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Abstract 

This study focused on the production and immobilisation of the crude enzyme extract of 

recombinant monoamine oxidase (EC 1.4.3.4), originated from Aspergillus niger (MAO-N-

D5) and expressed in Escherichia coli, in PVA gel using the LentiKats® technique. MAO-N 

are important enzymes in the chemical industry for their stereoselectivity and they are often 

used for the deracemisation of non-optically pure mixtures of amines. Biomass production, 

enzyme preparation, immobilisation of the enzyme, process parameters for the immobilised 

enzyme and characterisation of the enzyme are described in detail. The biomass was prepared 

in laboratory bioreactors, and a comparison of two different disruption techniques was made. 

The activity of the enzyme was determined by biotransformation with secondary amine 3-
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azabicyclo [3,3,0] octane as a substrate. Crude enzyme extract had 61.5% of the whole cell 

activity and it was proven that the immobilised enzyme has a wider pH and temperature 

optimum than the free enzyme. The initial specific activity of immobilised monoamine 

oxidase crude enzyme extract remained 80% after 12 repeated biotransformations. For the 

first time the full kinetic parameters of an immobilized MAO-N D5 were obtained based on a 

ping-pong bi-bi reaction mechanism. The kcat was 0.42 mM/h/U and the Km was 7.31 mM, 

which represented an improvement in kinetic efficiency in comparison to cell MAO-N. 

Characterisation of immobilized MAO-N showed particular benefits in terms of activity and 

stability in comparison with free and whole cell MAO-N, therefore the immobilization is very 

suitable for industrial applications. 
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Highlights 
– monoamine oxidase enzyme extract successfully immobilised in PVA hydrogel 
– immobilised enzyme showed improved pH and temperature stability 
– immobilised enzyme retained activity over 12 consecutive batches 
 

1. Introduction 

 Monoamine oxidases (MAO, EC 1.4.3.4) are enzymes that catalyse the oxidation of 

primary, secondary and tertiary amines. They belong to the flavin-containing amine 

reductases family of enzymes since they contain a flavin adenine dinucleotide (FAD) as a 

cofactor [1]. They are three types of monoamine oxidase, MAO-A, MAO-B and MAO-N. The 

A and B are human monoamine oxidases, where they play an important role in the central 

nervous system. For example, abnormal activity of MAO-B is involved in neurologic 

diseases, such as Parkinson’s disease or Alzheimer’s disease [2]. MAO-N is a monoamine 

oxidase originally isolated from the filamentous fungus Aspergillus niger. MAO-N was 
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extensively studied in evolution experiments, leading to the creation of mutants with 

improved activities and wide substrate specificity [3]. Created mutants that are expressed in 

E.coli are suitable for deracemisation of primary, secondary and tertiary amines within the 

chemo-enzymatic oxide-reduction cycle (Fig.1) [4]. 

– Insert Figure 1 –	
  

 

MAO-N are stereoselective, and therefore, they are often used for the deracemisation 

of non-optically pure mixtures of amines. Enantioselective MAO only oxidise S-enantiomer 

to imine, which is subsequently reduced in situ back to racemic amine. Optically pure amines 

are widely used as resolving agents and chiral auxiliary substances, and they can also be 

valuable intermediates for drug synthesis and agrochemicals [5]. Recombinant MAO are 

sensitive to oxygen, therefore, they may be influenced by culture aeration [5]. One of the 

methods that may improve its stability and allow for the repetitive use of this group of 

enzymes is immobilisation.  

 Immobilisation of the enzymes allows for improving almost all properties of enzymes, 

such as their stability, activity, specificity, and selectivity, in addition to inhibition reduction 

etc., although there can be negative effects due to substrate mass transfer limitations into the 

immobilisation matrix [6]. The main advantages of immobilisation are: increase of enzyme 

activity in organic solvents, increase of thermal stability, remarkable operational stability, 

increase of enantioselectivity, easy enzyme separation from the reaction by filtration or 

centrifugation etc. [7]. From an economic point of view, the reuse of the enzyme is a problem 

that immobilisation can easily resolve [6]. The biggest advantage in using an immobilized 

enzyme instead of immobilized biomass is certainly in the low risk of contamination or loss of 
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the cell viability during storage and repetitive use and with none possibility of the 

environment contamination with the recombinant bacteria.  

LentiKats® technology is a novel method of immobilisation developed in recent years. 

