
ARTICLE

Received 27 May 2016 | Accepted 27 Oct 2016 | Published 16 Dec 2016

Interleukin-12 bypasses common gamma-chain
signalling in emergency natural killer cell
lymphopoiesis
Isabel Ohs1, Maries van den Broek2, Kathrin Nussbaum1, Christian Münz3, Sebastian J. Arnold4,5,

Sergio A. Quezada6, Sonia Tugues1,* & Burkhard Becher1,*

Differentiation and homeostasis of natural killer (NK) cells relies on common gamma-chain

(gc)-dependent cytokines, in particular IL-15. Consequently, NK cells do not develop in mice

with targeted gc deletion. Herein we identify an alternative pathway of NK-cell development

driven by the proinflammatory cytokine IL-12, which can occur independently of gc-signalling.

In response to viral infection or upon exogenous administration, IL-12 is sufficient to elicit the

emergence of a population of CD122þCD49bþ cells by targeting NK-cell precursors (NKPs)

in the bone marrow (BM). We confirm the NK-cell identity of these cells by transcriptome-

wide analyses and their ability to eliminate tumour cells. Rather than using the conventional

pathway of NK-cell development, IL-12-driven CD122þCD49bþ cells remain confined to a

NK1.1lowNKp46low stage, but differentiate into NK1.1þNKp46þ cells in the presence of

gc-cytokines. Our data reveal an IL-12-driven hard-wired pathway of emergency NK-cell

lymphopoiesis bypassing steady-state gc-signalling.

DOI: 10.1038/ncomms13708 OPEN

1 Inflammation Research, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland. 2 Tumor Immunology, Institute of
Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland. 3 Viral Immunobiology, Institute of Experimental Immunology, University of Zurich,
8057 Zurich, Switzerland. 4 Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, and BIOSS Centre of Biological Signalling
Studies, Albert-Ludwigs-University, D-79104 Freiburg, Germany. 5 BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, D-79104
Freiburg, Germany. 6 Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, WC1E 6BT London, UK.
* These authors contributed equally to this work. Correspondence and requests for materials should be addressed to B.B. (email:
becher@immunology.uzh.ch).

NATURE COMMUNICATIONS | 7:13708 | DOI: 10.1038/ncomms13708 | www.nature.com/naturecommunications 1

mailto:becher@immunology.uzh.ch
http://www.nature.com/naturecommunications


A
s main components of the innate immune system, NK
cells play a key role in controlling infections and limiting
cancer progression1,2. Recognition of infected or

transformed cells by NK cells involves a plethora of activating
and inhibitory receptors, that in combination determine whether
a target cell will be killed or spared3. The elimination of target
cells is achieved via death receptor pathways or the release of
cytotoxic granules containing perforin and granzyme4,5.

In addition to their cytotoxic function, NK cells are a major
source of proinflammatory cytokines such as tumour necrosis
factor alpha (TNF-a) and interferon gamma (IFN-g), which
activate the myeloid compartment to join the fight against
infections or cancer6. In turn, cytokines can modulate NK-cell
responses7. More specifically, interleukin (IL)-15, which together
with other cytokines (IL-2, IL-4, IL-7, IL-9 and IL-21) signals
through the gc subunit, is critical for NK-cell development,
homeostasis and activation8. Once lineage committed, as seen by
acquiring IL-2/15Rb (CD122) expression, NK cells require
continuous IL-15R engagement for further differentiation and
maintenance9,10. Accordingly, mice deficient in IL-15, IL-15Ra or
gc are devoid of NK cells11,12. One study reported an expansion
of lymphocytes with an NK-cell phenotype in Rag2� /� Il2rg� /�

mice upon murine cytomegalovirus (MCMV) infection,
suggesting that NK cells can expand in the absence of
IL-15 under highly inflammatory conditions13. Even though
the cytokine IL-12 was involved in this process, whether the
expanded population represents a unique IL-15-independent
NK-cell subset remains elusive.

