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An elegant study answers a long-standing question: how do correlations arise in large, 

highly interconnected networks of neurons? The answer represents a major step 

forward in our understanding of spiking networks in the brain. 

 

 

One of the most notable features of single neurons in the mammalian brain is that they are 

highly variable. A neuron might emit 8 spikes on one trial, 5 on another and 10 on a third, 

even when conditions on each trial are virtually identical. At the population level, this 

variability tends to be correlated: upward fluctuations in the activity of one neuron are often 

mirrored by upward fluctuations in other, nearby neurons, and similarly for downward 

fluctuations. For example, on the same three trials, a second neuron might emit 7, 3 and 12 

spikes. 

 

These correlated fluctuations are termed noise correlations, and there are two reasons to care 

about them. First, as their name implies, they are mainly a nuisance: noise correlations can 

greatly reduce the amount of information in a population, in many cases by orders of 

magnitude1. Second, and related, computations must be efficient in the face of these noise 

correlations. So, to understand computations in the brain, it is essential to understand how 

noise correlations arise. In this issue of Nature Neuroscience, Rosenbaum et al.2 show, using 

arguments that are both elegant and simple, that correlations must arise when external input 

to a network varies over a length scale that is small compared to that of its lateral 

connectivity. 

 

To put this work in context, flash back to 1998, when van Vreeswijk and Sompolinsky 

published what has become the de facto standard model of large networks of spiking 

neurons3. An underappreciated assumption in that model was that connectivity was so sparse 

that correlations were eliminated altogether. This allowed the rigorous development of an 

elegant theory describing large networks of spiking neurons. Of course, because of the 

ultrasparse assumption, this may seem like a classic case of looking where the light is. 

However, in a rare stroke of luck for theoreticians, the analysis gave very accurate predictions 

even when the sparseness assumption was violated. But why the theory worked so well 

remained a mystery that was not solved for another 14 years, when Renart and colleagues 

showed that it is the interplay of excitation and inhibition that causes correlations to 

dynamically cancel, making them near zero on average4. 

 

While the result of Renart et al.4 was extremely important, it brought a new mystery. In some 

areas of the brain correlations are indeed near zero on average5,6. However, that’s the 

exception, not the rule: in most areas correlation coefficients hover around 0.1–0.2 (refs. 5,6), 

appreciably larger than the prediction of Renart et al.4. But this mystery has now been solved 

as well, by Rosenbaum et al.2. They showed that for networks with spatially inhomogeneous 

connectivity (connectivity that falls off with distance, as is found in the brain), relatively 

large correlations should emerge if the input is spatially localized. The resulting spatial 

profile of correlations, large for nearby neurons and small for more distant neurons, is 

qualitatively similar to what is found in the brain7. Quantitatively, however, it differs: the 

mailto:pel@gatsby.ucl.ac.uk


2 
 

model of Rosenbaum et al.2 predicts that correlations should average to zero, something that 

is not typically seen. We’ll return to that point shortly, but first we’ll explain what they did. 

 

As is typical in the analysis of neuronal networks in mammalian cortex, Rosenbaum et al.2 

noted that each neuron makes a large number of connections, on the order of 1,000. They 

then used one of the favorite tricks of physicists: when they see a moderately large number, 

they pretend that it is very, very large. When the external input is fixed, networks of this type 

can fire at the kinds of low rates seen in the brain (a few hertz), with near-Poisson 

variability8. But under realistic conditions input is never fixed. Instead, it varies from trial to 

trial, by enough to make any single neuron, in isolation, change its firing rate by at least a few 

hertz. When the variability is correlated across the population, one might think that the firing 

rates of all the neurons in the network would change together, leading to large correlations in 

their firing rates. If the neurons were disconnected, that would indeed be the case. However, 

for highly connected networks of excitatory and inhibitory neurons, it’s not. That’s because 

for such networks to remain stable (that is, not exhibit runaway excitation) they must be 

inhibition dominated, in the sense that small increases in excitatory firing rate cause a larger 

increase in inhibitory firing rate9. This has an interesting corollary: if one were to increase the 

firing rate of all excitatory neurons in a network, that would cause a sufficient increase in 

inhibitory firing rate that the change in synaptic drive to every neuron in the network would 

be negative. 

 

To make this explicit, we plot the firing rate of a test neuron, defined to be a neuron with 

typical connectivity, as a function of the average excitatory firing rate in the network (Fig. 

1a). There are multiple curves in this plot; focusing for now on the thick one, such a curve 

could be produced experimentally by controlling the firing rate of every excitatory neuron 

(except for the test neuron) and monitoring the firing rate of the test neuron. While this has 

not been done, such a curve is consistent with every viable model of large, biologically 

plausible networks to date. There are two important features to this plot. First, the firing rate 

of the test neuron decreases as the average firing rate increases—a consequence of the fact 

that networks are inhibition dominated. Second, the curve is steep: in the high connectivity 

limit assumed by Rosenbaum et al.2, it would be infinitely steep (here we drew it shallower 

than it should be; otherwise, the thick and thin lines would be indistinguishable). 

 

If the test neuron is sufficiently typical, then the equilibrium firing rate in the network occurs 

where the diagonal unity line crosses the firing rate curve. Trial-to-trial variability in the 

input would shift the firing rate of the test neuron up and down, as shown by the thin lines. 

