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The dynamics and statistical mechanics of N chaotically evolving point vortices in the doubly-
periodic domain are revisited. The selection of the correct microcanonical ensemble for the system
is first investigated. The numerical results of Weiss and McWilliams (Phys. Fluids, 19, 1459,
1991), who argued that the point vortex system with N = 6 is non-ergodic because of an apparent
discrepency between ensemble averages and dynamical time-averages, are shown to be due to an
incorrect ensemble definition. When the correct microcanonical ensemble is sampled, accounting for
the ‘vortex momentum’ constraint, time-averages obtained from DNS agree with ensemble averages
within the sampling error of each calculation, i.e. there is no numerical evidence for non-ergodicity.
Further, in the N →∞ limit it is shown that the vortex momentum no longer constrains the long-
time dynamics, and therefore that the correct microcanonical ensemble for statistical mechanics is
that associated with the entire constant energy hypersurface in phase-space.

Next, a recently developed technique is used to generate an explicit formula for the density of
states function for the system, including for arbitrary distributions of vortex circulations. Exact
formulae for the equilibrium energy spectrum, and for the pdf of the energy in each Fourier mode, are
then obtained. Results are compared with a series of direct numerical simulations with N = 50 and
excellent agreement is found, confirming the relevance of the results for interpretation of quantum
and classical two-dimensional turbulence.
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I. INTRODUCTION

In a recent work Dritschel et al.[1] presented numerical calculations (for 102 − 103 vortices) showing that the
equilibrium energy spectra of point vortex flows (on the sphere) vary smoothly with the total energy of the system. In
simulations that were initialised out of equilibrium, moreover, the spectra relaxed to their equilibrium profiles at a rate
proportional to the vortex collision timescale. These results strongly suggest that the point vortex equilibrium spectra
are of considerable interest for understanding and interpreting freely-evolving turbulence in those two-dimensional
flows, whether classical, quantum or plasma, in which the timescales associated with non-equilibrium processes (vortex
mergers, annihilations etc.) are longer than the relaxation time of the spectrum. Motivated by these considerations,
the present work aims to show that the equilibrium spectra can be obtained analytically using a recently developed
statistical mechanics framework [2]. Further, there is good agreement between the analytical equilibrium spectra and
those observed in point vortex calculations.

Anticipating that our results will be relevant to both two-dimensional classical fluid turbulence (2DCT) and quantum
turbulence (2DQT), the widely used doubly-periodic domain is used for the present work, although the results should
be straightforward to adapt to the sphere. While in certain limits both 2DCT and 2DQT can closely follow point
vortex dynamics over finite time periods, entirely different non-equilibrium processes occur in each system. A typical
Navier-Stokes simulation of decaying 2DCT [3] is characterized by the formation of a population of coherent vortices.
The vortex population evolves in time by merger and ‘thinning’ events [4], believed to be primarily due to three-
body interactions [5, 6], which result in the net transfer of energy to larger scales. The time-evolving distributions of
vortex area and circulation of such emergent vortex populations have been demonstrated numerically to be predictable
empirically [7, 8]. By contrast, in Gross-Pitaevskii (de-focusing nonlinear Schrödinger equations) simulations of 2DQT
[9–11], vortices with quantized circulations are observed to form. Unlike in 2DCT, the vortex populations evolve by
mutual annihilation of opposite signed vortices, also resulting in the net upscale transfer of energy.

The point vortex system is an idealized simple model for the study of the above systems, and it remains an open
question to determine the extent to which point vortices can be used to interpret 2DCT and 2DQT. Nevertheless
some encouraging results exist. For example Billam et al. [9] in a study of 2DQT have found good agreement between
Gross-Pitaevskii and point vortex energy spectra across a number of simulations at different energies. Preliminary
calculations by R. Scott (personal communication) suggest a similar level of agreement for the later stages of 2DCT
simulations. Unlike in 2DCT or 2DQT, however, the vortex population in point vortex dynamics remains invariant in
time. The point vortex equations are Hamiltonian, time-reversible, and their solutions have a well-defined equilibrium
energy spectrum [2] which depends only upon the conserved Hamiltonian or vortex interaction energy (VIE hereafter).
A natural idea, following Onsager [12], is to use the methods of equilibrium statistical mechanics to understand the
statistical organization of point vortices.

A new approach to point vortex statistical mechanics, for the case of a general bounded domain, has been introduced
recently by Esler and Ashbee [2] (EA15 hereafter). Unlike the relatively well-known sinh-Poisson or mean field theory
(following Joyce and Montgomery [13]), which is known to provide reasonable predictions for the time-averaged mean
flow end states of 2DCT flows [14], the EA15 theory is concerned with the statistics of the fluctuations of the turbulent
flow. The EA15 theory uses the central limit theorem, first to calculate the density of states function (a measure
of the total number of microstates associated with a given VIE). From the density of states, statistics such as the
equilibrium energy spectrum can be obtained, which can then be compared directly with those obtained from direct
numerical simulations (DNS) of the point vortex equations. The results hold for quite general distributions of vortex
circulations. Comparison with DNS in EA15 showed that the calculated statistics are very accurate for N = 100
vortices and remain relevant for N = 20 or fewer. EA15’s results generalise those of Pointin and Lundgren [15],
obtained using the (cumbersome) cumulant expansion method for the special case of the doubly-periodic domain with
unit vortex circulations, to all bounded domains with arbitrary distributions of vortex circulations. Here we focus on
extending the results of Ref. [15], and more importantly, demonstrating the practical relevance of those results for the
doubly-periodic domain.

Applying the method of EA15 to the doubly-periodic domain (D hereafter) is not trivial. For example, compared
to bounded domains, D has both confounding and simplifying features that make a detailed treatment both necessary
and of broader interest because of the implications for numerical studies of turbulence. Chief among these are:

1. The results of EA15 are for bounded domain dynamics with no continuous symmetries. The only integral of the
motion in these domains is the Hamiltonian (VIE). By contrast, due to the invariance of the dynamics under
coordinate shifts in the direction of each axis, point vortex motion in D also ‘conserves’ the vector-valued vortex
momentum P (the reason for the inverted commas will be clarified below). A first aim of this work will be to
explain the nature of P and to account for the curious lack of influence it exerts over the long-time statistics
of either point vortex dynamics in the limit N →∞ or over those of Navier-Stokes dynamics with a continuous
vorticity distribution.
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2. It has been questioned in the literature whether or not point vortex dynamics in D is ergodic, that is, do
microcanonical ensemble averages agree with long-time averages of the dynamics? Weiss and McWilliams [16]
(WM91 hereafter) addressed this question for N = 6 vortices in D, and found disagreement between vortex
separation statistics compiled from the microcanonical ensemble with those from long-time integrations of the
equations of motion. WM91 interpreted this disagreement as evidence of non-ergodicity, which in autonomous
Hamiltonian dynamical systems typically indicates that phase-space is partitioned into disjoint subspaces (c.f.
Birkhoff’s theorem [17]), with the dynamics confined to the subspace containing the initial conditions. Myste-
riously, however, WM91 found no direct evidence of partitioning of phase-space. A second aim of this work is
therefore to revisit the WM91 calculations and show that, when the vortex momentum constraint is accounted
for correctly, microcanonical and dynamical statistics agree to within calculated error bars. Based on these
revised calculations there is in fact no evidence of non-ergodicity.

3. In contrast to the bounded domains discussed in EA15, in the doubly-periodic domain a key step in the derivation
of the equilibrium statistics becomes analytically tractable, allowing explicit formulae to be found for e.g. the
density of states function. A third aim of this work is therefore to present these explicit formulae and describe
a method for their efficient numerical evaluation. The validity of the energy spectrum results will be confirmed
by comparison with DNS.

In addressing points 1-3 above, a robust framework will be established for the use of equilibrium statistical mechanics
for point vortices in D, and a number of practical results will be established which should be of value to numerical
modelers of 2DCT and 2DQT.

It is to be emphasized that it is not within the scope or spirit of this paper to address the mathematical question
of formally proving ergodicity or non-ergodicity in D. In fact, it is known that at very high VIE the system is non-
ergodic, essentially because vortices can then be organized into a small number of tight clusters which can be shown
to evolve arbitrarily close to the (deterministic) paths followed by their centroids. A formal proof on these lines using
Kolmogorov-Arnold-Moser (KAM) theory exists by Khanin [18] for the case N = 4, and was extended to arbitrary N
using a transformation to generalized Jacobi coordinates by Lim [19]. Notwithstanding these results, for researchers
in turbulence the important question is whether non-ergodic effects are significant enough at moderate (i.e. relevant)
VIE, to raise doubts over the application of methods from statistical mechanics. The present work aims to remove
those doubts raised by WM91 and the existence of the vortex momentum constraint.

