
Uniqueness for a Seismic Inverse Source Problem Modeling

a Subsonic Rupture

Maarten V. de Hoop ∗, Lauri Oksanen †and Justin Tittelfitz ‡

Abstract

We consider an inverse source problem for an inhomogeneous wave equation with
discrete-in-time sources, modeling a seismic rupture. The inverse source problem,
with an arbitrary source term on the right-hand side of the wave equation, is not
uniquely solvable. Here we formulate conditions on the source term that allow
us to show uniqueness and that provide a reasonable model for the application of
interest. We assume that the source term is supported on a finite set of times and
that the support in space moves with subsonic velocity. Moreover, we assume that
the spatial part of the source is singular on a hypersurface, an application being a
seismic rupture along a fault plane. Given data collected over time on a detection
surface that encloses the spatial projection of the support of the source, we show
how to recover the times and locations of sources microlocally, and then reconstruct
the smooth part of the source assuming that it is the same at each source location.

1 Introduction

Let c ∈ C∞(Rn) be strictly positive and consider the wave equation{
∂2
t u− c(x)2∆u = F (t, x) in R× Rn,
u(0, ·) = ∂tu(0, ·) = 0 in Rn.

(1)

We will study the inverse source problem to determine F given the data

ΛF := u|(0,T )×∂Ω,

where Ω ⊂ Rn is an open and bounded set with smooth boundary. It is well-known
that such a problem does not have a unique solution in general. For example, if we set
F = ∂2

t v − c2∆v where v ∈ C∞0 (Ω× (0, T )), then ΛF = 0.
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To overcome non-uniqueness we will assume that the source is of the form

F (t, x) :=

J∑
j=1

δ(t− tj)fj(x), (2)

where J ∈ N and 0 < t1 < t2 < . . . < tJ . Furthermore, we assume that fj is in the space
of compactly supported distributions E ′(Ω), and has the form

〈f, φ〉E ′×C∞(Ω) =

∫
Sj

hj(x)φ(x)dx, φ ∈ C∞(Ω), (3)

where Sj = supp (fj) is a smooth oriented manifold with boundary and hj ∈ C∞(Sj).
We assume that either dim(Sj) = n or dim(Sj) = n − 1, and furthermore, that the
extension of hj by zero across ∂Sj is smooth in the case dim(Sj) = n− 1, and that the
extension is not smooth at any x ∈ ∂Sj in the case dim(Sj) = n.

We will reconstruct F in two steps. First we use a microlocal argument to recover the
onset times tj and supports Sj . Then we impose an assumption that the distributions fj
are translations of a single distribution f and that the translation speed is slower than
the speed of wave propagation. The second step is the recovery of f . In the microlocal
argument we impose two generic assumptions that rule out certain cases that we consider
degenerate, see (ML1) and (ML2) below.

Apart from the generic conditions (ML1) and (ML2), the above assumptions are
motivated by models of seismic ruptures. The case dim(Sj) = n − 1 is of particular
interest, since rupture sources typically occur along a fault plane. It is also realistic to
model a rupture using discrete-in-time sources, as the sources radiate strongly when the
velocity of the rupture changes, which again happens typically during a short slip [1]. In
the theory introduced by Madariaga [2], the radiation from a fault plane is controlled by
the slip velocity in its ruptured portion. The slip velocity (and stress) has the property
that it is strongly concentrated behind the rupture front. Barriers and asperities along
the fault plane produce large variations of the intensities of these concentrations and are
the source of high frequency waves. We refer to [3] for further discussion.

Ruptures propagate typically with a speed that is slower than the speed of wave
propagation, and the assumption that the distributions fj have the same spatial charac-
teristics, although strong, is motivated by imaging results, see for example [4], where the
radiated energies of the Denali and Kokoxili earthquakes are reconstructed using a back
projection technique. Finally, let us point out that the assumption that ∂Ω encloses the
supports Sj can be seen as an idealization of the fact that the ruptures happen inside
the Earth and that the data is collected on its surface.

We mention the widely applied procedure for estimating the source by Kikuchi &
Kanamori [5], which is based on maximizing the time correlations between observed
and modeled wave solutions. Here, the ruptures are essentially represented by a sum of
point sources parametrized by their locations and onset times. The sum of point sources
models a sequence of subevents in the rupture. A refined, iterative procedure introduces
in every iteration a new subevent [6]. In our approach, we begin also by identifying the
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locations and onset times of subevents, however, in our case the subevents have spatial
structure modeled by fj . The problem that we consider is called “kinematic inversion”
in the seismic imaging literature.

1.1 Previous literature

Our proof uses the the unique continuation principle by Tataru [7], see [8] and [9] for
earlier results, and [10] and [11] for extensions to other time-dependent systems like
elasticity. In addition, we will draw upon ideas from the theory of inverse initial source
problems, in particular, from [12] where a time-reversal approach for an inverse initial
source problem with a non-constant wave speed was introduced.

We emphasize that whereas the inverse source problem, with source on the right-hand
side of the wave equation, is not uniquely solvable in general, the inverse initial source
problem, source being the initial condition in this case, is always uniquely solvable. Let
us also point out that even if it is assumed that there is only a single event, that is, if
J = 1 in (2), the problem that we consider does not coincide with the inverse initial
source problem. Indeed, in order to apply techniques from the theory of inverse initial
source problems, the onset time t1 needs to be recovered first.

To illustrate this further, let us assume for the moment that J = 1, dim(S1) = n−1,
and that the speed of wave propagation c is constant. Then the source is singular
along the hypersurface S1 and the two normal directions of S1 generate two singular
wave fronts that propagate in opposite directions along straight lines. In this case, our
method finds the onset time t1 by propagating the wave fronts backwards from the
measurement surface and by determining when they overlap. Once t1 is known, any
method that solves the inverse initial source problem, for example [12], can be used to
recover the spatial structure f1. In the general case J > 1, information on the different
events is mixed together in the measurement data, and this complicates the recovery of
both the onset times and the spatial structure.

The motivation to study the inverse initial source problem in [12] was the medical
imaging modality known as thermoacoustic tomography but similar ideas have been used
in many other applications, including geophysical ones. For time-reversal methods used
in rupture detection, see [13], [14], [15], [16], [17], [18], [19], and in microseismicity see
[20], [21], [22]. Regarding the theory of inverse initial source problems, in addition to [12],
see [23], [24] for the problem with partial data, see [25] for a speed with discontinuities,
see [26] for numerical discussion, see [27], [28] and [29] for the problem in elastic and
attenuating media respectively, and finally, one may find the surveys [30], [31], [32] of
interest. There has also been recent work on the problem of jointly recovering the speed
and source [33], and the problem of recovery with an approximate speed [34].