IL-12 is secreted by myeloid cells during inflammation, and its
primary effects on NK cells include increased IFN-g production,
proliferation and the expression of cytotoxic mediators14–20. So
far, the effect of IL-12 on NK cells has been reported for mature
NK (mNK) cells, but it is currently unknown whether IL-12
contributes to NK-cell development in the BM.

Here we discovered that IL-12 drives a pathway of emergency
NK-cell lymphopoiesis independently of gc-signalling. IL-12
initiates the generation of a cell population expressing CD49b
and CD122, but low levels of the lineage markers NK1.1 and
NKp46. Using a comprehensive phenotypic and functional
characterization, we provide evidence that these cells represent
a population of NK cells with a unique cell-surface receptor
repertoire resembling immature NK cells. Mechanistically, IL-12-
driven CD122þCD49bþ NK cells differentiate from NKPs in the
BM through an unconventional developmental pathway. We
demonstrated the emergence of IL-12-induced NK cells during
viral infection as well their ability to clear tumour cells and limit
metastatic spread, reinforcing the relevance of this alternative
process of NK-cell lymphopoiesis.

Results
IL-12 induces cc-independent emergency NK-cell lymphopoiesis.
NK cells were reported to expand independently of gc-signalling
in response to MCMV infection13, a hitherto unrecognized
process whose underlying mechanism remains ill-defined. To
investigate whether the expansion of such NK cells only occurs
during MCMV infection or is a general response to inflam-
mation, we infected wild-type (WT) and Rag2� /� Il2rg� /�

mice (lacking T, NKT and B cells as well as ILCs) with vaccinia
virus (VV), a poxvirus controlled by NK cells early after
infection21. In lungs of Rag2� /� Il2rg� /� C57BL/6 mice, VV
infection induced the expansion of a population of lymphocytes
expressing both CD122 and CD49b (Fig. 1a), two markers that
phenotypically define NK cells22. Viral infections trigger the
release of inflammatory mediators such as IL-12 (ref. 23), and we
detected elevated amounts of IL-12 in the serum of VV-infected

WT as well as Rag2� /� Il2rg� /� mice (Fig. 1b). Moreover,
neutralization of IL-12 prevented the expansion of CD122þ

CD49bþ cells in infected mice (both WT and Rag2� /�

Il2rg� /� ; Fig. 1c), indicating a dependence of this population
on IL-12. Altogether, these results highlight IL-12 as a key
cytokine to initiate the emergence of gc-signalling-independent
CD122þCD49bþ cells (hereafter called emergency NK (eNK)
cells) upon viral infection.

IL-12 generates unconventional but functional NK cells. We
next addressed whether IL-12 promotes the development of eNK
cells in the absence of infection. Indeed, we found eNK cells,
which morphologically resembled lymphocytes, in lungs of
Rag2� /� Il2rg� /� mice treated with IL-12 (Fig. 2a,b). The
population of eNK cells was shown to express low levels of NK1.1
(Fig. 2a). Of note, a subset of CD122þCD49bþ cells with low
NK1.1 expression was also found in lungs of IL-12-treated WT
mice (Fig. 2a), indicating that the IL-12-induced expansion of
these cells also occurs in the face of physiological gc-signalling.
eNK cells expressed markers typically associated with conven-
tional NK (cNK) cells such as the transcription factor Eomeso-
dermin (Eomes) and the activating receptor NKG2D (Fig. 2c). In
comparison with the NK1.1þ subset of CD122þCD49bþ cells
from control (NK) or IL-12-treated WT mice (NKþ IL-12), eNK
cells expressed low amounts of NKp46 (Fig. 2c) and
unusually high levels of DNAM-1 (Fig. 2c), as well as a differ-
entiated (CD11bhighCD27highKLRG1þ ) phenotype (Supplemen-
tary Fig. 1a). Also, eNK cells did not express the IL-7 receptor
(CD127; Supplementary Fig. 1b) and exhibited a high prolifera-
tion rate accompanied by reduced levels of Bcl-2 (Fig. 2d;
Supplementary Fig. 1c), an anti-apoptotic factor involved in
peripheral NK-cell survival by IL-15 (ref. 10). Importantly,
NK1.1low NKþ IL-12 cells from WT mice phenotypically closely
resembled the population of highly proliferative, less differen-
tiated Eomesþ eNK cells (Fig. 2c,d; Supplementary Fig. 1a,c).