The plan of the work is as follows. In section II, the point vortex model is introduced, the vortex momentum P is
defined, and its behavior under the dynamics is explained. The correct microcanonical ensemble for D is then defined
and it is explained why P does not influence the dynamics in the limit N → ∞. In section III vortex separation
statistics from the microcanonical ensemble with N = 6 are compiled, and are then compared to time-averaged
statistics from integrations of the point vortex equations. It is established that there is no numerical evidence for
non-ergodicity. In section IV the equilibrium statistics for N →∞ are calculated, with explicit formulae obtained for
the density of states function, the equilibrium energy spectrum, and the pdfs of energy contained in each wavenumber.
The results are tested against integrations of the point vortex equations with N = 50, with excellent agreement found.
Finally in section V conclusions are drawn.

II. BACKGROUND: POINT VORTEX MOTION IN THE DOUBLY-PERIODIC DOMAIN

A. Navier-Stokes equations in the doubly periodic domain

A useful starting point is to recall some general results for 2D fluid dynamics in the doubly-periodic domain D (here
taken to be (−π, π] × (−π, π] ), before considering the point vortex limit below. In 2D the Navier-Stokes equations
can be rewritten as an evolution equation for the vorticity ω(x, t),

(∂t + u · ∇)ω = ν∇2ω. (1)

Here the fluid velocity u = −∇×ψez where ez is the unit vector normal to the plane of motion, ψ is a streamfunction,
and ν is the non-dimensional viscosity (inverse of the Reynold’s number). The streamfunction satisfies ∇2ψ = ω, or
alternatively

ψ(x, t) =

∫
D
G(x,x′)ω(x′, t) dx′. (2)
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In D the Green’s function G in (2) has the formal expansion

G(x,x′) = −
∑
k

eik·(x−x′)

(2πk)2
, (3)

where k = |k|, and the summation is over all integer wavenumber pairs k = (k, l)T except for (0, 0)T . Equation (3)
shows that the velocity in D does not depend on the domain integral of ω, which is set to be zero without loss of
generality.

The vorticity field also has a Fourier space representation

ω(x) = ω0

∑
k

Ωk e
ik·x, Ωk =

1

(2π)2ω0

∫
D
ω(x)e−ik·x dx. (4)

Here (4), in which the summation again excludes (0, 0), is standard except that the freedom in the definition of the
Fourier transform is exploited to introduce a constant vorticity scale ω0, which will prove useful as a bookkeeping
device below. Notice that Ω0 = 0 because the domain integral of ω must remain zero in D. The total fluid energy
EF in D can be written

EF = −1

2

∫
D2

G(x,x′)ω(x)ω(x′) dx dx′ =
(2π)4ω2

0

2

∑
k

|Ωk|2

(2πk)2
(5)

Further, using the fact that ω is a real function, and that consequently Ωk = Ω∗−k where the star denotes the complex
conjugate, EF can be written

EF = (2π)4ω2
0

∑
k

′
Ek where Ek =

|Ωk|2

(2πk)2
. (6)

Here the primed summation denotes the sum over all integer pairs (k, l) with either (k = 0, l > 0) or k > 0. It will be
helpful to compare (6) with its point vortex equivalent below.

B. The point vortex limit and the vortex momentum constraint

Point vortex dynamics is a special case of (1) obtained by setting ν = 0 and then considering the vorticity distribution

ω(x) =

N∑
i=1

Γiδ(x− xi), (7)

where Γi is the circulation of the ith vortex, xi = (xi, yi)
T denotes its position in D, and δ(·) is the Dirac delta.

A well-known technical issue with point vortex dynamics is that the fluid energy EF in (5) is then undefined. The
system must be regularized by using instead a Hamiltonian ‘energy’ H, which in D can be written in terms of the
Green’s function G(x,x′) given by (3),

H(x1, ...,xN ) = −1

2

N∑
i=1

N∑
j=1,j 6=i

ΓiΓjG(xi,xj). (8)

Evolution equations [20] for the vortex positions can be derived from (1),

Γi
dxi
dt

= −∂H
∂yi

, Γi
dyi
dt

=
∂H

∂xi
i = 1, ..., N (9)

which are Hamilton’s equations (up to a set of linear scaling factors). The Hamiltonian has no explicit time-dependence
and consequently H is an invariant of the dynamics. A natural rescaling for H, that will prove convenient below, is

H̄ =
H

NΓ2
0

, where Γ0 =

(
1

N

N∑
i=1

Γ2
i

)1/2



5

is the root-mean-squared (rms) vortex circulation. The vortex interaction energy (VIE) ε is defined here to be the
(conserved) value taken by H̄ for a given dynamical run.

A key point to emphasis is that in D equations (8-9) are invariant under vortex translations of the form xi →
xi + 2π(miex + niey), where the (mi, ni) are arbitrary integers and ex and ey are respectively unit vectors in the
x and y directions. In consequence, in the course of a dynamical integration vortex positions xi can be constrained
without loss of generality to lie within D, i.e. it is possible to restrict xi ∈ (−π, π]× (−π, π] by applying the periodic
boundary condition to add and subtract factors of 2π where necessary. In fact, for definiteness it is necessary to apply
this restriction, in order that each spatial arrangement of vortices in D corresponds to a unique location in phase
space.

The remaining vector-valued ‘constant’ of the motion, identified by WM91 [16], is the vortex momentum P =
Pxex + Pyey, where

Px =

N∑
i=1

Γiyi, Py = −
N∑
i=1

Γixi.

Perhaps surprisingly, given that P can be defined analogously for the Navier-Stokes equations, aside from WM91
the vortex momentum has received little attention in the literature. The ‘conservation’ of P is a consequence of the
continuous symmetries of H under translation in the directions ex and ey (c.f. Noether’s theorem). To show this it
is helpful to introduce the Poisson bracket

{f, g} =

N∑
i=1

1

Γi

(
∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi

)
, (10)

in terms of which (9) are (using the dot to denote time-derivatives)

ẋi = {xi, H}, ẏi = {yi, H}.

It is then easily verified (see appendix of WM91) that Ṗx = {Px, H} = 0 and Ṗy = {Py, H} = 0. The unusual
property of Px and Py, recognized by WM91, is that they are not conserved under the periodicity transformation
xi → xi+2π(miex+niey). When the restriction that xi ∈ (−π, π]×(−π, π] is imposed, as is necessary for definiteness,
the consequence is that each time a vortex crosses a periodic boundary, either Px or Py will change in value.

In other words P is not a conserved quantity in the commonly understood sense. For example, if Px(t = 0) = P0x,
then at later times Px will take values Pm

0x in the set{
Pm

0x := P0x + 2πmiΓi | m = (m1, ...,mN )T ∈ ZN , − Pm < Pm
0x < Pm

}
. (11)

Here Pm = π
∑
i |Γi| is the maximum possible value for Px (corresponding to all positive vortices at x = π and

all negative vortices at x = −π). Similar considerations naturally apply to Py, i.e. if Py(t = 0) = P0y, Py will
subsequently take values Pn

0y in a set defined by analogy with (11).
That there is an equivalence between different points in the set of possible values taken by P is also clear from the

following perspective. Consider a change in the coordinate system corresponding to a translation of the origin. As
the origin is shifted, it follows from the fact that the domain integral of vorticity is zero that P is conserved until
vortices cross the periodic boundaries, when its value can jump to a different position in the set (Pm

0x , Pm
0x ). From

this perspective the specific value of P is relatively meaningless, because it is coordinate dependent, compared to its
full set of accessible values, which is not.

Consider next the situation where one or more pairs of vortices have irrational circulation ratios (i.e. Γi/Γj is
irrational for any i, j). In this case the set defined by (11) is dense on the open interval of the real line −Pm < Px < Pm.
Consequently, all possible values of Px (and similarly Py) will be accessible from any initial value P = P0. As will
be discussed below, the fact that all states are accessible has implications for the correct choice of the microcanonical
ensemble (which in this case will be the ensemble of vortex arrangements with H̄ = ε). It is not correct, however,
to conclude that in this case P has no role in the dynamics, because it may take a very large number of periodic
boundary crossings, and therefore a very long time, to access a state with a given value of P from a given initial
condition. It follows that the vortex momentum P can have a significant role in determining time-scale for ergodicity
in the doubly-periodic system, particularly when few vortices are present.

Now consider the case where the circulation ratios Γi/Γj are all rational. In this case the set (11) has a finite number
of elements, and during the course of the dynamics P will take values on a lattice. Consider, for simplicity, ‘neutral
gas’ examples with Γi = ±1 and

∑
i Γi = 0. Fig. 1 compares the pdf of Px when the vortices are arranged randomly

(solid curves) with the accessible values, i.e. those in the set (11), for two different initial conditions: P0x = 0 (red
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FIG. 1. Solid curves: Density of Px under the uniform ensemble for N = 6 vortices (upper panel) and N = 50 vortices (lower
panel). Equal numbers have circulation Γi = ±1 in both cases. Red lines: Values of Px accessible from initial condition P0x = 0.
Blue lines: Values of Px accessible from initial condition P0x = π.

lines) and P0x = π (blue lines). The upper panel shows the case with N = 6 and the lower panel N = 50 (details of
the calculation are given in Appendix A). Naturally, the same picture applies to Py, therefore a given initial condition
P (0) = P0 restricts P (t) to subsequently take values on a two-dimensional lattice. However for the N = 50 case, the
lattice for P (t) appears dense in Fig. 1b, and might be expected to serve as an reasonably accurate discretization of
the continuous distribution. Hence for N = 50 one might expect the influence of the initial value of P to be very
weak, and this is indeed what is found in our statistical sampling study below. It follows that in the limit N → ∞
the influence of P0 on the statistics will become negligible.

