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SIGNIFICANCE Go to:

T cells are essential components of vertebrate immune systems, but the mechanisms by which they are maintained
are still poorly defined. Existing methods infer cell lifetimes and division rates using DNA labeling of dividing
cells, but do not resolve heterogeneity in population dynamics well. We present a novel experimental system that,
when combined with mathematical models, yields kinetic parameters and allows us to measure the effect of a cell’s
age on its ability to survive and divide. Our approach quantifies lymphocyte dynamics over a year of a mouse’s life
and reveals a first-in, last-out structure in which subpopulations of naive T cells generated early in life persist with
slower kinetics and resist displacement by newer specificities.
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ABSTRACT Go to:

Understanding how our T-cell compartments are maintained requires knowledge of their population dynamics,
which are typically quantified over days to weeks using the administration of labels incorporated into the DNA of
dividing cells. These studies present snapshots of homeostatic dynamics and have suggested that lymphocyte
populations are heterogencous with respect to rates of division and/or death, although resolving the details of such
heterogeneity is problematic. Here we present a method of studying the population dynamics of T cells in mice
over timescales of months to years that reveals heterogeneity in rates of division and death with respect to the age of
the host at the time of thymic export. We use the transplant conditioning drug busulfan to ablate hematopoetic stem
cells in young mice but leave the peripheral lymphocyte compartments intact. Following their reconstitution with
congenically labeled (donor) bone marrow, we followed the dilution of peripheral host T cells by donor-derived
lymphocytes for a year after treatment. Describing these kinetics with mathematical models, we estimate rates of
thymic production, division and death of naive CD4 and CD8 T cells. Population-averaged estimates of mean
lifetimes are consistent with earlier studies, but we find the strongest support for a model in which both naive T-cell
pools contain kinetically distinct subpopulations of older host-derived cells with self-renewing capacity that are
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resistant to displacement by naive donor lymphocytes. We speculate that these incumbent cells are conditioned or
selected for increased fitness through homeostatic expansion into the lymphopenic neonatal environment.

Normal adaptive immunity depends on maintaining populations of naive CD4 and CD8 T cells of sufficient sizes
and diversities of antigen receptors. Mature naive cells are generated by the thymus and, once in the periphery,
divide slowly and are lost either to death or differentiation into effector cells. It is known qualitatively how both
cytokine (1-7) and T-cell receptor (TCR) (4, 8, 9) signals influence their survival and self-renewal through division,
but we still lack a quantitative understanding of the rules that govern the development and persistence of our naive
T-cell repertoires.

To develop our understanding of lymphocyte homeostasis, much effort has been directed at defining the kinetics of
T cells under normal physiological conditions. Division and death are normally quantified by following the
accumulation and loss of cells labeled in vivo with BrdU or deuterium from heavy water or deuterated glucose,
taken up by dividing cells during administration of label and diluted following its withdrawal (10—-20). These
experiments are typically performed over days to weeks and collectively have revealed that cell populations initially
assumed to be homogenous may in fact comprise multiple subpopulations dividing and dying at different rates
(kinetic heterogeneity) and/or that cells that are quiescent or have recently divided may have different
susceptibilities to death (temporal heterogeneity). Discriminating between these scenarios with labeling alone is
difficult (16), and the parameter estimates inferred from in vivo labeling are also sensitive to the assumed nature of
heterogeneity (15, 16, 20), the duration of labeling (14, 20), and assumptions regarding the relative contributions of
input of cells from external sources and self-renewal through division (11, 21).

With the exception of a study that distinguished recent thymic emigrants and mature naive cells (22), heterogeneity
has also been left as a rather general concept in labeling studies and not tied firmly to any other variables or
identifiable subsets of cells. Average T-cell lifetimes in both mice and humans appear to vary with age (18), and so
it seems plausible that turnover may be heterogeneous with respect to cell age, measured by the time since export
from the thymus. However, without stratifying cells by their residence histories, labeling provides only host age-
specific, cross-sectional snapshots of population dynamics. Thus, we need more information to build a unified
description of T-cell homeostasis from birth into old age that will allow us to explain how the phenotypic
composition and TCR repertoires of lymphocyte compartments evolve over an individual’s lifetime.