Let us now turn to inverse source problems where the source is on the right-hand side
of the wave equation. We mention the result by two of the authors [35], where a source
of the form (2) is considered, but it is required that the sources are well-separated from
one another in space and time, in contrast to the sub-sonic proximity required in the
current work. These assumptions are appropriate for modelling microseismicity (instead
of ruptures, as in this paper). Most other results for inverse source problems consider a
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right-hand side of the form a(t)f(x) or a(t, x)f(x) where a is a known function, see [36]
and [37] respectively, and [38] for a recent result. Similar problems have been stated and
explored for the elastic wave equation, see [39] and [40].

2 Statement of the results

Before stating our results we need to introduce some notation. We begin by recalling
the definition of the wave front set, see e.g. [41] for further details.

Definition 2.1. Let X ⊂ Rn be open. The wavefront set WF (w) of a distribution
w ∈ D′(X) is a subset of the cotangent bundle T ∗X indicating the locations and the
directions of the singularities of w. If (x0, ξ0) ∈ T ∗X \ 0, then (x0, ξ0) is not in the
wavefront set of w if there exists ψ ∈ C∞0 (X) with ψ(x0) 6= 0, and a conic neighborhood
V of ξ0 such that ∣∣∣ψ̂w(ξ)

∣∣∣ ≤ CN (1 + |ξ|)−N , ξ ∈ V, N ∈ N.

Here ψ̂w indicates the Fourier transform of ψw.

If w satisfies the wave equation

∂2
tw − c(x)2∆w = 0, in R× Rn,

then WF (w) is invariant under the bicharacteristic flow corresponding to the wave op-
erator, see e.g. [42]. The principal symbol p ∈ C∞(T ∗R1+n) of the wave operator is
p(t, x, τ, ξ) = −τ2 + c2(x)|ξ|2, and the forward bicharacteristic flow Φ acts on the level
set p−1(0) ⊂ T ∗R1+n as follows

Φ : R× p−1(0)→ p−1(0), Φ(s; t, x, τ, ξ) = (t+ sτ, γ(s), τ, γ̇(s)),

where γ(s) = γ(s;x, ξ) is the geodesic on (Rn, c−2dx2) satisfying the initial conditions
γ(0) = x and γ̇(0) = ξ. Here γ̇ is the direction of γ as a cotangent vector, that is, in
coordinates γ̇ = c−2

∑n
j=1(∂sγ

j)dxj .
Let us now consider the solution u of (1) where F is of the form (2). For a set A,

we denote by χA the indicator function of A, that is, χA(x) = 1 if x ∈ A and χA(x) = 0
otherwise. By Duhamel’s principle, it holds that u =

∑J
j=1 uj where uj = χ{t≥tj}wj and

wj is the solution of{
∂2
tw − c2∆w = 0, in R× Ω,

w(tj , x) = 0; ∂tw(tj , x) = fj(x) in Ω.
(4)

Note that WF (uj) is not invariant under the bicharacteristic flow Φ but WF (wj) is.
We will next formulate three assumptions in terms of microlocal properties of the

distributions fj . We define the n− 1 dimensional manifold without boundary

Σj =

{
∂Sj , dim(Sj) = n,

Sint
j , dim(Sj) = n− 1,

j = 1, . . . , J, (5)
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and assume that

WF (fj) = N∗Σj , j = 1, 2, . . . , J. (CN)

Here N∗Σj is the conormal bundle of Σj . In the case dim(Sj) = n − 1, we let ν to be
one of the two unit conormal vector fields of Σj , and in the case dim(Sj) = n, we let ν
to be the outward unit outward conormal vector field of Σj . Then N∗Σj is the union of
the following two sets

N±j = {(x, aν) ∈ T ∗Rn; x ∈ Σj , ±a > 0}.

Note that if dim(Sj) = n − 1 then (CN) amounts to assuming that the extension of hj
in (3) by zero across ∂Sj is smooth. This follows from [41, Th. 8.1.5] together with a
change of coordinates. In the case dim(Sj) = n, (CN) means that the extension of hj as
above is not smooth at any x ∈ ∂Sj .

For each (x, ξ) ∈ N±j there is unique τ > 0 such that (tj , x, τ, ξ) ∈ p−1(0), and we
write Pj(x, ξ) = (tj , x, τ, ξ). Our second assumption is that the images of WF (fj) are
disjoint under the bicharacteristic flow Φ in the sense that

Φ(R× Pj(N+
j ∪N−j )) ∩ Φ(R× Pk(N+

k ∪N−k )) = ∅, j 6= k. (ML1)

This is equivalent to saying that there are no two points lying on different sets Σj

such that the corresponding normal directions are tangent to the same geodesic on
(Rn, c−2dx2). Furthermore, in terms of the solutions wj of the problems (4), the condition
(ML1) can be written briefly as

WF (wj) ∩WF (wk) = ∅, j 6= k. (ML1’)

As WF (wj) is invariant under the bicharacteristic flow, it holds that WF (wj(t, ·)) is
the union of the two sets

WF± (wj(t, ·)) = {(γ(s), γ̇(s)); s = t− tj , γ = γ(·;x, ξ), (x, ξ) ∈ N±j }.

We call WF+ (wj(t, ·)) and WF− (wj(t, ·)) the outward and inward wavefronts, respec-
tively. Note that the outward and inward wavefronts pair at the source time tj in the
following sense

WF+ (wj(tj , ·)) = N+
j = Ñ−j = W̃F− (wj(tj , ·)) , (6)

where tilde indicates reflection in the dual variable, that is,

Ã = {(x,−ξ) : (x, ξ) ∈ A} , A ⊂ T ∗Ω. (7)

Now we state our third microlocal assumption, that (6) is the only kind of pairing. That
is, we assume that the manifolds Σj are connected and

if WFσ (wj(t, ·)) = W̃Fσ
′
(wk(t, ·)) then j = k, t = tj and σ 6= σ′. (ML2)
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Figure 1: Two wavefronts forming a spurious pairing.

We denote by S∗Ω the unit cosphere bundle

S∗Ω = {(x, ξ) ∈ T ∗Ω; c2(x)|ξ|2 = 1}.

We will prove the following theorem in Section 3.

Theorem 2.2. Suppose that Ω is non-trapping and strictly convex in the sense that
for all (x, ξ) ∈ S∗Ω the geodesic γ = γ(·;x, ξ) satisfies the following: there is unique
s ∈ (0, T − tJ) such that γ(s) ∈ ∂Ω, and, furthermore, γ̇(s) /∈ T ∗γ(s)∂Ω and γ(t) ∈ Rn \Ω

for all t > s. Suppose that the manifolds Σj are smooth and connected, and that (CN),
(ML1) and (ML2) are satisfied. Then the times tj and supports Sj, j = 1, 2, . . . , J , can
be recovered from the boundary data ΛF .

Let us give an example that does not satisfy (ML2). Let n = 2, and let S1 and S2

be two identical discs, so that the initial singular supports (that is, the projections of
WF (fj), j = 1, 2, to the base space Ω) are circles. Suppose that the wave speed c is
constant. Then at 1

2(t2− t1) the outgoing wavefront from the first source and the inward
wavefront from the second source pair to form a larger circle, see Figure 1. Note however
that if the spatial location of either of these discs is perturbed slightly, this pairing no
longer occurs. In fact, we show in Section 7 that both the conditions (ML1) and (ML2)
are generic.