C. Statistical mechanics preliminaries

The point vortex system is an isolated Hamiltonian system and its statistics are therefore those of the microcanonical
ensemble. The microcanonical ensemble is defined to be the set of all microstates (vortex arrangements) which are
consistent with the invariants of the motion. In the doubly-periodic domain the relevant invariants are the VIE ε and
the vortex momentum P .

In the case with irrational circulation ratios or with large N , the vortex momentum P does not constrain the motion,
and the microcanonical ensemble consists of all microstates with VIE equal to ε. The microcanonical ensemble average
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of any quantity Q(x1, ...,xN ) is then defined to be

〈Q〉 =
1

(2π)2N

∫
DN

Q(x1, ...,xN ) pε(x1, ...,xN ) dx1...dxN , (12)

where the microcanonical probability pε can be written

pε(x1, ...,xN ) =
δ(H̄(x1, ...,xN )− ε)

(2π)2NW (ε)
. (13)

The normalising function appearing in (13)

W (ε) =
1

(2π)2N

∫
DN

δ
(
H̄(x1, ...,xN )− ε

)
dx1...dxN (14)

is known as the density of states function, and is key to the development of our results in section 4 below. W (ε) can
itself interpreted as a pdf, namely the pdf of H̄ when the vortices are arranged randomly in D (i.e. under the uniform
ensemble). Notably, following EA15, under a few mild restrictions on the limiting behavior of Γ = (Γ1, ...,ΓN )T (the
distribution of vortex circulations), W (ε) can be shown to be independent of Γ in the limit N →∞.

In the case where the circulation ratios are all rational (e.g. in the N = 6 vortex problem of WM91 to be discussed
below), then the vortex momentum P cannot be neglected in the microcanonical ensemble. In this case pε in (12)
must be replaced by

p̃ε(x1, ...,xN ) =
∑

(m,n)

δ(P (x1, ...,xN )− P
(m,n)
0 ) δ(H̄(x1, ...,xN )− ε)

(2π)2NW (ε,P0)
.) (15)

The summation in (15) is over all lattice points P
(m,n)
0 = (Pm

0x , P
n
0y)T in the sets (11), that are generated by the

vortex momentum initial condition P0 = (P0x, P0y)T . Finally W (ε,P0) is a generalized density of states function
defined by analogy with (14). Below, ensemble averages based on (15) will be denoted 〈·〉P . Based on the discussion
of section IIB above, it follows that for a quantity Q,

1. 〈Q〉P = 〈Q〉 when ratio of vortex circulations Γi/Γj is irrational for any i, j.

2. 〈Q〉P → 〈Q〉 in the limit N →∞.

Numerical verification of these results will be presented below.
WM91 (implicitly) use a different definition of the microcanonical ensemble, because they sample states with vortex

momentum equal to its initial value only, i.e. in place of (15) they use

p̂ε(x1, ...,xN ) =
δ(P (x1, ...,xN )− P0) δ(H̄(x1, ...,xN )− ε)

(2π)2NŴ (ε,P0)
. (16)

This definition is incorrect because, in the dynamics, all lattice points defined by (11) are accessible from the initial
state. The ensemble averages from the WM91 ensemble will be denoted 〈·〉WM below. The incorrect definition (16)
will be shown below to account for WM91’s conclusion of non-ergodicity.

Before progressing to our main results below, it is helpful to develop the relationship between H̄ and the discrete
fluid dynamical energy spectrum (6), following §3 of Kraichnan [21]. First note that an alternative expression for (8)
is

H = −1

2

∫
D2

G(x,x′)
(
ω(x)ω(x′)−R(x,x′)

)
dx dx′, (17)

where ω is given by the distribution (7) and R by the distribution

R(x,x′) =

N∑
i=1

Γ2
i δ(x− xi) δ(x

′ − xi). (18)

It is straightforward to verify that (17) is equivalent to (8) by inserting the distributions for ω and R and evaluating
the integral. The distribution R also has a Fourier expansion

R(x,x′) =
∑
k

∑
k′

Rkk′ei(k·x+k′·x′), (19)

Rkk′ =
1

(2π)4

∫
D2

R(x,x′) e−i(k·x+k′·x′) dx dx′ =
1

(2π)4

N∑
i=1

Γ2
i e
−i(k+k′)·xi .
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Equation (17) is in a form that allows the Fourier expansions (4) (19) and (3) to be inserted, and the resulting integrals
evaluated to give

H =
(2π)4

2

∑
k

ω2
0 |Ωk|2 −Rk,−k

(2πk)2
. (20)

A simplification follows because, from (19), Rk,−k = NΓ2
0/(2π)4 is a constant. If the hitherto unspecified vorticity

scale is now chosen to be ω0 = N1/2Γ0/(2π)2 it follows that H̄ = H/NΓ2
0 can be written

H̄ = ε =
∑
k

′ |Ωk|2 − 1

(2πk)2
=
∑
k

′
Ek − 〈Ek〉0. (21)

Here Ek is the (scaled) energy in wavenumber k, exactly as appears in the continuous case (6). The additional term
〈Ek〉0 = (2πk)−2 is precisely the energy expected in wavenumber k had the vortices been arranged randomly in D
under uniform measure. The result (21) defines a relationship between the point vortex energy spectrum, the vortex
interaction energy ε, and the fluid dynamical energy spectrum, which will be discussed further below.

III. ERGODICITY AND THE ROLE OF P IN THE DOUBLY-PERIODIC DOMAIN

In this section the study of WM91, which concluded that the point vortex system is non-ergodic, is revisited. In
particular, a direct comparison is made between statistics obtained from DNS of the point vortex equations (9), and
statistics obtained by sampling the microcanonical ensemble (12). No evidence for non-ergodicity is found, as will be
described next.

A. Numerical integration of the point vortex equations

To repeat the study of WM91 it is necessary to integrate the point vortex equations (9) numerically. An eighth-order
adaptive Runge-Kutta time-stepping algorithm [22] is used. A high-order adaptive method is advantageous because
of intermittent periods during which pairs of vortices pass close together [23]. Such periods require much shorter
time-steps than is typical. To efficiently evaluate the velocities from the vortex positions {x1, ...,xN} in (9) it is first
necessary to express the Green’s function (3) in a form allowing inexpensive evaluation. Several rapidly converging
expressions are available (see [24, 25],WM91). The method of WM91 is used here. A brief discussion of some details
is given in Appendix B.

We have performed long integrations (duration 105 − 106Γ−1
0 ) with both N = 6 vortices of unit circulation (3

positive, 3 negative) and with N = 50 (25 positive, 25 negative). Each run is initialized with randomly generated
initial conditions, which have different values of the Hamiltonian H̄ = ε (detailed below), and different values of the
vortex momentum (typically P0 = (0, 0)T , (π, 0)T , (π, π)T ). The runs are sufficiently long that the influence of ε and
P0 on the long-time statistics can be determined.

Key tests of numerical accuracy are (i) H̄ is conserved during the integration, and (ii) the vortex momentum P (t)
takes values on the lattice defined by (11). Our code is structured so that the accuracy of conservation is goverened
indirectly by a tolerance parameter δ∆t for the rms error in vortex positions over integration intervals ∆t. For most
of the time during our integrations ∆t = Γ−1

0 and δ∆t = 10−8. However, a further level of adaptivity is built into the
code. If H̄ is not conserved to within a tolerance δH (typically δH = 10−8 is used) over a given time interval [t, t+∆t],
as occasionally occurs because of unusual interactions of nearby vortices, the integration interval is repeated with δ∆t
reduced by an order of magnitude. This extra level of adaptivity ensures close control over the cumulative error in H̄
over the length of the integration. Note that errors in H̄ are found to be biased so that there is drift towards H̄ = 0
(maximum entropy).

A typical cumulative numerical error in conservation of H̄ for a t = 106Γ−1
0 run with N = 6 is less than 1× 10−4σε,

where σ2
ε = 〈H̄2〉0 is the variance of H̄ under the uniform ensemble (random arrangement of vortices in D). For

N = 6 the standard deviation is σε = 0.0401 (3 significant figures). The error is therefore considerably less than
width of an energy shell used for sampling the microcanonical ensemble below. A typical error in H̄ for a run of
length t = 5× 105Γ−1

0 with N = 50 is somewhat larger, at 2× 10−3σε, where in this case σε = 0.0440 (a value which
is in agreement to 3 significant figures with the N →∞ prediction calculated below).