In this study, we quantify the homeostatic dynamics and probe the age structure of the naive CD4 and CD8 T-cell
compartments over a year of a mouse’s life, using what we term a “temporal fate mapping” approach.
Hematopoetic stem cells of young adult mice were specifically replaced with congenically labeled stem cells while
leaving the peripheral T-cell compartment intact. We monitored the replacement of host T cells with de novo-
generated donor T cells. Although a simple model of homogeneous dynamics is able to describe the total naive
CD4 and CD8 compartment sizes over the course of a year, this model and even extremely general extensions of it
were unable to simultaneously explain the changes in total naive T-cell numbers over time and the kinetics of
replacement of host by donor cells. Instead, the data and modeling pointed strongly to the presence of a long-lived,
self-renewing population of host naive T cells (which we term “incumbents”) generated in the first few weeks after
birth and resistant to replacement by newer, “displaceable” cells. Using the rate of dilution of host by donor cells in
conjunction with measurements of the proportions of cells undergoing division, we were able to infer the mean
residence and interdivision times of incumbent and displaceable cells within both the naive CD4 and CD8 T-cell
populations. Our study reveals, for the first time to our knowledge, the age-dependent population dynamics of the
naive T-cell pools and unexpected heterogeneity within them.

METHODS Go to:

Busulfan Chimeras. WT CD45.1 mice aged 8-10 wk were treated with 20 mg/kg busulfan (Busilvex; Pierre
Faber), delivered as two i.p. injections of 10 mg/kg diluted in PBS, allowing 24 h for recovery between injections.
This dose is sufficient to deplete bone marrow (BM) cells without immediately impacting the peripheral T-cell
compartment (23, 24). Donor BM was harvested from the femurs of age- and sex-matched congenic WT CD45.2
mice and depleted of T cells by immunomagnetic selection, using biotinylated antibodies to CD3 and TCR-f chain
(eBioscience) and streptavidin-coupled Dynabeads (Life Technologies). Busulfan-treated mice received 10-20
million T cell-depleted BM cells by i.v. injection, 24 h after the final injection of busulfan. Chimeras were killed for
analysis at the indicated times after BM transplantation (BMT), and cells from the thymus, spleen, and lymph nodes
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(LNs) were analyzed by flow cytometry. Mice were bred and maintained in a conventional pathogen-free colony at
the National Institute for Medical Research (London, UK), and all experiments were performed in accordance with
UK Home Office regulations.

Flow Cytometry. The following monoclonal antibodies and cell dyes were used: CD45.1 FITC, CD45.2
AlexaFluor700, CD45.2 FITC, TCR-p APC, CD4 PerCP-eFluor710, CD44 APC-eFluor780, CD25 PE-Cy7, L-
selectin eFluor450, and CD122 biotin (all eBioscience); CD8 Pacific orange, streptavidin PE-Texas Red, and
LIVE/DEAD blue (all Invitrogen); CD45.1 brilliant violet 650, CD4 brilliant violet 711, and TCR-B PerCP-Cy5.5
(all BioLegend); and Ki67 PE (BD Pharmingen). Where Ki67 staining was performed, cells were first fixed and
permeabilized using the eBioscience FoxP3/transcription factor staining buffer set. Samples were acquired on LSR-
II, LSRFortessa, or Fortessa x20 flow cytometers (BD), and analysis was performed with FlowJo software
(Treestar). Gating strategies for defining naive cells are detailed in S/ Appendix SI.