It is based on the entrapment of the biocatalyst, both enzymes and whole cells, into polyvinyl 

alcohol hydrogel (PVA), which has excellent physical and mechanical properties, as well as 

being non-toxic and difficult to biodegrade. Lens shaped particles (diameter 3–4 mm, 

thickness 200–400 μm) are also ideal for manipulation and there are low diffusion 

limitations in the transfer of the substrate and product [8].  

 The aim of this study was to prepare the recombinant monoamine oxidase (MAO) 

crude enzyme extract and its immobilisation into lens shaped particles LentiKats®. pH,  

temperature profiles, enzyme kinetics, substrate toxicity, stability and repetitive use of 

immobilised enzyme were also investigated with a view to large scale, industrial application 

of the MAO-N-D5 enzyme. 

 

2. Material and methods 

2.1. Chemicals and media 

All chemicals used were analytical grade materials. The Luria-Bertani media (LB) (per liter) 

consisted of 1% (w/v) NaCl, 1% (w/v) tryptone, and 0.5% (w/v) yeast extract, and 2% (w/v) 

agar was added to the agar plates. After autoclaving to all LB mediums, 100 μg/mL of filter 

sterilised ampicillin (Sigma Aldrich, USA) was added.  

 

2.2. Microorganism, culture and inoculum preparation 
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Escherichia coli BL21(DE3) with pET16b+ expressing MAO-N D5 was provided by Prof. 

Nicholas Turner, from the University of Manchester (UK). D5 indicates five amino acid 

mutations in the gene encoding monoamine oxidase N: 

Ile246Met/Asn336Ser/Met348Lys/Thr384Asn [9]. The microorganism was cryopreserved at -

80°C in 50% (v/v) glycerol and was cultivated on LB plates. Inoculum and fermentation 

biomass grew in LB media supplemented with ampicillin (100 ng/μL). The pre-inoculum 

culture was prepared as follows: 3 mL of LB in a glass tube was inoculated with a single 

colony from LB plates and cultivated overnight (approx. 12 hours) in rotary shaker (225 rpm, 

37°C). Inoculum preparation: 100 mL of LB medium in a 500 mL flask was inoculated with 

1% (v/v) of pre-inoculum culture and cultivated until the OD600 reached 0.5 in a rotary shaker 

(225 rpm, 37°C).  

2.3. Biomass production 

Batch fermentations were carried out in a 3 L Brunswick Flo® 115 fermentor with 2 L of LB 

media. The conditions were as follows: 1% (v/v) inoculum, oxygen saturation 5% with 

cascade agitation 100–1000 rpm, 30°C, 20 hours, 1 vvm aeration and without pH stating.  

2.4. Crude enzyme extracts preparation 

Prepared biomass was harvested by centrifugation (30 min, 2750 g, 4°C) and the sediment 

was resuspended in 20 mL of potassium phosphate buffer (0.1 M, pH 8) to a final 

concentration 0.064 gDCW/mL (0.064 g of dry cell weight per 1 mL of buffer). The cell 

suspension was disrupted using a high-pressure disruptor French press (Fischer Scientific, 

USA) in three disruption cycles at 120 kPSI or in a continual cell disruptor (Constant cell 

disruption systems, Constant Systems LTD, UK) in one disruption cycle at 20 kPSI at 4°C. 

After disruption, 1 mL of protease inhibitor (Complete EDTA-free, Roche Diagnostics, 

Germany) per 20 mL of crude enzyme extract was added. The crude enzyme extract was then 
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ultracentrifuged (Avanti® centrifuge 1-30I, Beckman Coulter, USA) (30 min, 20000 g, 4°C) 

and the supernatant was stored at -20°C for further experiments. MAO crude enzyme extract 

was concentrated by ultrafiltration membrane Amicon® Ultra (15 mL, 50 kDa Cut off 

membrane, Millipore, USA). Then, 14 mL of crude enzyme extract was centrifuged for 1.5 

hours at 4000 g and 4°C until it reached a final volume of 7 mL. 