Fig. 2 shows snapshots of vortex positions at late times during DNS with N = 50. The snapshots illustrate the
extent to which the distribution of vortices is influenced by the VIE ε. The left panel shows a run with ε = −2σε which
is in the positive temperature dipole-forming regime, the center panel shows ε = 0 which is near maximum entropy
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FIG. 2. Snapshot of vortex positions at late times from DNS with N = 50 (Γi = ±1, 25 positive are blue, 25 negative are red).
DNS with three different VIE are shown: Left: ε = −2σε, Center: ε = 0, Right: ε = +5σε.
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FIG. 3. Time evolution of x-vortex momentum Px(t) in numerical integrations with N = 6 (upper panel) and N = 50 (lower
panel). Solid black curves show runs with initial vortex momentum Px(0) = P0x = 0 and dashed grey curves show runs with
Px(0) = P0x = π (note that t = 0 in the figure does not correspond to the beginning of the runs).

for the system, and the right panel ε = +5σε in the negative temperature regime characterized by the formation of
like-signed clusters.

Fig. 3 shows the evolution of x-vortex momentum Px(t) during two simulations with N = 6 (upper panel) and two
with N = 50 (lower panel). In each case the simulations differ in the initial value of Px(0) = P0x, with the solid black
curves corresponding to P0x = 0 and the dashed grey curves to P0x = π. Evidently, during the evolution Px(t) jumps
between the lattice points of (11) as anticipated in the discussion of section IIB. Compared with the N = 6 runs, the
N = 50 runs are distinguished by (as should be expected) a much greater frequency of periodic boundary crossings
and consequent jumps between lattice points. The much greater density of lattice points in the N = 50 case (c.f.
Fig. 1) is also apparent.
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B. Numerical sampling of the microcanonical ensemble for N = 6

To investigate ergodicity the microcanonical ensemble defined in section IIC must be sampled numerically. In the
interest of avoiding any possible sources of ambiguity or sampling bias a direct ‘brute force’ sampling method is used
for the N = 6 vortex case. The pdf (15) is first smoothed by replacing the energy δ-function by an energy shell of
width δε = σε/30 and the vortex momentum δ-function by a small ‘box’ of width δp = 0.01. Sampling proceeds by
the repeated process of sampling from a set of six identical independent random variables {X1, X2, X3, X4, X5, X6}
which are uniformly distributed in (−π, π]. A sampled set is deemed accepted and recorded, as a possible set of
x-coordinates for the vortices, if the condition(

Pm
0x −

6∑
i=1

ΓiXi

)2

≤ δ2
p (22)

is met for any Pm
0x in the set (11). The value δp = 0.01 is found to be an acceptable ‘small’ distance to a nearby lattice

point, because calculations have been repeated with δp both doubled and halfed without a significant change in the
results. The process is repeated, using Pn

0y in place of Pm
0x to generate sets of possible y-coordinates. Following this

process, a large number (of order 108) of sets of vortex configurations consistent with the initial vortex momentum
P0 = P0xex + P0yey are found.

The next step is to repeatedly select sets of x and y-coordinates at random from the compiled list and calculate
the Hamiltonian energy H̄ for each resulting vortex configuration. When the energy falls within the energy shell of
interest (i.e. H̄ ∈ [ε − δε/2, ε + δε/2]) the configuration is accepted as an ensemble member and the statistics of
interest are recorded. Typically, the statistics reported below are compiled from 106 − 107 ensemble members.

The sampling process described above differs from that of WM91 in that all lattice points of P consistent with the
initial conditions P0 are sampled. WM91 sampled only vortex configurations associated with the original lattice point
P0. The subset of our samples associated with this original lattice point were also recorded and used to generate
statistics for the ‘WM91 ensemble’ described below.

C. Comparison of DNS time-averages and ensemble averages

The main test of ergodicity employed by WM91 was to investigate the statistics of the (vorticity-weighted) vortex
separations

p(r) = 〈δ(r − |xi − xj |)〉,
q(r) = 〈ΓiΓjδ(r − |xi − xj |)〉, (23)

where a summation is implied over all distinct vortex pairs (i, j), and the angle brackets denote either the ensemble
average (12) or time-averages from the DNS. The physical meaning of these statistics is discussed in WM91.

Here, statistics of p(r) and q(r) are generated using a histogram method, compiled from (i) periodic sampling of
DNS output, or (ii) vortex configurations drawn from the microcanonical ensemble (see above). As in WM91 error
bars due to finite sample sizes can be obtained using subsampling.

A key piece of evidence for non-ergodicity in WM91 is their Fig. 3b, where q(r) is plotted for a run[26] with
ε = −0.442σε and P0 = 0. Compared with q(r) calculated from the microcanonical ensemble, a discrepancy is seen
which is many times greater than that expected through sampling error. To show that WM91’s result is due to using the
incorrect ensemble definition (16), instead of (15), we have reproduced WM91’s calculation as accurately as possible.
Fig. 4 shows q(r) from our calculations, showing (i) the time average from DNS, (ii) the correct microcanonical
average 〈·〉P , and (iii) the Weiss-McWilliams ensemble average 〈·〉WM . First, it is clear that, within the error bars
due to sampling error, there is no discernible difference between the DNS time-average of q(r) and the microcanonical
average 〈·〉P . Second, WM91’s results are accurately reproduced, as the discrepancy between the time-average and
the Weiss-McWilliams ensemble average 〈·〉WM is more-or-less identical with that shown in Fig. 3b of WM91.

Similarly convincing agreement between time-averages and 〈·〉P has also been obtained in further calculations over
a range of values of ε and P0. Our conclusion is therefore that, at the level of numerical evidence that is obtainable
in practice for the N = 6 system, there is no evidence for non-ergodicity of the point vortex system.

D. The role of the vortex momentum P

Does the vortex momentum P ever have a significant influence on the vortex statistics? Situations where P has
no role have been highlighted above (e.g. irrational circulation ratios, N →∞). It is therefore of interest to quantify
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FIG. 5. Left: Average vorticity-weighted vortex separation q(r) for N = 6 runs with ε = −0.442σε, and (i) P0 = (0, 0) (solid
curve), (ii) P0 = (π, 0) (dashed curve) (iii) P0 = (π, π) (dotted curve). Right: As left panel but for N = 50 vortices, at ε = 0.

the extent to which the initial value of P can influence the time-averaged statistics of our N = 6 calculations. The
statistics of long DNS calculations of (9) have been compiled from three runs with (i) P0 = (0, 0), (ii) P0 = (π, 0) and
(iii) P0 = (π, π) respectively. Notice that when Γi = ±1, changes in P0x of ±2π are equivalent to jumping to adjacent
lattice points (c.f. Fig. 3). The initial values (i-iii) above therefore represent the maximum possible displacements of
the lattices of accessible values of P generated by P0. The differences between the statistics of runs (i-iii) therefore
represent the maximum possible influence of P .
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Fig. 5 shows how the vorticity weighted vortex separation q(r) depends on P . In the left panel, showing the N = 6
runs, it is clear that the influence of P is modest but noticeable. As a point of comparison, a change in the initial
value of the Hamiltonian H̄ of ±σε is sufficient to change the profile of q(r) by an amount significantly greater than
the differences seen in Fig. 5, as can be seen in Figs. 3-7 of WM91. Therefore, even with as few as 6 vortices, P0 has
a minor role compared to ε in influencing the statistics.

The right panel presents the results from the N = 50 runs, and shows that the influence of P0 is near negligible, as

anticipated. The lattice points P
(m,n)
0 generated by P0 are sufficiently dense to act as a good approximation to the

distribution of P under the uniform distribution, regardless of the exact value of P0. This result justifies neglecting
consideration of P in the statistical mechanics approach for large N below (i.e. using eqn. 13 in place of eqn. 15),
and indicates that in practice it is safe to do so for a relatively modest number of vortices.

IV. THE EQUILIBRIUM ENERGY SPECTRUM

Next the statistical theory for the equilibrium energy spectrum, and some related statistics, will be developed. The
theory is formally valid in the limit N →∞ and consequently, based on the theory of section IIB, the influence of the
vortex momentum P can be neglected without loss of validity. The approach taken is similar to that of EA15 with
one major difference in the outcome, which is that an analytical formula is obtained for the density of states function,
and by extension for the equilibrium energy spectrum itself.

A. Evaluation of the density of states function

The first step in our statistical theory is to obtain a formula for the density of states W (ε) defined by (14) above.
To proceed, it is helpful to interpret W (ε) as the pdf of the normalized Hamiltonian H̄, under the uniform ensemble.
The uniform ensemble is defined to be the set of all possible vortex configurations under uniform measure in D, and
its statistics can be obtained by sampling each vortex location Xi as a random variable uniformly distributed over D.