Models. Model fitting was performed by first solving the equations analytically where possible or using
Mathematica and/or R where required to solve them numerically. For all model fitting, the functions of interest are
the time courses of total cell counts and the percentage of naive cells that are donor derived. Both are described
with a single model, and therefore the maximization of the log-likelihood is equivalent to minimization of the
product of the residual sum of squares for each time course (S/ Appendix S2). Minimizations were performed both
in Mathematica using its simulated annealing and random search algorithms, and in R using the GenSA package. In

the latter, the maximum number of iterations was set at 103, and initial temperatures varying over five orders of
magnitude yielded no discernible differences in parameter estimates. To normalize residuals, total cell counts and
donor fractions were log- and arcsin-squareroot transformed, respectively. Confidence intervals were computed
using bootstrapping of residuals with 500 replicates.

RESULTS Go to:

The Fate of Newly Generated T Cells Can Be Monitored Over Time in Busulfan-Treated
Chimeras.
To investigate the cellular mechanisms responsible for maintaining the peripheral naive T-cell compartment, we

analyzed busulfan bone marrow chimeric mice as described previously (25). Busulfan is a conditioning drug (26)
that specifically depletes hematopoetic stem cells (HSCs), but leaves mature hematopoetic cells unaffected. Groups
of 8- to 10-wk-old young adult CD45.1 C57B16/J host mice were treated with two injections of busulfan, and their
HSC compartments were reconstituted via injection with 107 T cell-depleted BM cells from CD45.2 C57BI6/J
donors (Fig. 14). Donor cells could be detected in the CD4 CD8 double negative (DN) compartment by as early as
2 wk (Fig. 1B). By 4 wk, donor cells were present in the CD4 CD8 double positive (DP) and single positive (SP)
compartments, but had not reached equilibrium, as representation was still greatest at the more immature DN stages
of development. However, by 6 wk, reconstitution was complete and reached a maximum at all stages of thymic
development, and donor cells could be observed in the peripheral lymphoid compartments (Eig. 1B, Lower).
Because host-derived thymocytes were still present after equilibration of the thymic compartments, it was evident
that busulfan conditioning allowed partial replacement of host HSCs. Using the donor fraction in DP1 as a proxy,
we observed variable levels of replacement of host HSCs (median, 89%; range, 5-98.3%; Fig. 1C). Therefore, after
reconstitution, the thymi of mice produced new T cells that were a mixture of donor and host, typically 90% donor.
Analyzing the thymi of hosts after transplantation revealed that thymus size was unaffected during the course of
reconstitution (Fig. 1D). The fraction of mature naive T cells that were donor derived was normalized to the level
of chimerism in the relevant single-positive compartment of each animal, revealing the time course of replacement
of the peripheral compartments up to a year after thymic reconstitution (Fig. 1E).

Experimental setup and the kinetics of host-donor chimerism. (4) Host
CD45.1 mice aged 8—10 wk were treated with two doses of 10 mg/kg
busulfan, followed by injection of 10° T cell-depleted bone marrow cells
from CD45.2 donors. The numbers of ...

Quantifying Lymphocyte Dynamics. The compositions of the naive T-cell compartments are determined by
the interplay of export from the thymus, production through division in the periphery, and loss either through cell
death or onward differentiation. To quantify naive T-cell population dynamics and infer the rules of replacement of
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older (host) T cells by newer (donor) cells, we used a mathematical modeling approach. Considering the periphery
as the lymph nodes and spleen combined, we began with a simple and widely used model of the production and
loss of a kinetically homogeneous peripheral T-cell population [N (t) that is exported from the thymus

dN (t)

=2 =00+ (p— )N (1) = 0() ~ AN (1), g

where 6 (t) is an age-dependent rate of thymic output, p is a constant per-cell rate of peripheral cell division, and ¢
is a constant per-cell rate of loss from the naive compartment through death or differentiation. Without specific
measurements of death and division, this model does not distinguish these two parameters separately but instead
contains the net per-capita rate of loss of cells from the periphery: A = § — p.

There are some inconsistencies in terminology in the literature relating to lymphocyte dynamics. “Turnover” is
generally understood to refer to the flux of individuals through a population that is at or close to equilibrium. Total
naive cell numbers N change slowly, and so in this simple model the total rate of loss of cells, 01V, is
approximately balanced by input from the thymus and division in the periphery. We therefore define turnover to be
the loss rate d. In a population in quasi-equilibrium sustained by peripheral division and not supplemented by cells
from the thymus, the rate of turnover is then also the division rate p, and the net loss rate in the periphery is zero.