We next investigated the ability of eNK cells to produce
IFN-g, the main cytokine secreted by cNK cells upon IL-12
stimulation20. IFN-g was secreted by lung CD122þCD49bþ

NK1.1low cells not only in IL-12-treated Rag2� /� Il2rg� /� mice,
but also in WT mice, where this population contributed to almost
40% of the total IFN-g production (Fig. 2e). Furthermore,
the responses of IL-12-induced eNK cells to YAC-1 targets
demonstrated their cytotoxic potential (Fig. 2f). Taken together,
IL-12 bypasses the requirement of gc-signalling for NK-cell
lymphopoiesis by inducing the generation of an unconventional
population of eNK cells with cytotoxic properties.

eNK cells represent a distinct NK-cell subset. To further explore
in which extent eNK cells mirror NK-cell features, we performed
deep transcriptome analysis of sorted eNK cells as well as NK and
NKþ IL-12 cells from WT mice. Principal component (PC)
analyses indicated that each group of cells formed individual
clusters in the PC space (Fig. 3a). Basic hierarchical clustering of
the three populations showed that eNK cells were more closely
related to NKþ IL-12 cells than they were to NK cells (Fig. 3b).
Similar to NK cells, eNK cells expressed high amounts of Eomes,
killer-cell lectin-like receptors (Klr), Fc receptors and adhesion
molecules, thus confirming the NK-cell identity of this population
(Fig. 3c; Supplementary Table 1). The transcripts differentially
expressed in eNK compared with NKþ IL-12 cells revealed,
however, a gene signature reminiscent of immature NK cells, as
shown by high expression of Cd27, Cd69, Cxcr3 and Cxcr6
(Fig. 3c; Supplementary Table 1). In contrast, transcripts mainly
confined to mNK cells24–28, such as the integrins CD49b (Itga2)
and CD11b (Itgam), Cx3cr1, S1pr5 and several members of the
Ly49 receptor family (Klra1, Klra3, Klra9 and Klra7), were
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present albeit downregulated in eNK cells (Fig. 3c; Supplementary
Table 1). The immature profile of eNK cells was not associated
with decreased levels of Eomes and T-bet (Tbx21) (Fig. 3c;
Supplementary Table 1), but with changes in cytokine production
and cytotoxic effectors. Thus, whereas NKþ IL-12 cells expressed
higher amounts of granzyme (Gzma and Gzmb) and perforin
(Prf1) compared to eNK cells, the latter upregulated GM-CSF
(Csf2), lymphotoxin-b (Ltb), TNF-a (Tnf) and TNF-Related
Apoptosis Inducing Ligand (TRAIL; Tnfsf10) (Fig. 3c;
Supplementary Table 1) usually acquired at earlier stages of
NK-cell maturation29.

We examined the cell surface levels of several NK-cell receptors
to further assess the maturation status of lung eNK cells. In
general, whereas NK1.1þ NKþ IL-12 cells were phenotypically
similar to the NK-cell population from Ctrl-treated WT mice, the
phenotype of eNK cells resembled that of NK1.1low NKþ IL-12
cells from WT mice (Fig. 3d). Thus, eNK cells and NK1.1low

NKþ IL-12 cells from WT mice expressed high levels of CD94,
NKG2A/C/E and TRAIL, but low amounts of Ly49D (Klra4) and
Ly49I (Klra9) when compared with NK and NK1.1þ NKþ IL-12
cells from WT mice (Fig. 3d). Low levels of Ly49G2 (Klra7) and
Ly49A (Klra1) were also observed in eNK cells (Fig. 3d).
Importantly, this was not exclusive of eNK cells in the lung
microenvironment, since liver eNK cells showed a very similar
overall cell surface phenotype (Supplementary Fig. 2a,b).