When the number of vortices N →∞ the method of EA15, based on the central limit theorem (CLT hereafter), can
be used to evaluate W (ε). As discussed in EA15 some assumptions are necessary. The simplest treatment assumes
a ‘fixed ratio neutral vortex gas’ which is defined as follows. When taking the limit N → ∞, a fixed ratio αj of
the vortices are taken to have a constant circulation Γ̄j , where j = 1, ..., J and J < ∞ is the number of different

vortex populations. Evidently
∑J
j=1 αj = 1. Note that, because time can be rescaled in the equations of motion,

the circulations Γ̄j can be constant or, provided their ratios remain fixed, can multiply an arbitrary function of N
without affecting the argument below. The condition of neutrality (no net circulation), which is necessary in D, is

J∑
j=1

αjΓ̄j = 0. (24)

The rms circulation introduced above is

Γ0 =

 J∑
j=1

αjΓ̄
2
j

1/2

. (25)

Notice that, for the N = 6 and N = 50 integrations under discussion, the vortex distribution corresponds to the
special case of a uniform neutral vortex gas [2, 27], for which J = 2, α1,2 = 1/2.

The key to progress is to first determine the distribution of the Fourier components Ωk under the uniform ensemble.
To do so, Ωk is first decomposed into contributions from each of the J vortex populations as follows

Ωk =

J∑
j=1

α
1/2
j

21/2

Γ̄j
Γ0

Ωjk, where Ωjk =
1

(αjN)1/2

ij+αjN∑
i=ij+1

21/2e−ik·Xi , (26)

where ij + 1 here denotes the first index of the jth population. Notice that the real and imaginary parts of Ωjk
correspond to sums of random variables which have zero mean and unit variance. Next, applying the CLT to the
formula for Ωjk results in

Ωjk = Ajk + iBjk where Ajk, B
j
k ∼ N (0, 1) . (27)
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Here N
(
µ, σ2

)
denotes the Gaussian distribution with mean µ and variance σ2. That the {Ajk} and {Bjk} are

independent follows from the orthogonality of the Fourier basis. For example the independence of Ajk and Bjk is a
consequence of Cov (cos (k ·Xi) , sin (k ·Xi))=0. Summation rules for independent normally distributed random
variables then reveal that

Ωk =

J∑
j=1

α
1/2
j

21/2

Γj
Γ0

(
Ajk + iBjk

)
=

(Ak + iBk)

21/2
where Ak, Bk ∼ N (0, 1) . (28)

To proceed, consider the random variable |Ωk|2 = 1
2 (A2

k + B2
k). It is a standard exercise in functions of random

variables to show that |Ωk|2 ∼ Exp(1), where Exp(λ) denotes the exponentially distributed random variable with pdf

p(x) =

{
λe−x/λ x > 0

0 x ≤ 0
. (29)

To obtain W (ε), which is the pdf of H̄, it is now a matter of using equation (21). Under the uniform ensemble,
equation (21) expresses H̄ as a weighted sum of independent exponential random variables, each of which is shifted
to have zero mean. Following EA15, the Fourier convolution formula can be used to express the sum as an inverse
Fourier transform. The result generalizes that obtained by Pointin and Lundgren [15, compare their eqn. 41] namely

W (ε) =
1

2π

∫ ∞
−∞

exp

(
iωε−

∑
k

′
(

log

(
1 +

iω

(2πk)2

)
− iω

(2πk)2

))
dω, (30)

to arbitrary vortex circulations[28]. The integral in (30) can be approximated numerically, however as with the
corresponding expression for bounded domains given in EA15 (see their eqn. 3.13), a standard quadrature converges
only in the central region where |ε| . 2σε.

An alternative and more explicit result, with much better convergence properties in the positive tail region (ε & 2σε),
can be obtained using Laplace transforms. In appendix C1, an explicit formula for the weighted sum of a finite number
of exponential random variables is derived, building on previous results in the literature [29]. For the case of an infinite
sum, as in (21), a means of truncating the sum so that it converges rapidly is described in appendix C2. Applying
these results to (21), the following exact (formal) formula is obtained

W (ε) = lim
km→∞

∑
k<km

qk∑
j=1

Cqk−jk,km
gj(ε+ εm, 4π

2k2) (31)

where

gj(x, λ) =
λjxj−1

(j − 1)!
e−λx (x > 0) (32)

is the pdf of the Erlang distribution (Gamma distribution with integer index). The sum over k is taken over all unique
values of k = |k| encountered in the primed sum defined in (5), satisfying k < km (a maximum wavenumber). For

example, the first ten values of k in the sum are {1,
√

2, 2,
√

5,
√

8, 3,
√

10,
√

13, 4,
√

17, ...}. The integers {qk} denote
the multiplicity of each wavenumber amplitude (i.e. number of wavenumbers k with |k| = k), with the first ten values
of qk being {2, 2, 2, 4, 2, 2, 4, 4, 2, 4, ...}. Notice that, due to the symmetries of the wavenumber lattice, qk increases

unboundedly. Finally the constants εm and Cjk,km are given by

εm =
∑
k<km

qk
4π2k2

Cjk,km =
(−1)j

j!
ak,km Bj(c

1
k,km , c

2
k,km , ..., c

j
k,km

) (33)

ak,km =
∏

k′<km,k′ 6=k

(
k′

2

k′2 − k2

)qk′

cik,km = (i− 1)!
∑

k′<km,k′ 6=k

q′kk
2i

(k′2 − k2)i
.
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The Bj(x1, ..., xj) function in (33) denotes the complete Bell polynomials (see appendix C1 for discussion).
The formula (31-33), although formally exact, is unfortunately impractical for calculations. As km is increased, εm

increases unboundedly, and the absolute value of the coefficients Cjk,km also increase rapidly with km. The nature of
cancellations between terms in the formula means that high precision computer arithmetic is necessary to evaluate
W (ε) accurately, even for a truncation as low as km = 8.5 (eight wavenumber shells). An approximation is required
for a practical formula.

Fortunately a relatively simple approximation can be found, as described in appendix C2 below. Equation (31) is
approximated by

W (ε; km) =
∑
k<km

qk∑
j=1

Cqk−jk,km
Fj(ε+ εm, k

2, σ2
m). (34)

The formula (34) is identical to a truncation of (31), except that the Erlang pdfs gj have been replaced by the pdfs Fj .
Here Fj(x, λ, σ

2) denotes the pdf of a random variable generated by a convolution between the Erlang distribution
with pdf gj(x, λ) and a normal random variable with zero mean and variance σ2. An explicit formula for Fj is given
in appendix C2. Finally, the variance used in (34) is σ2

m =
∑
k≥km qk/(2πk)4.

The formula (34), although rather complicated, is reasonably straightforward to evaluate numerically using standard
routines for Bell and Hermite polynomials. The nature of cancellations in the formula remains such that variable
precision arithmetic must be used to evaluate the coefficients Cjk,km . However these coefficients are properties of the
wavenumber lattice alone, and do not depend on the distribution of vortex circulations. Hence they need only be
calculated once (i.e. once for each truncation wavenumber km). Fig. 6 (upper panel) plots the entropy S(ε) = logW (ε)
calculated using (34) with truncation wavenumber km = 32.5. The result is compared with that from a histogram
generated by a direct statistical sampling of H̄ with N = 50 uniformly distributed vortices (107 samples are used).

To give an idea of the rate of convergence of (34) as km is increased, Fig. 6 (lower panel) plots the relative error
in W (ε) for a range of values of the truncation wavenumber km, relative to the highest value used (km = 32.5).
Convergence is evidently relatively rapid in the central region. By comparison, however, it is necessary to use a
relatively high value of km to accurately evaluate W (ε) in the tails, particularly the left tail (dipole forming regime).

B. Equilibrium energy spectrum

The density of states function W (ε) encodes all the information necessary to determine the equilibrium energy
spectrum of point vortex turbulence (see EA15 for the case of bounded domains). In the doubly periodic domain the
main result can be obtained relatively straightforwardly.