If we assume host and donor-derived cells in treated mice are kinetically identical, with this model the changes in
naive T-cell numbers of host (/V},) and donor (/N) origin is described by

d.nN;,
—— =6 (t) — AN, 2
n h (t) hy 2]
dNy
—— =60, (t) — \N,. 3
% 1 () d [3]

Quantifying naive T-cell population dynamics with this model requires knowledge of the production terms 6}, (t)
and 04 (t) Single-positive (SP4 and SP8) cells are in the last stage of development in the thymus and therefore
their numbers are proxies for the rates of export of naive CD4 and CD8 T cells, respectively. Thymic output
declines with age in healthy mice (27, 28), and in keeping with this, we found that total (host + donor) numbers of
SP4 and SPS8 thymocytes declined exponentially and in tandem from the time of treatment at 8 wk of age (Fig. 24),
with half-lives of 159 d (95% CI: 128, 208) for SP4 and 143 (95% CI: 111, 199) days for SP8 (Fig. 2B). These
figures are consistent with an estimate of 169 d (95% CI: 157, 182) derived from the decline in total thymocyte
numbers with age (28).

Kinetics of thymic involution and total peripheral naive CD4 and CD8
numbers after transplant. (4) The decline in total SP4 (red) and SP8 (blue)
cells with age, with fitted exponential decay from 42 d after treatment and
envelopes spanned by the 95% CI ...

With this information, we use the following equations to describe the dynamics of peripheral naive CD4 or CD8 T
cells from time £y = 42 days after treatment, when the chimerism between DP1 and the SP stages at all stages of
thymic development had equilibrated at a (mouse-specific) level y, defined as the proportion of cells at SP4 or SP8
that were donor-derived (Fig. 1E):

d Ny,
dt
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dNy vt
— =B "' — AN,. 5
1 XYe d [5]

Here, v is the estimated rate of thymic involution, © is the total (host + donor) rate of export of naive CD4 or CD8
T cells from the thymus at time £, and within each population (CD4 or CD8), host- and donor-derived cells were
assumed to have identical net loss rates A. The following quantity is independent of chimerism:

. . Donor fraction in peripher
Normalized donor fraction fy (t) = e

Donor fraction in SP 6
. Ny / (Nd +Np, ) [ ]
o X

[1—fa(0)](A—v)

fd 1— ,
A—v+ (X)) —1)©/N (0)

which is obtained by solving Eqgs. 4 and 5 directly. Here time ¢ is measured from £ onward, and N (0) is the total
naive T-cell compartment size at . We expect the ratio © / NN to be only weakly dependent on chimerism and
body mass, because thymic output might reasonably be assumed to scale positively with the sizes of peripheral
naive populations across different animals. We therefore assumed the normalized donor fraction depends only on
parameters common across mice. The levels of chimerism at the DP1 and SP stages in each mouse were closely
comparable, and using the donor fraction at DP1 stage to define y yielded very similar time courses (S Appendix
S3) and for the models considered in this study yielded indistinguishable qualities of fit, parameter estimates, and
degrees of relative support.

Eq. 7 tells us that the rate at which donor cells replace host cells is determined by the difference between the net
loss rate and the rate of involution of the thymus, |)\ — I/‘ . This result means, perhaps unintuitively, that the rate of
replacement of host cells by donor cells in the periphery is not necessarily the rate of turnover, J.

Replacement Kinetics Cannot Be Explained by Models of Homogeneous Turnover. This model
predicts that if the net loss rate of cells in the periphery is faster than the rate of thymic involution (A > 1), the
normalized donor fraction approaches 1 over time (Eq. 7); that is, the donor/host chimerism in the naive T-cell
compartments eventually reflects that in the BM and thymus. However, the donor cells consistently failed to
populate the periphery to this extent, reaching a normalized donor fraction of fz = 0.87 (95% CI: 0.84, 0.91) and
0.83 (95% CI: 0.80, 0.85) for naive CD4 and CDS8 T cells, respectively (Fig. 1E). These values were calculated
using data from ¢ > 100 d.