We will next consider the case that the distributions fj are obtained from a single
distribution f via translations, and show how to recover f . We will study two translation
models: a Riemannian parallel transport and the Euclidean translation. To simplify the
notation, we assume that Ω contains the origin of Rn.

Let us consider the Riemannian case first. We assume that the Riemannian manifold
(Ω, c−2dx2) is simple, that is, Ω is simply connected, ∂Ω is strictly convex in the sense
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of the second fundamental form, and there are no conjugate points on Ω. We denote by

Tx : T0Ω→ TxΩ, x ∈ Ω,

the parallel transport along the radial unit speed geodesic from the origin to x. That
is, for each x we choose ξ ∈ S∗0Ω and r ≥ 0 such that x = γ(r; 0, ξ), and for each vector
v ∈ T0Ω we solve the equation

DsV = 0, V (0) = v,

where Ds is the covariant derivative of the metric c−2dx2 along the curve γ(s; 0, ξ).
Finally we set Txv = V (r).

We assume that for each j = 1, 2, . . . , J , there is xj ∈ Ω such that

fj = f ◦ T −1
xj ◦ exp−1

xj , (R1)

where exp is the exponential map of (Ω, c−2dx2), f ∈ E ′(T0Ω), and the precomposition
means the pullback of f by T −1

xj ◦ exp−1
xj , see e.g. [41, Th. 6.1.2] for the definition. Note

that if c = 1 identically, then in coordinates, Tx is the identity and

f(v) = fj ◦ expxj (v) = fj(xj + v).

Thus fj is obtained from f by an Euclidean translation.
We assume that

d(xj+1, xj) < tj+1 − tj , j = 1, 2, . . . , J − 1, (SS)

where d(·, ·) is the Riemannian distance function of (Rn, c−2dx2). Note that d(x, y) gives
the travel time distance between points x, y ∈ Rn. We think of (SS) as a condition
limiting the speed at which the sources can propagate, effectively requiring this motion
to be “sub-sonic”, i.e. slower than the speed of wave propagation. Let us emphasize that
the translation model (R1) considers only spatial variables and says nothing about the
speed of the translation in spacetime whereas (SS) requires that the speed is sub-sonic.

We will prove the following theorem in Section 4.3.

Theorem 2.3. Suppose that the Riemannian manifold (Ω, c−2dx2) is simple and that
(SS) and (R1) are satisfied. Suppose furthermore that the times tj and the points xj,
j = 1, 2, . . . , J , are known. If

T > t1 + diam (Ω) , (8)

where diam (Ω) = supx,y∈Ω d(x, y), then F can be recovered from the boundary data ΛF .

In order to combine Theorems 2.2 and 2.3 we need to be able to determine the points
xj given the supports Sj . We will consider this problem in Section 5.

Let us now describe the Euclidean translation model. We assume that for each
j = 1, 2, . . . , J , there is xj ∈ Ω such that

fj(x) = f(x− xj), (E1)
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where f ∈ E ′(Ω). Furthermore we assume that in addition to the sub-sonic condition
(SS) the following separation condition holds:

t2 − t1 >
1− c−/c+

1− ρ R (E2)

where c+ = supx∈Ω c(x), c− = infx∈Ω c(x) and

ρ = max
j=1,...,J−1

d(xj+1, xj)

tj+1 − tj
, R = max

j=1,...,J
min{r > 0; Sj ⊂ Br(xj)}. (9)

Here Br(x) is the closed geodesic ball {y ∈ Rn; d(y, x) ≤ r}. Note that (SS) implies
that ρ ∈ [0, 1). We will prove the following theorem in Section 4.3.

Theorem 2.4. Suppose that the Riemannian manifold (Ω, c−2dx2) is simple and that
(SS), (E1) and (E2) are satisfied. Suppose furthermore that the times tj and the points
xj, j = 1, 2, . . . , J , are known. If T satisfies (8), then F can be recovered from the
boundary data ΛF .

If c is constant, then (R1) and (E1) are equivalent and (E2) is trivially satisfied.
Without loss of generality we may assume that f is defined so that the center of mass
of its support is at the origin. Then xj is the center of mass of Sj and therefore Sj
determines xj , see Section 5 for more details. We will give further examples in Section
6.

Let us formulate one more result where, instead of a translation assumption as above,
we assume the following strong separation condition: for some points xj , suppose

(1− ρ)(tj − tj−1) > 2R, (TS)

where ρ and R are as in (9). This condition not only limits the speed at which the source
can move, but it also implies a minimum gap in time between sources (of size roughly
2R). This condition is stronger than (E2), but has the advantage of allowing completely
distinct fj and arbitrary geometry (Ω, c−2dx2). Further, the condition depends not only
on the Sj ’s and tj ’s, but the particular choice of xj as well; the Sj ’s do not enforce a
natural choice for xj as in the other scenarios, and if they are chosen poorly then the
resulting condition (TS) may not be optimal (relative to fixed collections of Sj and tj).
We prove the following theorem in Section 4.3.

Theorem 2.5. Suppose that the conditions (SS) and (TS) are satisfied, and that the
times tj and the supports Sj, j = 1, . . . , J , are known. If T > tJ + diam (Ω) then F can
be recovered from the boundary data ΛF .

3 Microlocal identification

In this section we prove Theorem 2.2. We define the exit time

σΩ(x, ξ) = max
{
t ≥ 0 : γ(t;x, ξ) ∈ Ω

}
, (x, ξ) ∈ T ∗Rn \ 0, x ∈ Ω.
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Let t ∈ R and consider the map

Ψt : T ∗Ω \ 0→ T ∗(R× ∂Ω), Ψt(x, ξ) = (t+ στ, γ(σ), τ, γ̇′(σ)),

where τ = c(x)|ξ|, σ = σΩ(x, ξ), γ = γ(·;x, ξ) and γ̇′ is the projection of γ̇ on T ∗∂Ω.
Note that Ψt is the composition of the restriction on {t}×Ω, the bicharacteristic flow Φ,
and the restriction on T ∗(R× ∂Ω). It is well-known that Ψt is a local diffeomorphism if
Ω is non-trapping and strictly convex. For the convenience of the reader we give a proof
here.

Lemma 3.1. Suppose that Ω is non-trapping and strictly convex as formulated in The-
orem 2.2. Let t ∈ R. Then Ψt is an injective local diffeomorphism.