2.5. Immobilisation  

Polyvinyl alcohol gel (PVA, 4 g) and polyethylene glycol (PEG, 2.4 g) were mixed together 

with 31.5 mL of water and heated at 90°C for 30 minutes. The mixture was cooled to 40°C 

and 7 mL of concentrated MAO crude enzyme extract was added. Particles were prepared 

using laboratory immobilization equipment LentiPriner (www.lentikats.eu). The drops were 

then dried for 45 minutes at 40°C and hardened in 0.1 M of sodium sulphate. The prepared 

particles were washed by a sterile potassium phosphate buffer (0.1 M, pH=8) and stored at 

4°C in a potassium phosphate buffer (0.1 M, pH=8) with ampicillin (100 ng/μL).  

2.6. Biotransformations 

As a substrate for biotransformations, a secondary amine 3-azabicyclo [3,3,0] octane HCl 

(AK Scientific, Inc.) was used. The reaction mixture with ultracentrifuged crude enzyme 

extract contained 2 mL of enzyme extract, 3 mL of potassium phosphate buffer (0.1 M, pH=8) 

and 2.96 g/L of the substrate. The reaction mixture with concentrated enzyme extract 

contained 0.5 mL of enzyme, 2 mL of the buffer and 2.96 g/L of substrate. Reactions with the 

immobilised biocatalyst contained 1 g of immobilised enzyme 5 mL of the buffer and 2.96 

g/L of substrate. After each biotransformation, the particles were washed in the potassium 

phosphate buffer (0.1 M, pH=8) and stored in the same buffer at 4°C overnight. The same 

particles were used for the next cycle after overnight storage. The biotransformation 

conditions were as follows: 50 mL plastic Falcon tube, 37°C and 250 rpm in an orbital shaker. 
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pH profile biotransformations were performed with 0.5 mL of enzyme (prepared as 2.4, non-

concentrated), 4.5 mL potassium phosphate buffer (0.1 M) with different pH values (4.6, 5, 

5.5, 6, 6.5, 7, 7.5, 8, 8.5, and 9.05) and 2.96 g/L of the substrate. The temperature profile was 

investigated at pH 8 and at the following temperatures (°C): 25, 30, 37, 41, 45, 50, and 55. 

The pH profile and temperature profile of the immobilised enzyme was performed with 0.5 g 

of the particles in 5mL of buffer, with the same conditions as above.  

2.7. Kinetic parameter measurements  

All kinetic measurements were performed in polypropylene 24 deep well Oxodish (Presens, 

Regensburg, Germany), which included both pH and oxygen SDR SensorDish. The total 

volume for all standard bioconversions was 2 mL, and different concentrations of 3-

azabicyclo [3.3.0] octane were used (2, 5, 10, 20, 50, 100, 200, 300mM) in 1M phosphate 

buffer to maintain a constant pH during the bioconversions (pH 8).  0.2 g of LentiKats® with 

immobilized crude enzyme extract were also added to each well. Catalase was added to the 

bioconversion in order to avoid any build-up of H2O2, which could be toxic to the enzyme, as 

well as to make the bioconversion irreversible by removing a product. 

 The bioconversions were performed at 37°C and shaking was provided at 400 rpm with a 

Thermomixer Comfort shaker (Eppendorf, Cambridge, UK),  (shaking diameter of 6 mm). 

Aliquots of 100 μL were taken at various time intervals. All experiments were performed in 

triplicate. The specific activities were determined as the amount of imine product 3-

azabicyclo-[3,3,0]oct-2-ene formed per unit of time which was synthetized as described in  

(Rios et al., 2015) [10], and which was measured by gas chromatography and normalised by 

the units of enzyme used in the reaction.  One unit of enzyme activity was defined as the 

amount of enzyme which catalysed the formation of 1 µmol of 3-azabicyclo-[3,3,0]oct-2-
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ene for 1 min in a forward reaction at a 20 mM concentration at 37oC, 400 rpm and a pH of 8, 

using a 1 M phosphate buffer.  

 

2.8. Analytics 

The samples from the biotransformations were processed as follows: to 200 μL of the 

sample, 8 μL of 10 M NaOH and 1 mL of tert-butyl-methyl-ether were mixed. The sample 

was vortexed and centrifuged for 1 min at 13300 g. The organic phase was collected into a 

clean tube with 0.2 g sodium sulphate (non-aq.), before being vortexed and short spun. The 

organic phase was analysed by gas chromatography (GC).  