The model represented by Eq. 7 can explain this observation only if thymic output declines faster than the net loss
rate; that is, if the supply of donor-derived cells dwindles too rapidly for peripheral chimerism to catch up with that
in the BM. However, without fitting this model to the data, we can see with a simple argument that it is insufficient
to describe the incomplete replacement. Peripheral naive CD4 and CD8 numbers declined continuously with age (
Fig. 2(C), requiring that the net rate of loss 1 be positive. [A > 0 is a weak constraint; for cell counts to be declining
at all times, A must be greater than © (t) / N (t) at all times.] In this model, peripheral chimerism approaches
stability at the rate |)\ — I/|, which is at most the rate of thymic involution v (i.e., when the net rate of loss, 4, is
zero), but chimerism stabilizes by roughly 200 d (Fig. 1£), by which time thymic output has fallen only by 60%
(half-life of involution ~ 150 d; Fig. 2B). Thus, the homogeneous model with a constant, positive net loss rate 1
(Egs. 4 and 5) is not able to explain the saturation kinetics.

To explore this issue further, we generalized the homogeneous model to allow for completely arbitrary time-
dependent rates of division and/or death. This generalization also effectively includes models in which rates of
division or loss are functions of cell numbers and not time. We found, surprisingly, that even using this extremely

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687551/ 5/11


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687551/figure/fig01/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687551/figure/fig02/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687551/figure/fig01/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687551/figure/fig02/

1/10/2017 PNAS Plus: Temporal fate mapping reveals age-linked heterogeneity in naive T lymphocytes in mice

broad class of models, the constraints imposed by the measured rate of thymic involution and continuously
declining peripheral cell counts mean that is impossible to reproduce the kinetics of both the normalized donor
fraction and total counts (S/ Appendix S4).

Heterogeneity in Naive T-Cell Population Dynamics. The inadequacy of models assuming homogeneous
naive populations strongly suggested that host and donor-derived cells do not obey the same kinetics after treatment
and/or that heterogeneity exists within one or both subpopulations. To explore these possibilities, we first made a
simple extension to the model in which the underrepresentation of donor naive cells in the periphery derives from a
host-derived population that is resistant to displacement. We began with the simplest assumption that these
incumbent cells were established before treatment and were not supplemented from the thymus after treatment. The
dynamics of displaceable and incumbent host-derived cells and donor-derived cells (assumed to be all displaceable)
are then described by

dN,
dth = (1—x)Oe ™ — AN, (Displaceable, host — derived), (8]
dr, :
= = —A1I,  (Incumbent, host — derived), [9]
de —ut . .
- = x©e " — AN, (Displaceable, Donor — derived), [10]

where we allow the net rates of loss of incumbent and displaceable cells, A7 and A, respectively, to differ. As in the
homogeneous case, the normalized donor fraction f,; can be calculated in this model (SI Appendix S5) and again
represents a quantity that is conserved across animals, allowing us to describe the kinetics of reconstitution of mice
with different levels of chimerism with a single prediction curve. This model was fitted simultaneously to the total
peripheral naive counts and the normalized donor fraction (see S/ Appendix S5 for details) and was able to describe
the year-long time courses of both quantities for both naive CD4 and CD8 T cells (Fig. 3, Left and Center). There
was only marginal statistical support for nonzero loss rates of incumbents [CD4, A1 = 0.0052 (0, 0.059), AAIC =
2.13;CDS, A1 ~ 0 (0, 0.070), AAIC = 2.18] and therefore we inferred that both CD4 and CD8 incumbents
were stable, self-renewing populations (A7 = 0). This numerical stability, combined with declining total naive T-
cell numbers, means that incumbent cells are predicted to occupy increasing fractions of the naive CD4 and CD8
compartments with age (Fig. 3, Right). The phenotypes of the host-derived naive CD4 and CDS cells were
confirmed as CD62LMCD 122! naive (SI Appendix S6).