Altogether, these findings place eNK cells into a distinct
NK-cell subset with immature characteristics. The resemblance

between NK1.1low NKþ IL-12 cells of WT mice and eNK cells
reinforces the existence of an IL-12-induced pathway of alter-
native NK-cell lymphopoiesis also when gc cytokines are present.

IL-12 initiates a different pathway of NK-cell development. The
unconventional phenotype observed in lung eNK cells raised the
question of how these cells originate in the BM. NK cells develop
via four stages from (i) lineage negative (Lin� ) CD127þ

CD135þ common lymphoid progenitors (CLPs) into (ii) Lin�

CD244þCD127þCD135� pre-NK-cell progenitors (pre-NKPs)
and further into (iii) Lin�CD244þCD27þCD122þCD49b�

NK1.1� NKPs, which acquire the expression of the IL-15R
complex CD122 and ultimately give rise to mature (iv)
CD244þCD122þCD49bþNK1.1þ NK cells30,31. We used
unsupervised non-linear dimensionality reduction (t-SNE)32 to
identify and visualize these distinct NK-cell developmental
stages in the BM of IL-12-treated WT and Rag2� /� Il2rg� /�

mice (Fig. 4a). With this approach, the CD45þLin�CD122þ

population could be subdivided into demarcated cluster sets
defined by differential expression of several NK-cell markers
(Fig. 4a–c). Thus, cluster 1, negative for all NK-cell markers
but for CD27 and present in both WT and Rag2� /� Il2rg� /�

mice, harbours NKPs (Fig. 4a–c). The population of mNK cells
was clearly identified by clusters 3 and 6 in WT mice, represen-
ting less (CD27highCD11blow) and more differentiated
(CD27lowCD11bhighKLRG1þ ) mNK cells, respectively
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Figure 1 | VV infection generates IL-12-dependent CD122þCD49bþ NK cells. (a) Representative plots and quantification of lung CD45þCD3�

CD122þCD49bþ cells of uninfected versus VV-infected WT or Rag2� /� Il2rg� /� mice. Data represent two similar experiments (n¼ 3–5 mice per group
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(Fig. 4a–c). Both in WT and Rag2� /� Il2rg� /� mice, IL-12
induced the emergence of eNK cells (DX5þNK1.1�NKp46low

CD11bþCD27lowKLRG1high cell in cluster 5), and an unexpec-
ted population of DX5lowNK1.1�NKp46�CD11b�CD27�

KLRG1� cells (cluster 4), probably representing an intermediate
precursor stage of NK-cell development (Fig. 4a–c). Also in the
BM, we observed the expression of Eomes in eNK cells by using an
Eomes fluorescent reporter mouse (Supplementary Fig. 3a).

Moreover, when transferred into lymphopenic mice, IL-12-driven
CD122þCD49bþNK1.1low eNK cells isolated from WT mice
developed into NK1.1þNKp46þ cells, indicating that the presence
of gc-cytokines is required for the acquisition of these NK-cell
lineage markers (Fig. 4d; Supplementary Fig. 3b).

IL-12 expanded the populations of NKPs and eNK cells in the
BM of both WT and Rag2� /� Il2rg� /� mice, whereas CLPs and
pre-NKPs in WT mice remained unaltered (Fig. 4e,f;
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Supplementary Fig. 3c,d). Accordingly, proliferation of NKPs as
well as of eNK and mNK cells was increased upon IL-12
treatment (Supplementary Fig. 3e). Overall, these results point
towards an hitherto unrecognized pathway of NK-cell develop-
ment regulated by IL-12, which bypasses canonical gc-chain
signalling.

