corner. Recognition
of reading and copying, however, completely fails for
P4, and browsing also shows noticeably lower precision.
Similar but less strong characteristics apply for the read-
ing, writing, and browsing task for P5.

The summed confusion matrix from all participants,
normalised across ground truth rows, is given in Fig. 10.
Correct recognition is shown on the diagonal; substitu-
tion errors are off-diagonal. The largest between-class
substitution errors not involving NULL fall between 12%
and 13% of their class times. Most of these errors involve
browsing that is falsely returned during 13% each of
read, write, and copy activities. A similar amount is
substituted by read during browse time.

6.2 Eye Movement Features
We first analysed how mRMR ranked the features on
each of the eight leave-one-person-out training sets. The
rank of a feature is the position at which mRMR se-
lected it within a set. The position corresponds to the
importance with which mRMR assesses the feature’s
ability to discriminate between classes in combination
with the features ranked before it. Fig. 11 shows the
top 15 features according to the median rank over all
sets (see Table 1 for a description of the type and name
of the features). Each vertical bar represents the spread
of mRMR ranks: for each feature there is one rank per
training set. The most useful features are those found
with the highest rank (close to one) for most training sets,
indicated by shorter bars. Some features are not always
included in the final result (e.g. feature 63 only appears
in five sets). Equally, a useful feature that is ranked lowly
by mRMR might be the one that improves a classification
(e.g. feature 68 is spread between rank five and 26, but
is included in all eight sets).

This analysis reveals that the top three features, as
judged by high ranks for all sets, are all based on hor-
izontal saccades: 47 (S-rateSPHor), 56 (S-maxAmpPHor),
and 10 (S-meanAmpSHor). Feature 68 (F-rate) is used in
all sets, seven of which rank it highly. Feature 63 (B-rate)
is selected for five out of the eight sets, only one of which
gives it a high rank. Wordbook features 77 (W-maxCount-
l2) and 85 (W-maxCount-l3) are not used in one of the
sets, but they are highly ranked by the other seven.

We performed an additional study into the effect
of optimising mRMR for each activity class. We com-
bined all training sets and performed a one-versus-many
mRMR for each non-NULL activity. The top five features
selected during this evaluation are shown in Table 3. For
example, the table reveals that reading and browsing can
be described using wordbook features. Writing requires
additional fixation features. Watching video is charac-
terised by a mixture of fixation and saccade features for
all directions and - as reading - the blink rate, while
copying involves mainly horizontal saccade features.

7 DISCUSSION

7.1 Robustness Across Participants
The developed algorithms for detecting saccades and
blinks in EOG signals proved robust and achieved F1
scores of up to 0.94 across several people (see Fig. 4
and 6). For the experimental evaluation, the parameters
of both algorithms were fixed to values common for
all participants; the same applies to the parameters of
the feature selection and classification algorithms. Under
these conditions, despite person-independent training,
six out of the eight participants returned best average
precision and recall values of between 69% and 93%.

Two participants, however, returned results that were
lower than 50%. On closer inspection of the raw eye
movement data, it turned out that for both the EOG
signal quality was poor. Changes in signal amplitude
for saccades and blinks - upon which feature extraction
and thus recognition performance directly depend - were
not distinctive enough to be reliably detected. As was
found in an earlier study [6], dry skin or poor electrode
placement are the most likely culprits. Still, the achieved
recognition performance is promising for eye movement
analysis to be implemented in real-world applications,
for example, as part of a reading assistant, or for moni-
toring workload to assess the risk of burnout syndrome.
For such applications, recognition performance may be
further increased by combining eye movement analysis
with additional sensing modalities.

7.2 Results for Each Activity
As might have been expected, reading is detected with
comparable accuracy to that reported earlier [6]. How-
ever, the methods used are quite different. The string
matching approach applied in the earlier study makes
use of a specific “reading pattern”. That approach is
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Fig. 11. Top 15 features selected by mRMR for all eight training sets. X-axis shows feature number and group; the
key on the right shows the corresponding feature names as described in Table 1; Y-axis shows the rank (top = 1). For
each feature, the bars show: the total number of training sets for which the feature was chosen (bold number at the
top), the rank of the feature within each set (dots, with a number representing the set count), and the median rank over
all sets (black star). For example, a useful feature is 47 (S) - a saccadic feature selected for all sets, in 7 of which it is
ranked 1 or 2; less useful is 63 (B) - a blink feature used in only 5 sets and ranked between 4 and 29.