- T - Fits of the heterogeneous (incumbent/displaceable) model to kinetics of host
— and donor-derived naive T cells. We fitted the model simultaneously to the
normalized donor fraction (Eq. 7; Leff) and the total numbers (Egs. 8-10;
Center) for naive ...

Models of Kinetics Varying with Cell Age, or with Continual Production of Incumbents, Provide
Inferior Descriptions of the Data.
The analysis above assumes heterogeneity in cells’ behavior with respect to the age of the host at the time of thymic

export. An alternative possibility is that cells’ net rate of loss decreases with their time spent in the periphery. This
mechanism is a generalization of one used recently to explain crashes in naive CD4 T-cell diversity in the elderly, in
which slowly accumulated mutations lead to a sudden increase in fitness and subsequent outgrowth of clonal
populations (29). Allowing division or death rates to vary with cell age reflects an alternative, continuous form of
kinetic heterogeneity, and is also able to describe the data (S Appendix S7). Despite having only three fitted
parameters compared with five in the incumbent model, the best age-dependent model gives poorer fits and has
significantly less statistical support than the incumbent-displaceable model (CD4, AAIC = 12.9; CDS,
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AAIC = 6.2). Further, an extension of the incumbent-displaceable model to allow posttreatment generation of
both host and donor incumbents also yielded poorer descriptions of the data (AAIC = 4.4 for both CD4 and
CD8 cells). Collectively these results support the conclusion that the persistent naive population is established early
in life.
Estimating the Mean Interdivision and Lifetimes of Naive CD4 and CD8 T Cells. Applying the model
to the data yielded the net loss rate A, but the quantities of biological interest are the rates of division (p) and
turnover (0). These rates can be obtained with additional information regarding the proportion of cells in division at
any time. A marker of division status is the nuclear antigen Ki67, which is expressed on entry into the cell cycle, is
readily detectable in lymphocytes, and persists for roughly 4 d after mitosis (18, 30). In S/ Appendix S8 we show
that the division and death rates can be extracted from 4 using the proportion of cells that are Ki67h1, the mean
duration of Ki67 expression, and the relative susceptibility to death of Ki67™ over Ki67"° cells, 0. We measured the
proportions of cells that were Ki67" at 36 and 53 wk after treatment (Fig. 4) and found no significant differences
between host and donor populations within or between these time points. Within the framework of our model, this
observation implies that there were no detectable differences in the Ki67" fraction between displaceable and
incumbent cells. However, this observation does not necessarily imply that the two populations have the same
division rates, because unlike incumbents, the displaceable population has an additional source of Ki67" cells from

the thymus (S Appendix S§).

Tage of naive T Cells 1667+

Fercen .
{solilcircles - donoe, pen circles - host] F]g 4

Ki67 expression at 36 and 53 wk after BMT (pooled) in
host/donor/4/8/LN/spleen.

S m e o> m B

The kinetic parameters estimated using the incumbent-displaceable model are shown in Table 1 and Fig. 54.
Conservative confidence intervals on p and J were generated using a hybrid bootstrap/Monte Carlo approach;
empirical distributions of parameter estimates were obtained by repeatedly fitting to datasets obtained by resampling
residuals and simultaneously sampling values of (i) the thymic involution rate v from bootstrap replicates, (if) the
proportion of cells that were Ki67" from the data (pooled host+donor for displaceables, host only for incumbents),
and (iii) the Ki67 lifetime from a lognormal distribution with mean 4 d (18, 30) and SD of 0.5 d. We assume that
20% of thymically produced cells are Ki67M, but our estimates of turnover rates are insensitive to this value (81

Appendix S8). The relative susceptibility to death of recently divided and resting naive cells, o, is unknown, and so
we quote parameter estimates for & = 0.1, 1, and 10. Because the proportion of cells in division at any point is
low, o has little effect on the estimates of mean residence times, but has a stronger influence on the mean
interdivision time. Our pool-wide estimates of the mean CD4 and CD8 residence times are comparable to those
obtained by labeling methods (Fig. 5B), but these population averages mask considerable differences in the rates of
turnover of displaceable and incumbent cells (Fig. 54).