However, because the lines are steep, the resulting shift in equilibrium firing rates is small. 

Consequently, in the high connectivity regime, even highly correlated trial-to-trial variability 

has virtually no effect on the average firing rate in the network, and so the average correlation 

coefficient is very small. 

 

This is, essentially, the result of Renart et al.4: the dynamic cancellation referred to above is 

what produces the steep, downward sloping firing rate curve, and so reduces fluctuations in 

firing rates. To see what Rosenbaum et al.2 added, assume that some fraction of the excitatory 

neurons, the preferred population (say, 1/9), receives input that varies from trial to trial. 

Again, high connectivity clamps the mean firing rates. Consequently, whenever the activity 

of the preferred population increases, the activity of the other 8/9 of the excitatory neurons 

(the non-preferred populations) will decrease, and vice versa. Thus, as a result of variability 

in the input, neurons in the preferred population will fluctuate together, and neurons in the 

non-preferred population will fluctuate together — but in the opposite direction. The network 
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is shown in Figure 1b, where we have arbitrarily divided the neurons into nine groups. 

Because the networks are inhibition dominated (see Fig. 1a), coupling is effectively 

inhibitory. It is this inhibitory coupling that causes preferred and non-preferred populations to 

be anticorrelated (Fig. 1c). 

 

It is not hard to extrapolate from this scenario to one in which connectivity falls off with 

distance (Fig. 1d). The only real change is that the correlations are no longer long range, as 

distant neurons no longer have much effect on each other. This results in a telltale pattern of 

correlations: positive for nearby neurons, negative for intermediate neurons, and zero for 

distant neurons (Fig. 1e). This telltale pattern is a key experimental prediction. 

 

In both scenarios, because of the high connectivity, correlations average to zero—something 

that is not seen in the brain. How can positive correlations come about in the high 

connectivity regime? There are at least four ways. First, networks of excitatory and inhibitory 

neurons are prone to oscillations and up-down states9, collective activity that leads to large 

correlations. Second, synaptic strength can changes on slow timescales, hundreds of 

milliseconds to seconds. Because the synaptic strength determines the equilibrium firing rate, 

this would cause slow fluctuations in the overall level of activity. Third, external input might 

fluctuate by an amount much larger than was assumed above. Fourth, neuromodulators might 

modify overall excitability. Which, if any, of these is responsible for nonzero average 

correlations is not clear, and this is an active area of research. When analyzing experimental 

data in macaque primary visual cortex, Rosenbaum et al.2 sidestepped the issue and took long 

range fluctuations into account without explicitly considering their source. When subtracted 

from experimentally observed correlations, the resulting correlational structure (positive, then 

negative, then near zero as distance between neurons increased) was exactly as predicted. 

 

The analysis by Rosenbaum et al.2 was beautiful, elegant and, ultimately, straightforward: 

they simply extended results from randomly connected networks with high connectivity to 

networks in which connection probability falls off with distance; the rest was algebra 

(occupying 35 pages of supplementary information). And this was not just theory; the authors 

took the laudable additional step of comparing their results to experiments—and, fortunately, 

finding agreement. Their analysis adds much needed insight into the dynamics of large 

networks of spiking neurons—exactly the kind of insight we need if we are ever going to 

understand how the brain works. 

 

Finally, how do these correlations affect the ability of networks to store information? The 

answer, as is typical in neuroscience, is “we don’t know.” The only correlations that reduce 

information are ones that make the noise look like the signal10. As shown recently, these 

correlations emerges naturally in circuits that receive very little information compared to their 

coding capacity11. Whether the internally induced correlations described by Rosenbaum et 

al.2 also introduce such correlations is an open question, one that is likely to keep theorists 

busy for the foreseeable future. 
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Figure 1  Firing rates and correlations in large, highly connected networks of excitatory and 

inhibitory neurons. (a) Firing rate of a test neuron versus the average excitatory firing rate. 

The thick line is the firing rate curve when the input is fixed and static; the thin lines are 

firing rate curves on trials with different amounts of external input. The intersection of the 

firing rate curves with the dashed 45° line correspond to network equilibria (as indicated by 

the red dots). For ease of visualization, the firing rate curve is not very steep; in high 

connectivity networks it would be much steeper. This would bring the thin lines very close 

together (because external drive shifts the firing rate curve up and down), so there would be 

very little variation in firing rate as input changed. (b) A randomly connected network 

arbitrarily broken into nine populations, only one of which (red) receives external input 

(which is applied uniformly to all neurons in the red subpopulation). Connection strengths are 

negative, mirroring the fact that networks of excitatory and inhibitory neurons are effectively 

inhibitory, and because the network is randomly connected they are uniform. (c) Average 

population activity on two trials relative to baseline (dashed line). For the blue points, the 

preferred population receives positive input; for the green points, it receives negative input. 
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The central data points corresponds to activity of the red subpopulation. All neurons within 

each subpopulation are correlated, but the neurons in the red subpopulation are anticorrelated 

with the rest of the neurons. (d) Same as b, except the connectivity falls off with distance, as 

indicated by the progressively thinner lines connecting more distant populations. (e) Activity 

on two trials, as in c (with the same color code). Because connectivity is short range, activity 

is a decreasing function of distance, leading to correlations that fall off with distance. 
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