The starting point is to consider the microcanonical pdf pε(ek) for the distribution of energy Ek = |Ωk|2/4π2k2 in a
Fourier mode k with total wavenumber k = |k|. In terms of the uniform distribution defined above, the microcanonical
pdf pε(ek) can be interpreted as the pdf of the conditional random variable Ek|H̄ = ε. Consequently, Bayes’ theorem
in the form

P(Ek|H̄) =
P(H̄|Ek)P(Ek)

P(H̄)

can be used to express pε(ek) in terms of calculable quantities as follows

pε(ek) =
W−k(ε+ e0k − ek)p0(ek)

W (ε)
. (35)

Here W−k(·) denotes the density of states function (31) evaluated with wavenumber k omitted from the calculation.
The W−k term in (35) is the conditional pdf for H̄ given that Ek = ek. The pdf of Ek under the uniform ensemble
is denoted p0(ek) and from (29) is given by

p0(ek) = 4π2k2e−4π2k2ek , (ek > 0), (36)

and the constant e0k = (2πk)−2 is the mean of this distribution.
Under the ergodic hypothesis, pε(ek) is also the long-time pdf of Ek in a dynamical run with H̄ = ε. The fact that

the microcanonical ensemble is restricted to a hypersurface with constant H̄ means that pε(ek) can differ significantly
from the exponentially distributed p0(ek), as will be discussed below. The expected value of Ek, which defines the
equilibrium energy spectrum, is

〈Ek〉 =

∫ ∞
0

ekpε(ek) dek =
4π2k2

W (ε)

∫ ∞
0

ekW−k(ε+ e0k − ek) e−4π2k2ek dek. (37)
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The convolution result

(p0 ∗ p0)(ek) = 4π2k2ekp0(ek)

can be used to express (37) as a convolution

〈Ek〉 =
(p0 ∗ p0 ∗W−k) (ε+ e0k)

4π2k2W (ε)

which can be further simplified by noting, from the fact pε(ek) is a pdf and thus has unit integral, that

W (ε) = (p0 ∗W−k) (ε+ e0k),
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to give

〈Ek〉 =
(p0 ∗W ) (ε)

4π2k2W (ε)
=

1

W (ε)

∫ ∞
0

W (ε− ek) e−4π2k2ek dek. (38)

Equation (38) is significant because it confirms that all of the information about the energy spectrum is encoded in
the density of states function W (ε). Equation (38) differs from an equivalent result for bounded domains in EA15
(see their section 3.3) by a factor of two, which is accounted for by the natural degeneracy of all eigenfunctions in the
doubly-periodic domain. (In the notation of EA15, the ‘domain inverse temperatures’ of the doubly-periodic domain
are βk = −4π2k2, and each has multiplicity 2qk.) Formulae for higher moments of the energy in each mode 〈(Ek) q〉
can be obtained using a similar method.

C. Comparison with N = 50 simulations

The results of section IVB can be tested by comparison with long-time statistics obtained from DNS. Comparison
with direct statistical sampling of the microcanonical ensemble in EA15 indicates that, at least in bounded domains,
the N →∞ statistical results can be reasonably accurate for as few as N = 20 to 100 vortices. Consequently, statistics
from the N = 50 DNS described in section IIIA will be used here to verify the theory.

In Fig. 7 energy spectra obtained from the DNS are compared with those predicted by equation (38). In practice,
W (ε) is calculated on a well-resolved grid using (34), and numerical quadrature is then used to evaluate (38). An
alternative approach would be to integrate (38) explicitly to obtain analytical formulae, however such an approach
is unwieldly, as well as computationally expensive to evaluate for all possible k. In Fig. 7, as is standard in the
turbulence literature, the energy spectra E(k) are presented as functions of the total wavenumber k = |k|. For
simplicity and reproducibility E(k) are obtained from the discretized energy in each Fourier mode Ek by summation
over wavenumber shells

E(k) =
∑′

k
Ek (39)

where the subscript k on the summation denotes that the sum is over all wavenumbers (in the primed summation
defined above) with k − 1

2 ≤ |k| < k + 1
2 . Notice that the E(k) curves appear ‘rough’ at low wavenumbers due to

variations in the number of wavenumbers per shell.
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Fig. 7 shows excellent agreement between the spectra E(k) calculated from the DNS (dotted curves with symbols)
and those obtained from equation (38) (solid curves). The agreement holds across a wide range of VIE, from ε = −2σε
to +5σε. Whereas the left panel shows the spectra as a function of log10 k, the left panel shows the relative spectra,
measured with respect to the randomized spectra E0(k) (see section IIC above) as a function of k. The relative
spectra reveal that there is a strong asymmetry in the organization of the system depending on whether ε is positive
or negative. At negative ε the energy deficit in the spectrum, compared to the randomized spectrum, is spread
over a significant range of wavenumbers, and decays smoothly with increasing k. At positive ε, by contrast, the
energy surplus in the spectrum is concentrated almost entirely in the gravest (k = 1) Fourier modes, consistent with
the emergence of the Onsager-Kraichnan condensate [9, 10]. For k > 1 the spectrum is saturated. An asymptotic
treatment of the ε→∞ limit in Appendix D reveals that the saturated spectrum is given by

lim
ε→∞
〈Ek〉 =

1

4π2(k2 − 1)
(k > 1) (40)

which can be compared with the randomized spectrum 〈Ek〉0 = 1/(4π2k2). The condensate modes k = (0, 1)T and
(1, 0)T contains the remaining excess energy (see eqn. D4).

Significantly poorer agreement between theory and DNS is found for strongly negative VIE, e.g. ε = −3σε. The
dynamics at negative VIE are governed by dipoles with progressively smaller separation scales. The poor agreement
with the statistical theory may be due either to the timescale for ergodicity being greatly increased in the DNS, or an
increased sensitivity to finite N (vortex number) in the dipole regime. A different statistical theory, which explicitly
takes account of dipole formation, may be more successful in this regime.

In Fig. 8 the microcanonical pdfs pε(ek) given by equation (35) (solid curves), for the energy Ek in the Fourier
mode k, are compared with statistics compiled from the N = 50 integrations (unfilled circles). Fourier modes with

total wavenumber k = 1,
√

2, 2 and
√

5 are shown, and the comparison is for four different VIE, ε = −2σε, 0,+2σε
and +5σε. For comparison, the exponential distribution p0(ek) (36) of Ek under the uniform ensemble (vortices
positioned at random) is given by the dotted line in each panel. The formula (35) is seen in Fig. 8 to capture the
pdf of Ek in the integrations with good accuracy. Unsurprisingly it is the gravest (k = 1) mode which shows the
greatest departure from the exponential distribution, with greatly increased probability of finding high energies at
large positive ε compared with significantly reduced probability of even moderate energies at negative ε. Naturally,
this outcome is consistent with the snapshots of Fig. 2, as the dipole-dominated configuration at ε = −2σε will tend to
project only very weakly onto the Fourier modes with k = 1. By contrast the like-signed clusters evident at ε = +5σε
will project strongly onto the k = 1 modes.

There is additional evidence of spectral saturation in Fig. 8, as the pdfs pε(ek) at positive VIE (ε = 2σε and 5σε)
are very similar for k > 1. In fact the limiting distributions can be deduced from (35) using (D4), from which it can

be deduced that W (ε) ∼ εe−4π2ε and (by the same arguments) W−k(ε) ∼ εe−4π2ε provided that k > 1. Examining
the limiting behavior of (35) it follows that

lim
ε→∞

pε(ek) = 4π2(k2 − 1)e−4π2(k2−1)ek (ek > 0), (41)

which corresponds closely to the ε = 5σε curves plotted in Fig. 8. In other words, as ε→∞ the energy in the saturated
Fourier modes with k > 1 is exponentially distributed, but with a mean value greater than that expected from the
uniform distribution (36). It is to be emphasized that this limiting behaviour does not apply to the condensate (k = 1)
modes, which are not exponentially distributed as ε→∞.

V. CONCLUSIONS

In this work the point vortex system in the doubly-periodic domain D has been shown:

1. To exhibit no evidence of non-ergodic behavior (for N ≥ 6), contradicting the earlier conclusion of WM91 [16].
A significant question mark surrounding the validity of the methods of equilibrium statistical mechanics applied
to the point vortex system has therefore been removed. In fact, our conclusion is further supported by recent
numerical studies with N ∼ 102 in both conformal bounded domains [2] and on the sphere [1]. These studies
compared DNS time-averages and microcanonical averages, and also found no evidence of non-ergodicity, in
common with earlier studies in polygonal domains [30]. It is to be emphasized, however, that our results do
not constitute a proof of ergodicity, the system is in fact non-ergodic at large VIE [19]. Nevertheless our results
and the other numerical studies cited above suggest that, for the practical application of statistical mechanics
at moderate values of the VIE, the hypothesis of ergodicity appears to be a reasonable working assumption for
N ≥ 6.
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FIG. 8. Microcanonical pdf pε(ek) of the energy Ek in the Fourier mode with wavenumber k, (i) calculated from equation
(35) (solid curves) and (ii) calculated from DNS long-time statistics (unfilled circles). Top left: k = (1, 0)T . Top right:
k = (1, 1)T . Bottom left: k = (2, 0)T . Bottom right: k = (2, 1)T . Results are given for four VIE levels (corresponding to DNS)
ε = −2σε, 0, 2σε, and 5σε (red, blue, green and black curves respectively). The dotted line on each panel shows the pdf p0(ek)
of Ek under the uniform distribution (randomized vortices).

2. To have statistics which are independent of the initial value of the vortex momentum P either in the limit
N → ∞, or in the case of irrational vortex circulation ratios, or indeed for continuous vorticity distributions.
The vortex momentum, which arises as a ‘conserved’ quantity in D because of continuous symmetries in the x
and y directions, therefore need not be accounted for in statistical treatements, including notably the Miller-
Robert-Sommeria (MRS) statistics [31, 32]. Under a suitable hypothesis of ergodicity, the MRS statistics extend
the Joyce-Montgomery [13] mean field theory for point vortices to continuous initial vorticity profiles, and have
been used to predict the end-states of decaying 2DCT flows [33].