TABLE 3
Top five features selected by mRMR for each activity over all training sets (see Table 1 for details on feature names).

rank read browse write video copy
1 W-maxCount-l2 S-rateSPHor W-varCount-l4 F-meanVarVertAmp S-varAmp
2 W-meanCount-l4 W-varCount-l4 F-meanVarVertAmp F-meanVarHorAmp S-meanAmpSNHor
3 W-varCount-l2 W-varCount-l3 F-varDuration B-rate S-meanAmpLPHor
4 F-varDuration W-varCount-l2 F-meanDuration S-varAmpNHor S-rateS
5 B-rate W-meanCount-l1 S-rateLPVer S-meanAmpSPHor F-meanVarHorAmp

not suited for activities involving less homogeneous
eye movement patterns. For example, one would not
expect to find a similarly unique pattern for browsing
or watching a video as there exists for reading. This
is because eye movements show much more variability
during these activities as they are driven by an ever-
changing stimulus. As shown here, the feature-based
approach is much more flexible and scales better with the
number and type of activities that are to be recognised.

Accordingly, we are now able to recognise four ad-
ditional activities - web browsing, writing on paper,
watching video, and copying text - with almost, or above,
70% precision and 70% recall. Particularly impressive
is video, with an average precision of 88% and recall
of 80%. This is indicative of a task where the user
might be concentrated on a relatively small field of view
(like reading), but follows a typically unstructured path
(unlike reading). Similar examples outside the current
study might include interacting with a graphical user
interface or watching television at home. Writing is
similar to reading in that the eyes follow a structured
path, albeit at a slower rate. Writing involves more

eye “distractions” - when the person looks up to think,
for example. Browsing is recognised less well over all
participants (average precision 79%, recall 63%) - but
with a large spread between people. A likely reason for
this is that it is not only unstructured, but that it involves
a variety of sub-activities - including reading - that may
need to be modelled. The copy activity, with an average
precision of 76% and a recall of 66%, is representative of
activities with a small field of view that include regular
shifts in attention (in this case to another screen). A
comparable activity outside the chosen office scenario
might be driving, where the eyes are on the road ahead
with occasional checks to the side mirrors. Finally, the
NULL class returns a high recall of 81%. However, there
are many false returns (activity false negatives) for half
of the participants, resulting in a precision of only 66%.

Three of these activities - writing, copying, and brows-
ing - all include sections of reading. From quick checks
over what has been written or copied, to longer perusals
of online text, reading is a pervasive sub-activity in this
scenario. This is confirmed by the relatively high rate of
confusion errors involving reading as shown in Fig. 10.
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7.3 Feature Groups
The feature groups selected by mRMR provide a snap-
shot of the types of eye movement features useful for
activity recognition.

Features from three of the four proposed groups -
saccade, fixation, and wordbook - were all prominently
represented in our study. The fact that each group covers
complementary aspects of eye movement is promising
for the general use of these features for other EAR
problems. Note that no-one feature type performs well
alone. The best results were obtained using a mixture
of different features. Among these, the fixation rate was
always selected. This result is akin to that of Canosa et
al. who found that both fixation duration and saccade
amplitude are strong indicators of certain activities [42].

Features derived from blinks are less represented in
the top ranks. One explanation for this is that for the
short activity duration of only five minutes the partic-
ipants did not become fully engaged in the tasks, and
were thus less likely to show the characteristic blink
rate variations suggested by Palomba et al. [43]. These
features may be found to be more discriminative for
longer duration activities. Coupled with the ease by
which they were extracted, we believe blink features are
still promising for future work.

7.4 Features for Each Activity Class
The analysis of the most important features for each
activity class is particularly revealing.

Reading is a regular pattern characterised by a spe-
cific sequence of saccades and short fixations of similar
duration. Consequently, mRMR chose mostly wordbook
features describing eye movement sequencing in its top
ranks, as well as a feature describing the fixation du-
ration variance. The fifth feature, the blink rate, reflects
that for reading as an activity of high visual engagement
people tend to blink less [43].

Browsing is structurally diverse and - depending on
the website being viewed - may be comprised of different
activities, e.g. watching a video, typing or looking at
a picture. In addition to the small, horizontal saccade
rate, mRMR also selected several workbook features of
varying lengths. This is probably due to our partici-
pants’ browsing activities containing mostly sequences
of variable length reading such as scanning headlines or
searching for a product in a list.

Writing is similar to reading, but requires greater
fixation duration (it takes longer to write a word than
to read it) and greater variance. mRMR correspondingly
selected average fixation duration and its variance as
well as a wordbook feature. However, writing is also
characterised by short thinking pauses, during which
people invariably look up. This corresponds extremely
well to the choice of the fixation feature that captures
variance in vertical position.