= Table 1.
= : Kinetic parameter estimates, using the incumbent-displaceable model (Egs.
8-10)
Fig. 5.

Estimates of parameters governing naive CD4 and CD8 T-cell population
dynamics. (4) Mean residence times (lifetimes) and interdivision times of
naive T cells; only the estimates of interdivision times are sensitive to the
(unknown) relative susceptibility ...

Finally, combining the estimates of the total rate of thymic export at 6 wk after BMT (©), the rate of thymic
involution (v), and the division rates of incumbent and displaceable cells (p and pr), we estimated the total daily
production of cells, partitioned into cells exported from the thymus and those generated by division of mature naive
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cells (Fig. 6), confirming that the bulk of naive T-cell production in mice up to 1 y in age derives from thymic
export, most markedly for CD4 T cells.

Fig. 6.

Estimates of rates of production of cells per day through thymic export and
peripheral division. Shaded regions represent uncertainty envelopes
generated by 95% Cls on fitted parameters. Uncertainty in the second and
third columns stems largely from uncertainty ...

DISCUSSION Go to:

Although it is recognized that memory T-cell populations are heterogeneous in phenotype, turnover, and
recirculation patterns, to date, the canonical view of the mature naive T-cell pool is a homogeneous population of
undifferentiated precursors that all follow the same rules of replacement. However, this assumption has not
previously been examined in detail. Here, by following the development and integration of new T cells into replete
peripheral CD4 and CD8 compartments, we find evidence of heterogeneity within both. Subsets of older cells
appear to have a competitive advantage, being self-renewing and resistant to replacement by cells exported from the
thymus later in life. We explored two explanatory models of this process: one in which an advantage is conferred to
a subpopulation of naive cells generated during gestation or in the first few weeks of life and the other, a continuum
age-structured model in which naive T cells gradually increase their competitive fitness the longer they survive in
the periphery. Although both are able to explain the data, the former had clearly stronger statistical support.

Previous estimates of the average lifespans of naive T cells in mice are ~20—60 d for CD4 (31) and between 70 and
120 d for CD8 T cells (31, 32) (Fig. 5B). Our population-averaged estimates are consistent with these for CD4 and
lie slightly lower than those for CD8, but we argue these numbers conceal quite considerable heterogeneity.
Displaceable CD4 and CDS cells turn over relatively rapidly with mean residence times of 34 and 55 d,
respectively. In contrast, incumbent CD4 and CDS cells, which we assume are not renewed from the thymus, have
estimated lifetimes of roughly 170 and 210 d, respectively, and in 1-y-old mice may comprise roughly 15% of the
naive T-cell population (Fig. 3). Incumbents appear to be stable in numbers, and so their lifetimes are also their
mean interdivision times. Inferring division rates from Ki67 expression requires knowledge of the relative
susceptibility to death of resting and recently divided cells, which is unknown. If this quantity is 1 (that is, survival
and division are not linked), the mean interdivision times of displaceable CD4 and CD8 cells are both roughly 1y (
Table 1). If recently divided cells are 10 times as susceptible to death as resting cells, the estimated interdivision
time for both populations falls by 50%. Therefore, as observed elsewhere (18), some kinetic parameters are very
sensitive to model assumptions.