3. To have solvable statistics in the limit N → ∞, in the sense that the density of states function W (ε) can be
obtained analytically (eqn. 31), and the equilibrium energy spectrum can be obtained from W (ε) (c.f. eqn. 38).
The statistics are largely independent of the distribution of vortex circulations Γ except for a scaling factor
involving the rms circulation Γ0. Both ergodicity (1 above) and the justified neglect of P (2 above) are necessary
conditions for the treatment given here, which extends the results of EA15 to the doubly-periodic domain. The
results have been verified by comparison with time-averaged statistics taken from DNS with N = 50 (see Figs.
7 and 8).
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The results presented above will be of interest for the interpretation of statistics of two-dimensional classical (2DCT)
and quantum (2DQT) turbulence. For both systems, the regime in which the point vortex model is most relevant
is the ‘dilute’ regime discussed in the introduction, in which the spatial density of vortices is sufficiently low that
non-equilibrium processes such as like-sign vortex merger (in 2DCT) and opposite-sign annihilation (in 2DQT) are
relatively infrequent. Evidence that the dilute regime is relevant in practice is provided by the recent numerical
simulations of 2DQT in the Gross-Pitaevskii (de-focusing nonlinear Schrödinger) equations by Billam et al. [9]. The
low-wavenumber part of the incompressible energy spectrum was found to correspond closely to that of the point
vortex system across a range of values of the VIE ε, in simulations where the ‘healing length’ is small compared to
the domain. Future work will explore whether a similar regime exists for 2DCT. In particular, it will be interesting
to examine the extent to which an empirical model of vortex population evolution [8], or an explicit kinetic theory
of vortex merger events [6], can be combined with the present theory to predict the time-evolution of the energy
spectrum.

Overall our results should be reassuring for researchers using the doubly-periodic domainD for numerical simulations
of turbulence. In particular neglecting P is justified in most theoretical treatments. The influence of P is significant
only when a small number of vortices with quantized circulation are present. However, even in the case with N = 6
consider here the effect is small, as the maximum influence of P on the dynamics is comparable to that of a relatively
modest change in the VIE (≈ 0.5σε). Nevertheless, it should be emphasized the role of the domain geometry is always
important in point vortex dynamics and two-dimensional fluid dynamics in general, because of the nature of long-
range interactions in the system. Compared to bounded domains, studied in EA15, D retains some peculiar features.
One of the main results of EA15 was that geometry, through the distribution of eigenvalues of the ‘hydrodynamic’
eigenvalue problem, has a strong influence on the nature of the Onsager-Kraichnan condensation in the point vortex
system. Viewed from this perspective D is an extreme outlier, in that the lead eigenvalue (corresponding to Fourier
modes with k = |k| = 1) has a fourfold degeneracy (each wavenumber k has a twofold degeneracy, and k = (0, 1)T and
(1, 0)T each have k = 1). The consequence of this degeneracy is that, compared to a bounded domain, the condensate
has four times the degrees of freedom across which to share its energy. As a result, coherent structures will emerge in
D at significantly higher VIE compared to the bounded case.

Appendix A: Distributions of vortex impulse

The distribution of Px when the N = 6 vortices are distributed randomly in D is plotted in Fig. 1 (upper panel).
The pdf of the distribution of Px for N vortices with Γi = ±1, can be obtained explicitly from the following formula
for the pdf of sum of N iid random variables

pN (x) = (2π)(N−1)/2

∫ ∞
−∞

p̂(k)Neikx dk, p̂(k) =
1√
2π

∫ ∞
−∞

p(x)e−ikx dx.

Here

p(x) =
1

2π

{
1 |x| ≤ π
0 |x| > π

is the uniform distribution. For N = 6 the result is

p6(x) =
1

15 · 210π6

(
|x− 6π|5 − 6|x− 4π|5

+15|x− 2π|5 − 20|x|5 + 15|x+ 2π|5 − 6|x+ 4π|4 + |x+ 6π|5
)

(A1)

For the N = 50 case plotted in Fig. 1 (lower panel) the central limit theorem approximation is used

pN (x) ≈ 1

(2πN)1/2σ
exp

(
− x2

2σ2N

)
, where σ2 =

π2

3
.

Appendix B: Green’s function details

To preserve the link between the Navier-Stokes equations (1) and the point vortex system (9) it is helpful to use
precisely the same Green’s function G(x,x′) in each case. An arbitrary constant can be added to G(x,x′) without
changing the point vortex equations of motion, and G(x,x′) can be multiplied by an arbitrary factor provided that
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time is rescaled in (9), again without loss of generality. Since they were concerned solely with point vortices WM91
used both devices. It may therefore be helpful to researchers to have a record of the form of G(x,x′), consistent with
the WM91 formulation, which is exactly equal to (3). The form is

G(x,x′) =
1

4π

( ∞∑
m=−∞

log

(
cosh (x− x′ − 2πm)− cos (y − y′)

cosh 2πm

)
− (x− x′)2

2π
−G00

)
. (B1)

The constant G00 must be chosen so that ∫
D2

G(x,x′) dx dx′ = 0

for consistency with (3). Derivatives of (B1), which are needed to integrate the equations of motion (9), are obtained
following section II of WM91.

To evaluate G00 we use the following

G00 =
1

(4π2)2

∫
D2

( ∞∑
m=−∞

log

(
cosh (x− x′ − 2πm)− cos (y − y′)

cosh 2πm

)
− x2

2π

)
dx dx′

=
1

4π2

∫ 2π

0

∫ 2π

0

( ∞∑
m=−∞

(
log

(
cosh (x− 2πm)− cos (y)

cosh 2πm

))
− x2

2π

)
dy dx

=
1

2π

∫ 2π

0

( ∞∑
m=−∞

(
log

(
exp |x− 2πm|

2

)
− log (cosh 2πm)

)
− x2

2π

)
dx

=
1

2π

∫ 2π

0

( ∞∑
m=1

2

(
2πm− log (2 cosh 2πm)

)
+ x− log 2− x2

2π

)
dx

=
π

3
− log 2− 2

∞∑
m=1

log
(
1 + e−4πm

)
≈ 0.3540434.

This value has been confirmed to be correct by numerical evaluation of (3) and (B1).

Appendix C: Summation of exponential random variables

In this appendix we give details of the procedure used to evaluate the density of states formula (31). First an exact
and practical analytical formula for the pdf of a weighted sum of M iid exponential random variables is given. Second,
the case of numerical evaluation for M →∞ is discussed, because in this case the exact formula involves infinite sums
and products which necessitate a suitable truncation.

1. Analytical formula for finite M

Let pw(x) denote the pdf of the weighted sum SM of M iid exponential random variables {Xm}, each with pdf
p(x) = e−xH(x) where H(x) is the Heaviside step function. Here w = (w1, w2, w3, ...)

T denotes a (possibly infinite)
vector of M non-decreasing real constants, and the weighted sum in question is

SM =

M∑
m=1

Xm

wm
.

The aim here is to obtain an exact formula for pw(x) when M is finite. A previous formula [29] has been appeared in
the literature, but compared to the present result it is unwieldy for calculations. The limit with M →∞ is discussed
in the following subsection.

Note first that the pdf pw(x) of SM can be written as a convolution

pw(x) = (p1 ∗ p2 ∗ .... ∗ pM ) (x).
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where pm(x) = wme−wmxH(x) is the pdf of Xm/wm. Taking Laplace transforms

p̄w(s) = p̄1(s)p̄2(s)...p̄M (s) =

M∏
m=1

wm
s+ wm

.

In the simplest case where the {wi} are distinct, an explicit formula can be obtained directly as a sum of residues,
using the Cauchy residue theorem with the Bromwich integral, giving (for x > 0)

pw(x) =

M∑
m=1

Res

(
w1w2...wMexs

(s+ w1)(s+ w2)...(s+ wM )
; s = −wm

)

=

M∑
m=1

Amwme−wmx where Am =

M∏
i=1, wi 6=wm

wi
wi − wm

. (C1)

It is clear, however, that the formula (C1) fails whenever wi − wm = 0 for any i 6= m. The general result can
be obtained as follows. Define {W1, ...,WK} to be the K unique (K ≤ M) values of the {wm}, with multiplicities

{q1, ..., qK} (so that
∑K
k=1 qk = M). The Bromwich formula is then

pw(x) =
K∑
k=1

Res

(
W q1

1 W q2
2 ...W qK

K exs

(s+W1)q1(s+W2)q2 ...(s+WK)qK
; s = −Wk

)
,

or, exploiting the fact that partial derivatives commute with the residue formula.

pw(x) =
(−1)M−KW q1

1 W q2
2 ...W qK

K

(q1 − 1)!(q2 − 1)!...(qK − 1)!
×(

∂

∂W1

)q1−1(
∂

∂W2

)q2−1

· · ·
(

∂

∂WK

)qK−1 K∑
k=1

Res

(
exs

(s+W1)(s+W2)...(s+WK)
; s = −Wk

)
.