Proof. We begin by showing that σΩ is smooth on S∗Ω. Let (x0, ξ
0) ∈ T ∗Ω \ 0. By the

non-trapping assumption s0 := σΩ(x0, ξ
0) is well-defined and by the convexity assump-

tion γ̇(s0;x0, ξ
0) is not tangential to ∂Ω. It follows from the implicit function theorem

that the equation γ(s;x, ξ) ∈ ∂Ω has a unique solution s near s0 that depends smoothly
on (x, ξ) near (x0, ξ

0). By the convexity assumption this solution coincides with σΩ near
(x0, ξ

0). This shows that σΩ is smooth and therefore Ψt is smooth.
We will use boundary normal coordinates y := (y1, y′) ∈ (−ε, ε)× ∂Ω where ε > 0 is

small. In these coordinates the metric tensor g := c−2dx2 has the form

g(y) =

(
1 0
0 h(y)

)
.

We denote by |η|g the norm of a cotangent vector η = (η1, η
′) with respect to the metric

g, and have |η|2g = η2
1 + |η′|2h.

We show next that Ψt is an immersion. Let (x0, ξ
0) ∈ T ∗Ω\0 and define s0 as above.

We denote φ(x, ξ) = γ(s0;x, ξ) and ψ(x, ξ) = γ̇(s0;x, ξ). Let p ∈ T(x0,ξ0)T
∗Ω satisfy

dΨtp = 0. The third component of this equation says that dτp = 0 and therefore the
first component implies that dσp = 0. Now the second and fourth components imply
dφp = 0 and dψ′p = 0. Here we are using the notation ψ = (ψ1, ψ

′) ∈ R × Rn−1. As
the geodesic flow is a diffeomorphism on T ∗Rn, dφp = 0 and dψp = 0 imply that p = 0.
Thus it is enough to show that dψ1p = 0. As the geodesic flow preserves the norm, we
have

0 = dτp = d|ψ|2gp = 2ψ1dψ1p+ d|ψ′|2hp.
As γ̇(s0;x0, ξ

0) is not tangential to ∂Ω, we have ψ1 6= 0. Moreover,

d|ψ′|2hp = 2ψjh
jkdψkp+ ψjdh

jkdφpψk = 0,

whence dψ1p = 0 and we have shown that Ψt is an immersion. As T ∗Ω\0 and T ∗(R×∂Ω)
have the same dimension, Ψt is a local diffeomorphism.

It remains to show that Ψt is injective. Suppose that (r, y, τ, η′) ∈ T ∗(R × ∂Ω) and
that there is (x, ξ) ∈ T ∗Ω\0 such that Ψt(x, ξ) = (r, y, τ, η′). Then |η′|g ≤ τ and there is
a unique a ≥ 0 such that |η′ + aν|g = τ where ν is the outward unit normal covector of
∂Ω. By the convexity assumption γ does not return to Ω after σ, whence γ̇(σ) = η′+aν.
We have σ = (r − t)/τ and (x, ξ) = (β(σ), β̇(σ)) where β = γ(·; y,−η′ − aν).
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Proof of Theorem 2.2. We recall that

ΛF = u|(0,T )×∂Ω =

J∑
j=1

χ{t≥tj}wj |(0,T )×∂Ω.

The map fj 7→ wj |(tj ,T )×∂Ω is a sum of two elliptic Fourier integral operators with
canonical relations given by the graphs of Ψtj and the composition of the reflection (7)
and Ψtj respectively, see e.g. [12, Prop. 3]. As WF (fj) is symmetric with respect to
the reflection (7), we consider only Ψtj . The assumption that unit speed geodesics exit
Ω before time T − tJ together with (ML1) implies that

WF (ΛF ) =

J⋃
j=1

Ψtj (WF (fj)).

By Lemma 3.1, the map Ψt is continuous and therefore it maps the connected com-
ponents WF± (wj(t, ·)) of WF (wj(t, ·)) to connected components of Ψt(WF (wj)) assum-
ing that WF (wj(t, ·)) ⊂ T ∗Ω. Let us consider two connected components Γ1 and Γ2 of
WF (ΛF ) and let t ∈ (t0, t1) where t0 ∈ R is chosen to be the smallest possible time so
that Ψ−1

t (Γ1 ∪ Γ2) is well-defined (that is, the image stays in T ∗Ω) and

t1 = min{r ∈ R; there are (y, η′) ∈ T ∗∂Ω and τ ∈ R such that

(r, y, τ, η′) ∈ Γ1 ∪ Γ2}.

Then Ψ−1
t (Γp) = WFσp

(
wjp(t, ·)

)
, p = 1, 2, for some σp = ± and jp = 1, . . . , J . By

(ML2) the sets Ψ−1
t (Γp), p = 1, 2, pair under the reflection (7) if and only if j1 = j2,

t = tj1 and they coincide with the sets N±j1 .
The assumption (ML1) implies that there is a bijection between the connected com-

ponents of WF (ΛF ) and the sets N±j , j = 1, . . . , J . Thus we can determine the times

tj and the sets N±j , j = 1, . . . , J .

We get the following partial data result by inspecting the proof of Theorem 2.2:

Remark 3.2. Consider the case where we know only a restriction of ΛF , that is, we
know u|(0,T )×ω where ω ⊂ ∂Ω is open. Then we can still recover the source times tj ,
j = 1, 2, . . . , J , assuming a stronger form of (ML2). That is, the connected components
Γk, k = 1, 2, . . . ,K, of WF

(
u|(0,T )×ω

)
are assumed to form pairs exactly at times tj in

the sense that if

Ψ−1
t (Γk1) ∩ ˜Ψ−1

t (Γk2) 6= ∅ (10)

then t = tj for some j and that for all j there are k1 and k2 such that (10) holds with
t = tj .

10



The condition in Remark 3.2 means firstly that ω needs to be large enough so that
we catch parts of all outward and inward wavefronts and that the outward and inward
parts coming from the same source do not miss each other completely when propagated
back using Ψ−1

t , and secondly, that there are no spurious pairings.
Note that if Ψ−1

t (Γk1) ⊂ WF+ (wj(t, ·)) and Ψ−1
t (Γk2) ⊂ WF− (wj(t, ·)) then the

projection of the intersection (10) on the base space Ω is a subset of Σj assuming that
there are no spurious pairings. We can reconstruct this subset, but typically we can
not reconstruct the whole set Σj from the partial data by using the above microlocal
argument. We will further discuss the partial data case in Remark 4.7 below.

Remark 3.3. In a procedure introduced by Ishii et al. [43] and quite commonly applied
in seismology, the wavefield observed in (an open subset of) the boundary is reverse-
time continued and then restricted to a subset of a chosen hypersurface, Σ ⊂ Ω say,
yielding

∑J
j=1wj |Σ without determining the ti explicitly. As a matter of fact, this is done

microlocally and referred to as backprojection with stacking (over the point receivers in
the mentioned subset of the boundary). In the case dimSi = n, we can extend this
procedure using our model as follows: If Si ∩ Σ 6= ∅ and there are no spurious pairings,
then the paired components of the wavefront set of

∑J
j=1wj |Σ,t=ti correspond to the two

components of the conormal bundle of Si ∩Σ in T ∗Σ, and this pairing can be recovered
by our method.