Recent thymic emigrants are a phenotypically distinct transitional subpopulation of peripheral naive T cells, and it
has been proposed that they preferentially displace mature cells (22, 33). A question is then whether the
conclusions we draw based on total peripheral naive numbers derive from differences in the dynamics of recent
thymic emigrant (RTE) and mature naive cells. However, this scenario corresponds to a model of homeostatic
fitness varying with respect to cell age (time after export from the thymus), and we found much stronger evidence
for heterogeneity in kinetics and resistance to displacement with respect to the age of the host at which naive cells
were generated. Further, the conclusion that RTEs are preferentially incorporated into the mature pool under replete
conditions suggests their intrinsic lifespan (distinct from their rate of maturation) is longer than that of mature cells,
a difference that is opposite to that required for the age-structured model to explain the data. We also explored a
model in which the efficiency with which RTEs are incorporated into the mature pool declines with the age of the
individual. Such a process would effectively increase the rate of thymic involution and therefore may overcome the
constraint that ruled out homogeneous models. This model lacked statistical support compared with the incumbent
model, with AAIC = 8.5 and 8.8 for CD4 and CDS8, respectively (fits shown in SI Appendix S9). Further,
declining rates of RTE maturation are at odds with the observation that the frequency of RTE scales with the size of
the thymus (34). It has also been inferred from a small dataset that RTE in humans may themselves be kinetically
heterogeneous and include a subset of exceptionally long-lived veteran cells that retain immature status (35). This
possibility corresponds to an extension to the model in which throughout life a constant fraction of both donor and
host RTE are destined to become incumbents. These fractions were estimated to be close to zero, meaning this
addition to the model had no impact on the quality of fit but incurred the cost of additional parameters (A AIC =
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4.4 for both CD4 and CDS cells). In summary, then, by parsimony, we find the strongest support for a model in
which only a subset of host cells generated pretreatment had incumbent properties.

The busulfan system allows us to examine the impact of the timing of export from thymus on T cells’ competitive
fitness within the peripheral pool. In addition it further validates the use of random birth-death models that have
been used to describe lymphocyte turnover. Various studies measuring lymphocyte kinetics using in vivo labeling
yield results that are consistent with slow homeostatic division as a simple Poisson process, with each cell having
an equal probability of dividing within any given time interval, irrespective of its division history, both in the many
labeling studies performed in lymphoreplete mice or humans and in lymphopenic mice (36). The kinetic of death or
loss of cells is difficult to quantify in these systems, however. Were mature T cells to have a narrow distribution of
lifespans/residencies, as described (for example) for red blood cells (37), or for thymocytes that progress through
development in a roughly linear, conveyor-belt fashion (38), we would have anticipated a linear replacement of
existing cells with new thymic emigrants. Instead, replacement occurred with a kinetic consistent with both cell
lifetimes and interdivision times being exponentially distributed (Fig. 3).

We assume that the persisting incumbent population is fully formed in young adult mice by 6—8 wk of age and is
not supplemented from the thymus thereafter. This conclusion draws on parsimony; formally we can’t exclude the
possibility that these cells continue to be exported from the thymus later in life. However, there are possible
biological explanations for such a conclusion. The peripheral lymphoid compartment of neonates is T lymphopenic,
and new T cells emerging into this environment undergo lymphopenia-induced proliferation (LIP) (39). We
speculate that incumbent naive T cells are generated early in ontogeny and that either the lymphopenic environment
or the process of LIP increases their average fitness relative to cells that develop subsequently into a full
compartment, perhaps through epigenetic modifications or by magnifying natural variation in homeostatic fitness
through multiple rounds of proliferation. Consistent with this view, naive T cells from lymphopenic hosts have
greater competitive fitness than those from replete hosts (40). The impact of this long-lived population on immune
function is not known, but our analysis suggests that its representation increases with host age (Fig. 3). If a similar
population exists in adult humans, in whom thymic output plays a lesser role in generating and maintaining the
peripheral naive compartment (3 1), our experiments predict that incumbents would progressively form an even
larger fraction of the human naive compartment than they do than in (relatively short-lived) mice. Given that
estimates of the lifespans of human naive CD4 and CDS8 T cells range from roughly 5 mo to 10 y (see ref. 18 for a
summary), it is entirely possible that substantial fractions of naive T cells generated in the first years of life can
persist into midlife. Future studies will address the functional capacity of these cells. However, given that
incumbents are maintained throughout life without further input from thymus, the diversity of their TCR repertoire
can only decrease with time. Whether and at what stage this compromises immunity remain to be determined.
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