(C2)

Evaluating the residues as above, and differentiating with respect to each variable except Wk, (C2) simplifies (when
x > 0) to

pw(x) =

K∑
k=1

(−1)qk−1W qk
k

(qk − 1)!

(
∂

∂Wk

)qk−1(
Ak(Wk)e−Wkx

)
,

=

K∑
k=1

W qk
k

(qk − 1)!

qk−1∑
j=0

(
qk − 1
j

)
(−1)j xqk−1−je−WkxA

(j)
k (Wk). (C3)

Here

Ak(Wk) =

M∏
i=1, wi 6=Wk

wi
wi −Wk

,

is defined exactly as Am in (C1) above, except that here the product is over M − qk terms as opposed to M − 1 terms
in the former case. The jth derivative of Ak(Wk), which appears in (C3) can be evaluated by first writing Ak(Wk) as
an exponential

Ak(Wk) = exp

 M∑
i=1, wi 6=Wk

logwi − log |wi −Wk|

.
and then using Faà di Bruno’s formula for differentiation of the exponential of a function(

d

dx

)j
ef(x) = Bj(f

′, f ′′, ....f (j)) ef(x)
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B0 1
B1(x1) x1

B2(x1, x2) x2 + x21
B3(x1, x2, x3) x3 + 3x2x1 + x31

B4(x1, x2, x3, x4) x4 + 4x3x1 + 3x22 + 6x2x
2
1 + x41

B5(x1, x2, x3, x4, x5) x5 + 5x4x1 + 10x3x2 + 10x3x
2
1 + 15x22x1 + 10x2x

3
1 + x51

B6(x1, x2, x3, x4, x5, x6) x6 + 6x5x1 + 15x4x2 + 15x4x
2
1 + 10x23 + 60x3x2x1

...+ 20x3x
3
1 + 15x32 + 45x22x

2
1 + 15x2x

4
1 + x61

TABLE I. The first few complete Bell polynomials.

where Bj(x1, ..., xj) is the (exponential) complete Bell polynomial of order j (by convention B0 = 1). The complete
Bell polynomials are familiar from introductory statistics because they express the moments of a random variable in
terms of its cumulants, and they satisfy recursive formulae allowing for straightforward evaluation. The first six are
given in table 1.

Applying Faà di Bruno’s formula, the result is

A
(j)
k (Wk) =

Bj(C
k
1 , C

k
2 , ..., C

k
j )

W j
k

Ak(Wk), where Ckj =

M∑
i=1 wi 6=Wk

(j − 1)!W j
k

(wi −Wk)j
.

Inserting this above and re-indexing gives

pw(x) =

K∑
k=1

qk∑
j=1

(−1)qk−jBqk−j(C
k
1 , C

k
2 , ..., C

k
qk−j)Ak

(qk − j)!
W j
k

(j − 1)!
xj−1e−Wkx. (C4)

The formula (C4) scales efficiently for calculations. In fact, given a standard recursive routine for evaluating the
Bell polynomials, at fixed M it requires a comparable number of operations to (C2) (notice that the total number of
constants {Ckj } and {Ak} requiring evaluation is exactly M in both cases).

The result (C4) can be recognized as a sum of Erlang distributions. Two useful consistency tests, in the form of
constraints on the calculated coefficients, follows from the integrals∫ ∞

0

W j
k

(j − 1)!
xj−1e−Wkx dx = 1,

∫ ∞
0

W j
k

(j − 1)!
xje−Wkx dx =

j

Wk
.

The first follows from the fact that the integral of pw(x) is unity

K∑
k=1

qk∑
j=1

(−1)qk−jBqk−j(C
k
1 , C

k
2 , ..., C

k
qk−j)Ak

(qk − j)!
= 1, (C5)

and the second from the fact that the first moment of pw(x) is easily calculated from the definition of SM

K∑
k=1

qk∑
j=1

(−1)qk−jBqk−j(C
k
1 , C

k
2 , ..., C

k
qk−j)Ak

(qk − j)!
j

Wk
=

M∑
i=1

1

wm
. (C6)

The consistency tests (C5-C6) can be used to verify that all coefficients are correct and evaluated to the required
precision (see below).

2. The case M →∞

For the purposes of this work, the pdf p∗w(x) of the modified sum

S∗M =

M∑
m=1

Xm − 1

wm
(C7)

must be evaluated in the limit M →∞. Notice that the modification ensures that S∗M has zero mean. In general the
random variable S∗∞ will be well-defined provided that the sum

∑∞
m=1 w

−2
m is convergent.
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Evidently the formula (C4) must be approximated at finite M in order to estimate p∗w(x). However, if a crude
truncation is used, convergence with increasing M is slow. Slow convergence is particularly problematic because when
M is large it is necessary to use high precision arithmetic to evaluate (C4). The high precision requirement is easily
confirmed numerically using the consistency tests (C5-C6), because a fixed precision calculation will eventually fail
the tests as M is increased.

An equally practical, but more rapidly convergent, means of truncating (C4) is by approximating the tail of the
sum by a Gaussian random variable with identical mean and variance. In other words, we substitute S∗∞,M for S∗∞,
where

S∗∞,M =

M∑
m=1

Xm − 1

wm
+RM , (C8)

where RM ∼ N (0, σ2
M ) is a normally distributed random variable with mean zero and variance σ2

M =
∑∞
m=M+1 w

−2
m .

(In our problem, this approximation can be justified using the CLT, as the number of wavenumbers in each shell
grows with the truncation wavenumber).

The pdf of (C8) is given by a convolution of (C4) (with mean shifted to account for the modification in the sum
S∗M compared with SM ) with the normal distribution, i.e.

pw(x) =

K∑
k=1

qk∑
j=1

(−1)qk−jBqk−j(C
k
1 , C

k
2 , ..., C

k
qk−j)Ak

(qk − j)!
Fj(x+ µM ,Wk, σ

2
M ) (C9)

where µM =
∑M
m=1 w

−1
m and Fj(x, λ, σ

2) is the convolution of an Erlang random variable with pdf gj(x, λ) (see eqn.
32) a and a normal random variable with zero mean and variance σ2.

An explicit formula for the pdf Fj can be found by direct integration

Fj(x, λ, σ
2) =

λjσj−1e−x
2/2σ2

2(j − 1)!
×(√

2

π

j−2∑
k=0

(−1)j−1−k
(
j − 1
k

)
Heck

(
x− λσ2

σ

)
Hej−2−k

(
x− λσ2

σ

)

+ Hecj−1

(
x− λσ2

σ

)
e(x−λσ2)2/2σ2

erfc

(
−x− λσ

2

√
2σ

))
(C10)

where Hek(·) denotes the kth (probabilists’) Hermite polynomial, Heck(x) = Hek(ix)/ik, and erfc(·) is the complemen-
tary error function.

Appendix D: Asymptotics as ε→∞

The statistics in the limit ε→∞ can be obtained by differentiating (38) to obtain

∂ε〈Ek〉 = (βk − β(ε)) 〈Ek〉+ 1. (D1)

where βk = −4π2k2 are the domain inverse temperatures of D in the sense of EA15. An asymptotic solution to
equation (D1) can be sought under the constraint of the energy equation in the form

ε =
∑′
〈Ek〉 − β−1

k , (D2)

where the prime denotes the summation over wavenumbers defined in section IIA. A series solution can be sought in
the form (c.f. EA15)

β(ε) = β1 +

∞∑
j=1

Bj ε
−j

〈E(1,0)〉, 〈E(0,1)〉 =
ε

2
+

∞∑
j=0

Aj ε
−j (D3)

〈Ek〉 =

∞∑
j=0

Ak,j ε
−j . (|k| > 1)



24

Notice that wavenumbers k = (0, 1)T and k = (1, 0)T require a separate treatment as they are the ‘condensate’
wavenumbers in which most of the energy resides in the ε→∞ limit.

Inserting the ansatz (D3) into (D1) and (D2) and equating powers of ε−1 leads to

β(ε) = β1 +
1

ε
+O(ε−2)

〈E(1,0)〉, 〈E(0,1)〉 =
ε

2
+
∑
k 6=1

qkβ1

βk(βk − β1)
+O(ε−1) (D4)

〈Ek〉 =
1

β1 − βk
+O(ε−1). (|k| > 1)

The sum in (D4) is over all unique wavenumbers in the doubly-periodic lattice except unity, i.e. k = {
√

2, 2,
√

5, ...}
and the {qk} are the associated number of wavenumber vectors (see section . One interesting result in (D4) is that
the caloric curve β(ε) approaches its limiting value β(ε) → β1 from above, rather than from below as was shown to
be the case for a bounded domain with a non-degenerate leading eigenvalue. The doubly-periodic domain therefore
does not apparently exhibit negative specific heat capacity. Further terms in the series solutions can be calculated
straightforwardly, following the method of EA15.
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