Samples for kinetic analysis were processed as follows: 100 μL of samples were mixed with 

10 μL of a 1 M NaOH solution. Then, 200 µL tert-butyl-methyl-ether was added to the 

aliquots, shaken at 37°C and 900 rpm for 30 min in a Thermomixer Comfort Shaker 

(Eppendorf, Cambridge, UK). The samples were centrifuged for 5 min at 3000 g and the 

organic phase was collected for gas chromatography analysis.  

The concentration of created imine was measured using the GC Agilent Technologies 6890N 

Network GC System: column: CAM 0.25μm, 30m x 0.32mm, 1.6 mL/min of hydrogen as a 

carrier gas with pressure 34.9 kPa, a temperature profile of 110°C for 4.2 min, and a gradient 

of 30°C/min until 200°C. The total time was eight minutes and at the end, the temperature 

was cooled to 100°C. Volume of injection was 1 μL with split 1:50. 

2.9. Activity calculation 
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Initial specific activity of MAO-N was calculated from the linear part of the 

biotransformations [9]. The activity of the enzyme was calculated as the change of the 

substrate amount in the time of the linear part according to the following equation: 

a = (n1 – n2) / (t1 – t2) 

 

The concentration of dry cell weight was calculated from the calibration curve y = 0.306x – 

0.046 of the dependency of the concentration of the dry cell weight and OD600nm of E.coli. 

The specific activity was calculated as the activity divided by the dry cell weight used for 

biotransformation: 

asp = a / mDCW 

 

Respectively, the activity of the immobilised enzymes was divided by the amount of particles 

used for the biotransformation:  

asp= a/mimmobilised enzyme 

3. Results and discussion 

As described previously [9], E.coli BL21(DE3) expressing MAO-N-D5 has a low productivity 

and the enzyme expression is not even inducible using IPTG. Therefore, a stable enzyme that 

may be repetitively used for biocatalysis is highly sought after.  

3.1. Biomass production and whole cell biotransformation 

Biomass production was made in batch mode in LB medium according to Zajkoska et al.’s 

(2014) procedures [9], with constant oxygen saturation (5%) achieved by an agitation cascade 

and without pH control. After 20 h of the fermentation process, the biomass reached 1.34 g/L 

1.05–2.22 g/L of dry cell weight. The biomass at the end of the exponential phase (20 h) was 
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harvested using centrifugation (2750 g) and washed with 0.1 M of the phosphate buffer 

(pH=8) (Fig. 2) prior to use. Surprisingly, no improvement was achieved in biomass 

production by Fed batch or in enzyme induction for this expression system (data not shown). 

– Insert Figure 2 –	
  

 

To verify the biomass activity, the whole cell biotransformation with model substrate 3-

Azabicyclo [3,3,0] octane HCl was performed. The biomass was able to convert 20 mM of the 

substrate within 15 hours (Fig. 3), corresponding to the initial specific activity 7.56 U/gDCW. 

This also corresponds to findings in other research [3].  

– Insert Figure 3 –	
  

 

3.2. Crude enzyme extract preparation 

Biomass disruption was performed in batch and continuous modes using a French press 

(Fisher Scientific) and Constant cell disruption systems (Constant Systems LTD), 

respectively. Batch crude enzyme preparation had almost half activity (0.56 U/mL) compared 

to the continuous one (1.05 U/mL). The continuous disruption is advantageous, since its 

protocol is easily scalable to litre amounts, which is an important outcome for potential 

applications of MAO in industry. For continuous cell disruption a slight drop of specific 

enzyme activity was observed (after the first cycle, 1.35 U/mL, and after the second cycle, 

1.05 U/mL). Compared to whole cells, the enzyme retained 61.5% of the original activity 

(calculated using dry cell weight). Conversion of substrate with crude enzyme extract took 

approx. 10 hours (Fig. 3), which is comparable with the whole cell process and previously 

published data [3].  
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Due to the high cell density (0.058 gDCW/mL) loaded to the continuous cell disruptors, the 

increase of specific activity of prepared MAO crude enzyme extract by the higher load of 

biomass was not possible. However, to increase the specific activity of the enzyme, crude 

lysate was concentrated by membrane ultrafiltration with 50 kDa cut off membrane. The 

concentration of crude enzyme to half volume resulted in a 1.4 times increase of the initial 

specific activity and a decrease of bioconversion duration to four hours (Fig. 3).  