4 Reconstruction of the smooth part of the source

4.1 Distances to geodesic balls

We begin by establishing two lemmas. Here (M, g) is a smooth compact Riemannian
manifold with boundary. We define

σp(ξ) = sup{t > 0; expp(tξ) ∈M int}, p ∈M int, ξ ∈ SpM,

where SM denotes the unit sphere bundle of M , and Br(p) = {x ∈ M ; d(x, p) ≤ r},
r > 0, where d denotes the distance function of M .

Lemma 4.1. Suppose that ∂M is strictly convex in the sense of the second fundamental
form. Let p ∈ M int and let R > 0. Suppose that S := BR(p) ⊂ M int, and that ∂S is
smooth. Let y ∈ ∂M and suppose that x ∈ S satisfies

d(y, x) = d(y, S). (11)

Then there is ξ ∈ SpM such that

x = expp(Rξ) and y = expp(σp(ξ)ξ). (12)

Proof. Clearly x ∈ ∂S and there is ξ ∈ SpM such that x = expp(Rξ). Let γ : [0, `]→M
be a shortest path from x to y. Then γ is C1 and we may assume without loss of
generality that it has unit speed [44].
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Figure 2: The geodesics γ and γ̃ coincide.

A shortcut argument shows that γ̇(0) ⊥ ∂S. Thus γ(t) coincides with the path
γ̃(t) = expp((t+R)ξ) until it hits the boundary ∂M at t = σp(ξ)−R (see Figure 2). As
∂M is strictly convex γ̇(σp(ξ)−R) is not tangential to the boundary ∂M . This implies
that σp(ξ)−R = `, since otherwise γ can not be C1.

In general there might exist x ∈ ∂S such that

d(y, x) > d(y, S), for all y ∈ ∂M.

However, in the case of a simple manifold this can not happen.

Lemma 4.2. Suppose that (M, g) is simple. Let p ∈ M int and let R > 0. Suppose that
S := BR(p) ⊂ M int. Let ξ ∈ SpM and define x ∈ ∂S and y ∈ ∂M by (12). Then (11)
holds.

Proof. Note that ∂BR(p) is smooth. As S is compact, there is a point z ∈ ∂S such that
d(y, z) = d(y, S). Lemma 4.1 implies that there is ζ ∈ SpM such that

z = expp(Rζ) and y = expp(σp(ζ)ζ).

The map expp is injective by the simplicity, whence ζ = ξ. In particular, z = x and (11)
holds.

4.2 Unique continuation

The following time-sharp semi-global unique continuation result follows from the seminal
local result by Tataru [7].

Theorem 4.3. Let h ∈ C(∂Ω) and define

Γ(h) = {(t, y) ∈ R× ∂Ω; |t| < h(y)}, T = max
y∈∂Ω

h(y).

12



Let s ∈ R, and suppose that w ∈ Hs((−T, T )× Rn) satisfies ∂2
tw − c2∆w = 0 and

w|Γ(h) = 0, ∂νw|Γ(h) = 0. (13)

Then w = 0 and ∂tw = 0 on {0} × Ω(h)int, where

Ω(h) = {x ∈ Ω; there is y ∈ ∂Ω such that d(x, y) ≤ h(y)}.

Proof. See [45, Th. 3.16] for a proof in the case that s = 1 and that Γ(h) is replaced
by a cylinder the form (−R,R) × Γ, where R > 0 and Γ ⊂ ∂Ω is open. We will reduce
the general case to this case by approximating Γ(h) with a union of cylinders and by
approximating w with a smooth function. Note that all the four traces of w in the
formulation of the theorem are well-defined in the sense of [41, Corollary 8.2.7] since
WF (w) is a subset of the characteristic set p−1(0).

We begin by considering the case s = 1. Let x ∈ Ω(h)int. Then there is y ∈ ∂Ω
such that d(x, y) < h(y), and whence there exist a neighbourhood Γ ⊂ ∂Ω of y and
R > d(x, y) such that (−R,R)× Γ ⊂ Γ(h). Now [45, Th. 3.16] implies that w vanishes
in a neighborhood of (0, x). As x ∈ Ω(h)int was arbitrary, we see that w = 0 and ∂tw = 0
on {0} × Ω(h)int.

Let us now show that the case of arbitrary s ∈ R can be reduced to the case s = 1.
Let ε > 0, ψ ∈ C∞0 (−ε, ε), let us extend w by zero to R×Rn while denoting the extension
still by w, and let w̃ be the convolution in the time variable w̃ = ψ ∗w. As the operator
∂2
t − c2∆ commutes with the map w 7→ ψ ∗ w, the distribution w̃ satisfies

∂2
t w̃ − c2∆w̃ = 0 in Iε × Rn, (14)

where Iε = (−T + 2ε, T − 2ε). Moreover, (13) implies that w̃ = 0 and ∂νw̃ = 0 on
Γ(h − 2ε). We will show below that w̃ ∈ C∞(Iε × Rn), and therefore we may apply
Theorem 4.3 with s = 1 to obtain w̃ = 0 and ∂tw̃ = 0 on {0} × Ω(h − 2ε). Letting
ψ → δ in the sense of distributions and ε→ 0, we conclude that w = 0 and ∂tw = 0 on
{0} × Ω(h)int. It remains to show that w̃ is smooth. Clearly w̃ ∈ C∞(Iε;H

s(Rn)) and
(14) implies that ∆w̃(t) ∈ Hs(Rn), t ∈ R. Thus w̃(t) ∈ Hs+2(Rn), t ∈ R, and we see
that w̃ is smooth by using an induction.

4.3 Recovery under the translation and separation conditions

To simplify the notation, we will assume below without loss of generality that t1 = 0
and x1 = 0.

Lemma 4.4. Let xj ∈ Ω, j = 1, 2, . . . , J satisfy (SS) and define ρ ∈ [0, 1) by (9). Let
r > 0. Then for any j, k = 1, . . . , J and any y ∈ Br(xj) there exists x ∈ Br(xk) so that

d(x, y) ≤ ρ |tj − tk| .

Proof. Suppose first that j < k and note that (SS) implies that

d(xk, xj) ≤ d(xk, xk−1) + d(xk−1, xk−2) + · · ·+ d(xj+1, xj) = ρ(tk − tj).
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Combining this with an analogous computation in the case j > k yields

d(xk, xj) ≤ ρ|tk − tj |, j, k = 1, . . . , J. (15)

Let x be the closest point in Br(xk) to y. Then the geodesic from y to x hits ∂Br(xk)
normally by [46, Corollary 26], whence d(y, x) = d(y, xk)− d(xk, x) = d(y, xk)−R. We
conclude by observing that d(y, xk) ≤ d(y, xj) + d(xj , xk) ≤ R+ ρ |tj − tk|.