Watching a video is a highly unstructured activity, but
is carried out within a narrow field of view. The lack

of wordbook features reflects this, as does the mixed
selection of features based on all three types: variance
of both horizontal and vertical fixation positions, small
positive and negative saccadic movements, and blink
rate. The use of blink rate likely reflects the tendency
towards blink inhibition when performing an engaging
yet sedentary task [43].

Finally, copying involves many back and forth sac-
cades between screens. mRMR reflects this by choosing
a mixture of small and large horizontal saccade features,
as well as variance in horizontal fixation positions.

These results suggest that for tasks that involve a
known set of specific activity classes, recognition can
be optimised by only choosing features known to best
describe these classes. It remains to be investigated
how well such prototype features discriminate between
activity classes with very similar characteristics.

7.5 Activity Segmentation Using Eye Movements
Segmentation - the task of spotting individual activity
instances in continuous data - remains an open challenge
in activity recognition. We found that eye movements
can be used for activity segmentation on different levels
depending on the timescale of the activities. The lowest
level of segmentation is that of individual saccades that
define eye movements in different directions - “left”,

“right”, and so on. An example for this is the end-of-
line “carriage return” eye movement performed during
reading. The next level includes more complex activities
that involve sequences composed of a small number
of saccades. For these activities, the wordbook analysis
proposed in this work may prove suitable. In earlier
work, such short eye movement patterns, so-called eye
gestures, were successfully used for eye-based human-
computer interaction [44]. At the highest level, activities
are characterised by complex combinations of eye move-
ment sequences of potentially arbitrary length. Unless
wordbooks are used that span these long sequences,
dynamic modelling of activities is required. For this it
would be interesting to investigate methods such as
hidden Markov models (HMM), Conditional Random
Fields (CRF), or an approach based on eye movement
grammars. These methods would allow us to model eye
movement patterns at different hierarchical levels, and
to spot composite activities from large streams of eye
movement data more easily.

7.6 Limitations
One limitation of the current work is that the experimen-
tal scenario considered only a handful of activities. It is
important to note, however, that the recognition archi-
tecture and feature set were developed independently
of these activities. In addition, the method is not limited
to EOG. All features can be extracted equally well from
eye movement data recorded using a video-based eye
tracker. This suggests that our approach is applicable to
other activities, settings, and eye tracking techniques.
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The study also reveals some of the complexity one
might face in using the eyes as a source of information on
a person’s activity. The ubiquity of the eyes’ involvement
in everything a person does means that it is challenging
to annotate precisely what is being “done” at any one
time. It is also a challenge to define a single identifiable
activity. Reading is perhaps one of the easiest to capture
because of the intensity of eye focus that is required
and the well defined paths that the eyes follow. A task
such as web browsing is more difficult because of the
wide variety of different eye movements involved. It
is challenging, too, to separate relevant eye movements
from momentary distractions.

These problems may be solved, in part, by using
video and gaze tracking for annotation. Activities from
the current scenario could be redefined at a smaller
timescale, breaking browsing into smaller activities such
as “use scrollbar”, “read”, “look at image”, or “type”.
This would also allow us to investigate more compli-
cated activities outside the office. An alternative route is
to study activities at larger timescales, to perform situa-
tion analysis rather than recognition of specific activities.
Long-term eye movement features, e.g. the average eye
movement velocity and blink rate over one hour, might
reveal whether a person is walking along an empty or
busy street, whether they are at their desk working, or
whether they are at home watching television. Annota-
tion will still be an issue, but one that may be alleviated
using unsupervised or self-labelling methods [21], [45].

7.7 Considerations for Future Work
Additional eye movement characteristics that are poten-
tially useful for activity recognition - such as pupil di-
lation, microsaccades, vestibulo-ocular reflex, or smooth
pursuit movements - were not used here because of the
difficulty in measuring them with EOG. These character-
istics are still worth investigating in the future as they
may carry information that complements that available
in the current work.

Eye movements also reveal information on cognitive
processes of visual perception, such as visual mem-
ory, learning, or attention. If it were possible to infer
these processes from eye movements, this may lead to
cognitive-aware systems that are able to sense and adapt
to a person’s cognitive state.

8 CONCLUSION

This work reveals two main findings for activity recog-
nition using eye movement analysis. First, we show that
eye movements alone, i.e. without any information on
gaze, can be used to successfully recognise five office
activities. We argue that the developed methodology can
be extended to other activities. Second, good recogni-
tion results were achieved using a mixture of features
based on the fundamentals of eye movements. Sequence
information on eye movement patterns, in the form
of a wordbook analysis, also proved useful and can

be extended to capture additional statistical properties.
Different recognition tasks will likely require different
combinations of these features.

The importance of these findings lies in their signifi-
cance for eye movement analysis to become a general
tool for the automatic recognition of human activity.
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