 

3.3. Immobilisation of crude enzyme extract 

Concentrated enzyme was used for PVA hydrogel immobilization according to the laboratory 

immobilisation protocol (www.lentikats.eu) with the LentiPrinter® device. Crude enzyme 

extract was stabilised with a protease inhibitor (Complete EDTA-free, Roche) to prevent 

enzyme digest by proteases and activity decrease in long term storage and experiments. The 

initial specific activity for the 10% (w/v) load was 0.16 U/g.  

3.4. Enzyme kinetics 

As previously reported [8] (Rebros et al., 2006), immobilisation of enzymes influences 

various enzyme parameters, including the kinetics, pH and temperature profile. MAO-N-5 

belongs to a family of enzymes that catalyse the oxidation of monoamines using FAD as a 

cofactor [11]. Previous studies have shown that the MAO-N-D5 kinetic profile has more 

resemblance to the human MAO-A, which follows a Ping-Pong bi-bi mechanism, rather than 

to the human MAO-B form, which follows a bi-bi ordered mechanism [12]. The mechanism 

and kinetic parameters of the whole cell MAO-N-D5 have previously been reported [10] based 

on high throughput, automated microwell experiments. In that work, a King-Altam scheme 

for the MAO-N-D5-mediated oxidation of amines was proposed which is shown in Fig. 4, and 

the corresponding rate model as in Equation 1.  The same method was used here to investigate 
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the kinetics of the immobilised enzyme [13]. For kinetic parameter estimation, a programme 

using Matlab® software (MathWorks, Natick, MA, USA) was developed in order to 

automatically perform all of the nonlinear regressions and statistical analyses following the 

routines for kinetic parameter estimation published elsewhere14.  

 

– Insert Figure 4 –	
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Where Vmax is the maximum rate, KO2 and Kamine are the corresponding Michaelis-Menten 

constants for the amine and O2, and Kiamine, KiO2 and Kiimine are the corresponding inhibition 

constants for the selected amine, O2 and the resulting imine. 

In order to determine the MAO LentiKats® kinetic parameters, we adapted a microscale 

methodology established in our previous work [14] to rapidly determine the kinetic constants 

of the immobilized biocatalyst. Briefly this required first obtaining the initial preliminary 

values of the Michaelis-Menten and rate constants through traditional initial rate experiments 

at low concentrations. This was followed with nonlinear regression methods applied to full 
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progress curves at high substrate concentrations to determine the inhibition constants, as well 

as helping refine the exact location of the solution, allowing to obtain the final value of all the 

parameters while reducing the number of experiments required. In this work, the initial values 

for the Michaelis-Menten constant and rate constant of 3-Azabicyclo [3,3,0] octane were 

obtained from literature, based on MAO-N whole cell kinetic studies [10]. Those were Km = 

6.4 mM and kcat = 0.22 mM h-1 U-1, which were used as initial values to perform nonlinear 

regressions to determine the rest of the kinetic parameters.  

The pH was monitored using the SDR SensorDish of the microplates for all bioconversions, 

which showed the pH remained constant at 8 by using 1 M phosphate buffer. The DOT was 

also monitored and remained close to 100% saturation, demonstrating that the combination of 

liquid fill volume, well geometry and shaking diameter/frequency used were sufficient to 

ensure that oxygen mass transfer into the microwell never became rate limiting. Similar 

results were found for MAO-N whole cell form in 96 microplates [10]. 

The O2 concentration could not be controlled using the microscale tools, so the Michaelis 

Menten plot varying O2 concentration could not be experimentally obtained. For that reason 

the initial the Michaelis Menten constant of O2 (Kmo2) was obtained from literature with a 

value of 0.7 mM [12]. Using air as the oxygen source, the O2 saturation concentration that 

could be obtained in microplates was 0.21 mM at 37oC [15], which was four times lower than 

the Kmo2 obtained in the literature. Experimentally it was not possible to use pure oxygen 

with the microscale tools; therefore the kinetic parameters determined in this work are 

apparent kinetic parameters suitable when using air as an oxygen source. The final values of 

those kinetic parameters for the immobilized MAO-N-D5 are summarized in Table 1. For 

comparison the table also shows the parameters previously determined for the whole cell 

form of the enzyme [10].  
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-insert Table 1- 

The kcat of an immobilized enzyme is generally lower than the free form; nevertheless in this 

work the opposite was found where the kcat for the MAO LentiKats® was almost two times 

bigger than the whole cell form (Table 1). In a previous work, the MAO-N-D5 whole cell 

form was found to be severely inhibited and deactivated by substrate 3-Azabicyclo [3,3,0] 

octane [10], therefore the immobilization method described in this work may have improved 

the stability of the biocatalyst, resulting in an apparent higher Kcat than then whole cell form. 