The recovery of the smooth part is based on finite speed of propagation and unique
continuation as described in the following two lemmas respectively. Briefly, first we will
show that there is a gap in time where only signals from the first source have arrived;
this is illustrated in Figure 3. Then we use unique continuation to determine f1 in part
of S1.

Lemma 4.5. Let xj ∈ Ω, j = 1, 2, . . . , J satisfy (SS) and define ρ ∈ [0, 1) and R > 0 by
(9). Consider the solutions wj, j = 1, 2, . . . , J , of (4). If (t, y) ∈ (0, T )× ∂Ω satisfies

t ≤ d(y,BR(x1)) + (1− ρ)t2,

then χ{t≥tj}∂
k
νwj(t, y) = 0 for all k and for all j ≥ 2.

Proof. We write Bj = BR(xj), j = 1, . . . , J . Since d(y, Sj) ≥ d(y,Bj), by finite speed of
propagation, it will be sufficient to show

d(y,Bj) ≥ t− tj , t ≥ tj , j ≥ 2. (16)

Let z be the closest point to y in Bj . By Lemma 4.4, there is x ∈ B1 such that
d(z, x) ≤ ρtj . Thus

t− d(y,B1) ≤ (1− ρ)t2 ≤ (1− ρ)tj ≤ tj − d(z, x).

Hence
t− tj ≤ d(y,B1)− d(z, x) ≤ d(y, x)− d(z, x) ≤ d(y, z) = d(y,Bj).

Lemma 4.6. Let xj ∈ Ω, j = 1, 2, . . . , J satisfy (SS) and define ρ ∈ [0, 1) and R > 0 by
(9). We write

ε0 = (1− ρ)t2, B1 = BR(x1), (17)

and let ε ∈ (0, ε0]. If T > maxy∈∂Ω d(y,B1) + ε then f1 is uniquely determined by ΛF
in the interior of the set

Ωε = {x ∈ Ω; there is y ∈ ∂Ω such that d(x, y) ≤ d(y,B1) + ε} .
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t

S1

ε

Figure 3: The gray area is affected only by the first source. Here, t1 = 0.

Proof. By solving the exterior problem
∂2
t u− c(x)2∆u = 0 in (0, T )× Rn \ Ω,

u|x∈∂Ω = ΛF in (0, T )× ∂Ω,

u(0, ·) = ∂tu(0, ·) = 0 in Rn \ Ω,

we recover ∂νu|(0,T )×∂Ω. We define H0 = (u, ∂νu) and

H(t, y) =

{
H0(t, y), t ∈ (0, T )

−H0(−t, y), t ∈ (−T, 0),
y ∈ ∂Ω.

We set h(y) = d(y,B1)+ε, y ∈ ∂Ω, and define Γ(h) as in Theorem 4.3. Lemma 4.5 implies
that H = (w1, ∂νw1) on Γ(h)∩(0, T )×∂Ω, and we have assumed that maxy∈∂Ω h(y) < T .
As t1 = 0 and w1 satisfies (4), w1 is odd as a function of time. Therefore H = (w1, ∂νw1)
on Γ(h), and Theorem 4.3 implies that f1 = ∂tw1(0, ·) is uniquely determined by H on
the set Ωint

ε .

Proof of Theorem 2.5. We use the notations from Lemma 4.6. Recall that we have
assumed ε0 > 2R. We take ε = diam (B1) ≤ 2R and observe that T satisfies the
inequality in Lemma 4.6 by the assumption T > tJ + diam (Ω). Lemma 4.6 implies
that f1 is determined on Ωε and our choice of ε implies that BR(x1) ⊂ Ωε. Thus f1 is
determined.
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We solve the wave equation (1) with F replaced by F0 = δ(t − t1)f1. Then we can
determine ΛF1 = ΛF −ΛF0 where F1 =

∑J
j=2 δ(t− tj)fj . We iterate the above steps to

recover f2, . . . , fJ .

Remark 4.7. Let us consider again the partial data case in Remark 3.2. By that
remark, we can recover the source times tj , j = 1, 2, . . . , J . Analogously to Lemma 4.6
and Theorem 2.5, it is possible to apply unique continuation to recover a part of f1 and
even the whole F if a strong enough separation condition is satisfied.

Lemma 4.8. Suppose that (Ω, c−2dx2) is simple and define Ωε as in Lemma 4.6. Then

Ωε = (BR(0)\BR−ε(0)) ∩ Ω.

Proof. Clearly Ω∩BR−ε(0)int ⊂ Ω \Ωε even if simplicity is not assumed. Let z ∈ Ω \Ωε

and choose ξ ∈ S0Ω and s ≥ 0 such that z = exp0(sξ). It is sufficient to show that
z ∈ BR−ε(0)int. We define x and y by (12), i.e. x = exp0(Rξ) and y = exp0(τ0(ξ)ξ).

First, suppose that s ≥ R. As z is in between x and y on the geodesic t 7→ exp0(tξ),
and as all the geodesics are distance minimizing on a simple manifold, we have

d(z, y) ≤ d(x, z) + d(z, y) = d(x, y) = d(y,B1),

which contradicts z ∈ Ω \ Ωε, and therefore we have shown that s < R.
Next, as x is in between z and y on the geodesic t 7→ expp(tξ), we have

d(z, y) = d(z, x) + d(x, y) = d(z, x) + d(y,B1).

Moreover, z ∈ Ω \ Ωε implies that

d(y,B1) < d(z, y)− ε.

Hence ε < d(z, x) = R− s, and therefore s < R− ε. Thus z ∈ BR−ε(0)int.

Proof of Theorem 2.3. We choose ε = min(ε0, R), and observe that T satisfies the in-
equality in Lemma 4.6 by (8). We recall the assumption that Sj ⊂ Ω. By Lemmas 4.6
and 4.8, f1 is uniquely determined on the set BR(0)\BR−ε(0). By (R1) the function
fj is obtained from f1 via the translation expxj ◦Txj ◦ exp−1

0 . This translation maps
BR(0)\BR−ε(0) to

Aj := BR(xj)\BR−ε(xj),
and therefore we can determine fj |Aj .

We solve the wave equation (1) with F replaced by F0(t, x) =
∑J

j=1 δ(t− tj)fj |Aj (x).

Then we can determine ΛF − ΛF0 = ΛF1, where F1(t, x) =
∑J

j=1 δ(t − tj)f̃j(x) and f̃j
is the restriction of fj on BR−ε(xj). If ε = R then we have recovered F , otherwise we
repeat the above construction starting from ΛF1. This iteration allows us to decrease
the radius R by (1− ρ)t2 in each step (see Figure 4), and therefore it will terminate in
a finite number of steps.
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Figure 4: At each step of the iteration, the radius where f1 is unknown decreases by
(1− ρ)t2.

Proof of Theorem 2.4. As before, f1 is uniquely determined on the set BR(0)\BR−ε(0).
We may assume without loss of generality that ε < R. Let us denote by BE

r (x) the
Euclidean ball of radius r centered at x. As the geodesic ball BR−ε(0) is contained in
the Euclidean ball BE

c+(R−ε)(0), we know f1 outside BE
c+(R−ε)(0). The translation as-

sumption (E1) implies that fj is known outside BE
c+(R−ε)(xj). This last ball is contained

in the geodesic ball BR(1)(xj) where R(1) = c+

c− (R − ε). As above we may remove the
contribution of the known part of the functions fj from the data ΛF and iterate the
construction.

We terminate the iteration if R(n) ≤ ε. Otherwise we set R(n+1) = c+

c− (R(n) − ε) and
reduce to the case Sj ⊂ BR(n+1)(xj). We have

R(n) −R(n+1) =
c+

c−

(
ε−

(
1− c−

c+

)
R(n)

)
.

The assumption (E2) implies that(
1− c−

c+

)
R < (1− ρ)t2 = ε.

Thus the sequence R(n) is decreasing and

R(n) −R(n+1) ≥ c+

c−

(
ε−

(
1− c−

c+

)
R

)
.
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Thus each step of the iteration decreases the radius by an amount that is bounded from
below by a strictly positive constant, and therefore the iteration terminates in a finite
number of steps.

5 Determining the translations from the supports Sj

Let us begin by considering the Euclidean translation condition (E1). Suppose that we
know the sets Sj , j = 1, 2, . . . , J . We define the center of mass

x̃j =
1

|Σj |

∫
Σj

xdx.

where |Σj | is the Euclidean n− 1 dimensional volume of Σj , dx is the Euclidean surface
measure on Σj and Σj is defined by (5). By (E1) the function fj is obtained from f1

via the translation T Ej (x) = x+ xj − x1. Also the centers of mass are mapped via this

translation, whence x̃j− x̃1 = xj−x1. Thus we can determine the translations T Ej given
the supports Sj for all j = 1, 2, . . . , J . When applying Theorem 2.4 to recover the source
F , we may assume that xj = x̃j since this amounts to replacing f with the translation
f̃(x) = f(x+ x̃) where x̃ is the center of mass of supp (f).

We turn now to the Riemannian translation condition (R1), and consider only the
case dim(Sj) = n. By (R1) the function fj is obtained from f1 via the translation
T Rj (x) = expxj ◦Txj ◦T −1

x1 ◦exp−1
x1 . We will give next a condition that guarantees that the

translations T Rj can be determined by using centers of mass analgously to the Euclidean
case.

Let κ and K be a lower bound for the injectivity radius and an upper bound for the
sectional curvature of the Riemannian manifold (Ω, c−2dx2), respectively, and define

rΩ = min{κ, π

2
√
K
}.

Suppose that S ⊂ Rn is measurable set that is contained in a geodesic ball B(p, r) ⊂ Ω
where p ∈ Ω and r < rΩ. Then the function %S(x) = maxy∈S d(x, y) has a unique
minimizer xS (see [47] Theorem 2.1).

Let us write S = supp (f) and denote by |ξ|g the norm of ξ ∈ T0Ω with respect to
the Riemannian metric g = c−2dx2. We suppose that there is R ∈ (0, rΩ) such that

(i) |ξ|g ≤ R for all ξ ∈ S, and (R2)

(ii) there is ξ0 ∈ S0Ω such that Rξ0 ∈ S and −Rξ0 ∈ S.

The condition (R2) implies that there are two points on the boundary of S that are
symmetric with respect to the origin.

Lemma 5.1. Suppose that (R1) and (R2) hold. Then the minimizer xSj is xj.
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Proof. For any x ∈ Ω, the parallel translation Tx is a linear isometry, and if ξ ∈ TxΩ
satisfies |ξ|g ≤ κ and expx(ξ) ∈ Ω then d(expx(ξ), x) = |ξ|g. Let j = 1, . . . , J and define
x± = expxj (±RTxjξ0). Then for all x ∈ Ω

d(x+, x) + d(x−, x) ≥ d(x+, x−) = 2R,

and %Sj (x) ≥ R. On the other hand, Sj ⊂ B(xj , R). Hence xj is a minimizer of %Sj .

6 Examples

The condition (ML1) can be seen as consisting of two requirements: first, that no out-
ward propagating wavefront intersects any later wavefront, and second, that no inward
propagating wavefront intersects any later wavefront. We show below that the first part
of (ML1) is implied by (SS) under some further conditions.

Example 1. If Σj = ∂Br(xj) (e.g. Sj = Br(xj) or Sj = ∂Br(xj)), j = 1, 2, . . . , J , for
some r > 0, then (SS) implies the first part of (ML1).

Proof. To see this, note that the outgoing wavefront due to Σj at time t is ∂Br+t−tj (xj).

Choose any k > j and x ∈ Br(xk), by (SS), there is some y ∈ Br(xj) so that d(x, y) <
ρ |tj − tk|, and further, d(y, xj) < r so that d(x, xj) < r + ρ(tk − tj) showing

x ∈ Br+ρ(tk−tj)(xj) ⊂ Br+tk−tj (xj)

so that the wavefront has already completely passed Sk at t = tk.

Example 2. Suppose that the Riemannian manifold (Ω, c−2dx2) is simple. If Sj are
arbitrary, and (TS) is satisfied, then the first part of (ML1) is satisfied.

Proof. To demonstrate this claim, suppose that an outgoing ray from x ∈ Σj intersects
Sk at some point y at time t (if we can show intersections do not happen on the base
manifold, then they do not happen in the cotangent bundle either). If t < tk then there
is nothing to verify, so assume t ≥ tk. Then on one hand, d(y, x) = t− tj ≥ tk − tj , and
on the other

d(y, x) ≤ d(y, xk) + d(xk, xj) + d(xj , x) ≤ d(xk, xj) + 2R ≤ ρ(tk − tj) + 2R.

Then, by (TS),
2R < (1− ρ)(tj+1 − tj) ≤ (1− ρ)(tk − tj)

so that finally,
d(y, x) ≤ ρ(tk − tj) + 2R < tk − tj

which is a contradiction.
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Figure 5: A non-convex set.

Further, (TS) implies (SS), so that if the second part of (ML1), (ML2) and (TS)
are assumed, then all the hypotheses for Theorems 2.2 and 2.5 are satisfied, yielding a
complete reconstruction.

For the next example, let rc be the maximum r such that Br(x) is convex for every
x ∈ Ω. This is known as the convexity radius of Ω, and it is positive for any compact
manifold (see [48], Proposition 95).

Example 3. If dim(Sj) = n and Sj are convex, and tJ − t1 < rc, then (SS) implies the
first part of (ML1).

To see that convexity is essential in Example 3, consider Figure 5. Here, for a
non-convex “horseshoe” shaped S1, a ray leaving the “bend” of the shoe intersects the
“prong” at a time later than t2. The proof of Example 3 is based on the following lemma.