Those findings are in agreement with previous studies of the immobilized invertase into PVA 

gel using LentiKats® technique, showing a kM 3.6 times higher than free enzyme and an 

increase in Vmax of 17% [16]. At the other hand, the LentiKats® immobilized glucoamylase 

using maltose as a substrate presented a kM 1.5 times lower than the free enzyme [8]. The 

substrate inhibition constant of the immobilized enzyme was almost 5 times smaller than the 

whole cell form, which means the MAO LentiKats® suffers from more inhibition than the 

whole cell, although the constants are both in the same order of magnitude. The immobilized 

MAO-N may have partially been found as lysate due to all the process steps to make the 

LentiKats®. This could translate that substrate diffusion limitation may be stronger in the 

whole cell than in the partially lysate immobilized MAO-N, therefore reducing the inhibition 

effect in the whole cell form. This phenomenon could also explain the higher Kcat observed 

for MAO-N LentiKats® in comparison to the whole cell form. In general the other kinetics 

parameters were not significantly altered between the immobilized MAO-N and the whole 

cell form. Imine and oxygen inhibition constants were found to be 2 orders of magnitude 

higher than substrate inhibition, therefore a bioreactor operation mode that could minimize 

substrate inhibition would be recommended. Substrate fed-batch addition could allow 

achieving higher space-time yields at larger scales. Similar to previous MAO-N kinetic 

studies [10,12], the kinetic model predicted than an increase in oxygen concentration (by 
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using pure oxygen or pressurizing the bioreactor) would have an important positive effect in 

the bioconversion kinetics. The high throughput microscale tools and kinetic model 

methodologies allowed identifying bottlenecks early on and guide bioreactor engineering 

using minimum resources.  

	
  

3.5. pH and temperature kinetic profiles 

One of the main parameters affected by immobilisation is the pH profile of immobilised 

enzymes. In all cases of enzyme immobilisations to PVA gel, there were more [8] or fewer 

[17] significant changes of pH profiles. As previously reported [3], MAO D5 has an optimum 

pH of 8 (Fig. 5). At a lower pH, there is a significant drop of relative enzyme activity, while at 

values higher than eight the decrease of activity is not that dramatic until pH levels of 9. 

Immobilisation of enzymes slightly changes the pH profile of MAO-N D5. The optimum was 

shifted to a more alkali level (pH 8.5–9). The drop of relative enzyme activity prior to the 

acidic level was less significant than it was for free enzymes, likely due to the protection of 

the enzyme by the PVA gel matrix. 

– Insert Figure 5 – 

The next parameter that is usually affected by immobilisation is the enzyme temperature 

profile. The maximum attained activity for free MAO-N D5 was 45°C. The enzyme was 

stable until 50°C, and after this point, the relative enzyme activity drops significantly (Fig. 6). 

– Insert Figure 6 – 

The optimum free enzyme activity of MAO-N D5 is quite an advantageous parameter for 

PVA immobilisation studies, since a temperature of 55°C is the maximum temperature where 

PVA hydrogel particles may be used [8, 16]. Remarkable improvement of MAO-N relative 

activities was achieved through immobilisation (Fig. 6). Besides the slight increase of 
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optimum temperature, enzyme activity significantly increased in the whole monitored range. 

This may be an advantage in immobilised enzyme application. From an energetic point of 

view, there is almost no difference in reaction conversion for 37 and 45°C, and compared to 

these conditions, conversion at 30°C reached just 10% lower conversion when the previous 

(at 37 and 45°C) were completed, even when the initial activity was almost half (Fig. 7). The 

initial specific activity of immobilised MAO–N was 0.15 U/g at 30°C, 0.25 U/g at 37°C and 

0.3 U/g at 45°C.  

– Insert Figure 7 –	
  

 

3.6. Repetitive use of immobilised crude enzyme 

Immobilised MAO crude enzyme extract was used for 12 repeated biotransformations to 

verify the possibility of the advantage of biocatalyst reuse. After 8–10 hours of the 

biotransformation (Fig. 8), the particles were washed and used for the next batch. To the best 

of our knowledge, this is the first report regarding the repetitive use of immobilised enzyme 

MAO-N.  