Lemma 6.1. Let C be a convex set in a Riemannian manifold (M, g), let A = ∂C, let
y ∈M\C, and let σ be a geodesic from y to some point in x ∈ A such that σ is normal
to A at x and such that d(x, y) < rc. Then σ minimizes the distance from y to C.

Proof. For contradiction, assume there is some point z ∈ A so that d(y, z) < d(y, x).
Consider the totally geodesic hyperplane S tangent to A at x. Because C is strictly

convex, it lies entirely on one side of S; call this side H1, and the other H2 and note
that both are convex. Let B = Bd(y,x)(y); as a radial geodesic, σ is normal to ∂B at x,
and thus S is tangent to B as well. Because d(y, x) < rc, B is convex and must also lie
entirely on one side of S.
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For some s1 > d(y, x), σ(s1) ∈ H1, and for some s2 < d(y, x), σ(s2) ∈ H2. Thus we
must have y ∈ H2, otherwise σ is a geodesic that exits and then re-enters H1, violating
convexity. Thus B and C lie on opposite sides of S.

Therefore, since Bd(y,z)(y) ⊂ B, z cannot be in A, and we have a contradiction.

Proof of Example 3. Now, suppose that an outgoing ray from x ∈ ∂Sj intersects Sk at
some point y at time t (as before, it is sufficient to show intersections do not happen
in the base manifold). If t < tk then there is nothing to verify, so assume t ≥ tk.
Then d(y, x) = t − tj < rc so d(y, x) = d(y, Sj) by Lemma 6.1. On the other hand,
t− tj ≥ tk − tj > ρ(tk − tj) which violates (SS).

7 Genericity of the microlocal conditions

In this section we show that both the assumptions (ML1) and (ML2) are generic.
To simplify the notation, we write Σ = Σ1. Let B ⊂ Cκ(Σ) be a small neighbourhood

of the origin so that the function

x(y, h) = (h(y), y), y ∈ Σ, h ∈ B,
takes values in the domain of the boundary normal coordinates of Σ. We will fix the
smoothness index κ ∈ N below. Consider perturbations of Σ parametrized by h ∈ B,

Σ(h) = {x(y, h) ∈ R× Σ; y ∈ Σ}.
Note that the conormal vectors of Σ(h) at y are spanned by ν̃(y, h) = (1,−dh(y)). We
define the unit conormal vector field ν(y, h) = ν̃(y, h)/|ν̃(y, h)|g where | · |g denotes the
norm with respect to the metric g = c−2dx2. Furthermore, we define

F : Σ× B → S∗Rn, F (y, h) = (x(y, h), ν(y, h)).

Here S∗Rn is the unit cosphere bundle with respect to the metric g. We choose the
smoothness index κ so that F is Cn-smooth.

Lemma 7.1. For any y ∈ Σ, the differential of F is surjective from T(y,0)(Σ × B) to
T(y,ν(y,0))S

∗Rn.

Proof. We use local coordinates on Σ near y. Consider a path γ : [0, 1] → S∗Rn such
that γ(0) = (y, ν(y, 0)), and write in the boundary normal coordinates

γ(s) = (r(s), y(s), a(s), η(s)).

We define
hs(z) = χ(z)(r(s)− a−1(s)η(s)(z − y(s))),

where χ is a smooth cutoff function satisfying χ = 1 near y. Note that r(0) = 0, η(0) = 0
and a(0) = 1. Thus hs ∈ B for small s. Moreover, ν̃(y(s), hs) = a−1(s)(a(s), η(s)) and

|ν̃(y(s), hs)|g = a−1(s).

Hence F (y(s), hs) = γ(s) and γ̇(0) is in the range of dF at (y, 0).
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We recall that a set is said to be meagre if it can be expressed as the union of
countably many nowhere dense sets.

Lemma 7.2. Consider the solutions wj, j = 1, . . . , J , of the equations (4). Then there
is a meagre set N ⊂ B such that

WF (w1) ∩WF (wj) = ∅, j = 2, 3, . . . , J.

when Σ1 is replaced by any Σ(h) with h ∈ B \N .

Proof. Let j = 2, . . . , J , and define the projection

Z = {(x, ξ) ∈ S∗Rn; (tk, x, 1, ξ) ∈WF (wj)},

Note that Z is n− 1 dimensional, since it can be written as

{(γ(s), γ̇(s)); γ = γ(·;x,±ν(x)), s = tk − tj , x ∈ Σj},

where ±ν(x) are the two unit conormal vectors of Σj at x. We use the notation Fh(y) =
F (y, h) for fixed h ∈ B, and observe that Fh(Σ) coincides with one of the two components
of N(Σ(h)) ∩ S∗Rn. We will consider only this component, since the proof is analogous
for the other component and the union of two meagre sets is also meagre. For the same
reason it is enough to consider one j at a time.

As WF (wj) and WF (wk) are conical and invariant under the bicharacteristic flow,
it is enough to show that Fh(Σ) ∩ Z = ∅ for h in the complement of a meagre set, or in
other words, in a residual set. The previous lemma implies that F is transversal to Z,
and the parametric transversality theorem, see e.g. [49, Th. 3.6.19], implies that for h
in a residual set, the map Fh is transversal to Z. By transversality, if there are z ∈ Z
and y ∈ Σ such that Fh(y) = z, then dFh(TyΣ) + TzZ = TzS

∗Rn. But this is impossible
since dim(TyΣ) = n− 1 = dim(TzZ) and 2(n− 1) < 2n− 1 = dim(TzS

∗Rn).

By applying Lemma 7.2 with w1 replaced by another wk, k = 2, . . . , J , we see that
(ML1) holds generically. Let us now turn to (ML2). To simplify the notation suppose
that (ML2) fails due to

WF+ (w1(t0, ·)) = W̃F− (w2(t0, ·))

for some t0 ∈ R. Then N+
1 ∩ S∗Rn = Gt0(Z) where Z = N−2 ∩ S∗Rn and

Gt0 = Γt1−t0 ◦ Γ̃t0−t2 .

Here Γs is the geodesic flow, that is,

Γs(x, ξ) = (γ(s;x, ξ), γ̇(s;x, ξ)), (x, ξ) ∈ S∗Rn,

and ∼ is the reflection in the dual variable as in (7). We have Γs(x,−ξ) = Γ−s(x, ξ) and
therefore

Gt = Γ−(t1−t) ◦ Γt−t2 = Γ2t−t2−t1 = Γ2(t−t0) ◦Gt0 .
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In the boundary normal coordinates of Σ = Σ1, it holds for all t near t0 that

Gt(Z) = {F (y, ht); y ∈ Σ}

where ht(y) = 2(t− t0), y ∈ Σ. Thus for all non-constant functions h ∈ B,

WF+ (w1(t, ·)) 6= W̃F− (w2(t, ·))

when Σ is replaced by Σ(h) and t is near t0. Clearly the constant functions are nowhere
dense in B. By repeating the above argument for other possible spurious parings, we see
that (ML2) holds generically.
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