– Insert Figure 8 – 

After the fifth and ninth batches, the particles were stored for two days at 4°C. However, after 

repetitive use and even various storage situations (Fig. 8), the enzyme retained 80% of its 

initial activity, making the process industrially and economically interesting. Compared to 

whole cell immobilised biocatalysts [9], it is remarkably stable for an FAD dependent 

enzyme.  

4. Conclusions  
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MAO-N D5 crude enzyme extract was successfully prepared using biomass produced in 

laboratory fermentors and continual cell disruptors for the disintegration of the cells. Crude 

enzyme retains 61.5% of the original whole cell activity. Prepared extract was concentrated 

and immobilised in a PVA gel, according to the optimised technique previously described [8, 

17]. Immobilised MAO-N in the form of LentiKats® was tested for activity, stability and 

repetitive use. The full kinetic parameters of the immobilized MAO-N were obtained; 

highlighting an improved kinetic efficiency in comparison to whole cell MAO-N and also 

allowing early identification of bioconversion bottlenecks and guiding bioreactor design. 

Besides the significant stability of the immobilised enzyme in repetitive biotransformations, 

the pH and temperature profiles were also improved compared to the free enzyme. The main 

bottleneck of MAO-N enzyme production is a weak active biomass production, which needs 

to be improved prior to industrial application.  
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Figure legends: 

Fig. 1: Generalised reaction scheme for the enantioselective oxidation of a secondary amine to imine 

by MAO-N [3]. 

Fig. 2: Kinetics of E.coli growth and MAO-N D5 production during batch fermentation on LB 

medium in a 2L stirred-tank bioreactor. 

Fig. 3: Comparison of bioconversion kinetics with different forms of the MAO-N-D5 biocatalyst: 

crude enzyme extract (CEE), concentrated crude enzyme extract (concentrated-CEE) and whole cells. 

Bioconversions performed in a Falcon tube (50 mL) with 20 mM substrate (3-Azabicyclo [3,3,0] 

octane HCl) in phosphate buffer (0.1M, pH=8), 37°C and orbital shaking at 250 rpm,.  

Fig. 4: Proposed King-Altman scheme of the MAO-N-D5 mediated oxidation of amines following a 

Ping-Pong bi-bi mechanism. EFADox: complex enzyme and FAD cofactor in the oxidised form, 

EFADred : complex enzyme and FAD cofactor in the reduced form. Reproduced from Rios-Solis et al 

(2015) [10].  

Fig. 5: Effect of pH on the bioconversion of 3-Azabicyclo [3,3,0] octane HCl using free and 

immobilised MAO-N-D5. 

Fig. 6: Effect of temperature on the bioconversion of 3-Azabicyclo [3,3,0] octane HCl using free and 

immobilised MAO-N-D5. 

Fig. 7: Influence of temperature on bioconversion kinetics using immobilised MAO-N-D5. 

Experiments performed with 20 mM 3-Azabicyclo [3,3,0] octane HCl at 30, 37 and 45°C. 

Fig. 8: Kinetics of repeated batch bioconversions using immobilised MAO-N-D5 biocatalyst. 

Immobilised biocatalyst prepared using concentrated MAO-N-D5 crude enzyme extract. 
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Table 1 Final values of the apparent kinetic parameters determined for MAO-N-D5 immobilised in 

PVA gel and the non-immobilised enzyme (in whole cell form). Data for non-immobilised enzyme 

taken from Rios-Solis et al (2015) [10].  
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Fig.1 
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Fig.2 
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Fig.3 
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Fig.4 
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Fig.5 
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Fig.6 
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Fig.7 
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Fig.8 
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Constant Unit Immobilised 

MAO-N-D5 

Free 

MAO-N-D5 

Rate constant 

(kcat) 

mM hr-

1 U-1 

0.42 0.22 

Michaelis 

constant for Aza 

(KmAZA)  

mM 7.31 6.4 

Michaelis 

constant for O2 

(KmO2)  

mM 1.1 1.2 

Inhibition 

constant for Aza 

(KiAza) 

mM 0.169 0.8 

Inhibition 

constant for O2 

(KiO2) 

mM 52.1 57.1 

Inhibition 

constant for 

Imine (KiImine) 

mM 65.4 54.5 

Table 1 
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