NKPs respond to IL-12 and differentiate into eNK cells. To
determine the lymphoid precursor population of eNK cells, we
sorted CLPs, pre-NKPs, NKPs, eNK and mNK cells from BM of
WT mice and quantified Il12rb2 transcripts. Il12rb2 was expres-
sed by NKPs, eNK and mNK cells, but not by CLPs and only at
low levels by pre-NKPs (Fig. 5a). Furthermore, we found higher
amounts of Il12rb2 transcripts in NKPs and eNK cells from
IL-12-treated compared with Ctrl-treated WT mice (Fig. 5a),
indicating that IL-12 induces the expression of its own receptor
complex in NKPs. Functional IL-12R engagement was further
shown by the expression of Tbx21 and Ifng transcripts, which
occurred only in the three NK-cell populations that express
Il12rb2 (Fig. 5b,c).

To further assess direct effects of IL-12 on NKPs and eNK cells,
we isolated these cell populations from the BM of WT mice and
treated them for 6 h with IL-12 in vitro. Ifng expression was
increased upon IL-12 stimulation in both NKPs and eNK cells,
indicating a direct signal through the IL-12R in both cell types
(Fig. 5d). IL-12 was sufficient to drive differentiation of NKPs
into eNK cells within whole BM suspension or highly purified
NKPs kept on monolayers of OP-9 stromal cells (Fig. 5e,f).
Collectively, these data highlight a pivotal role of IL-12 in NK-cell
differentiation by acting on NKPs, the stage at which IL-15 is
required for the maturation of these cells during steady-state
lymphopoiesis.

eNK cells display anti-tumour activity. The observed cytotoxic
properties of eNK cells prompted us to test their role in tumour
surveillance. First, we used TRAIL-sensitive MC38 tumour cells
in C57BL/6 mice. Intravenously inoculated MC38-GFP cells were
efficiently eliminated from lungs of IL-12-treated Rag2� /�

Il2rg� /� mice, in comparison with the high numbers of tumour
cells found in Ctrl-treated Rag2� /� Il2rg� /� mice (Fig. 6a). The
dependence of this process on eNK cells was shown upon their
depletion with an anti-asialo GM1 antibody, which completely
abolished the clearance of MC38-GFP target cells (Fig. 6a).

We next tested the metastasis-controlling capacity of eNK cells
in the orthotopic 4T1 model of breast cancer 33. In this model, the
inoculation of 4T1 cells in Rag2� /� Il2rg� /� mice resulted in an
increased metastatic burden compared to WT and Rag1� /�

mice (lacking T, NKT and B cells; Fig. 6b), thus indicating the
importance of ILCs in limiting metastatic dissemination. IL-12

treatment of tumour-bearing WT mice led to a significant
reduction of lung metastases (Fig. 6c). This was not due to a
direct effect of IL-12 on 4T1 tumour cells, since these cells did not
express IL-12Rb2 and IL-12Rb1 and their in vitro growth was
not affected by IL-12 (Supplementary Fig. 4). Remarkably,
IL-12 elicited tumour control also in tumour-bearing Rag2� /�

Il2rg� /� mice (Fig. 6c), demonstrating that IL-12 induces
protective immunity even in mice lacking all T, B and ILCs.
In this setting, IL-12 treatment of 4T1 tumour-bearing
Rag2� /� Il2rg� /� mice led to the expansion of eNK cells
from the BM (Fig. 6d,e). These cells were identified as the main
IL-12-responsive cell type, as they virtually produced all the
IFN-g detected in Rag2� /� Il2rg� /� mice (Fig. 6f). The depen-
dence of tumour rejection on IFN-g-producing eNK cells was
solidified by the finding that IL-12-treated IFN-g receptor
deficient (Ifngr� /� ) mice failed to control lung metastasis
(Fig. 6g). Moreover, the depletion of eNK cells reversed IL-12-
mediated suppression of metastasis in 4T1 tumour-bearing
Rag2� /� Il2rg� /� mice (Fig. 6h). Collectively, the contribu-
tion of eNK cells to tumour control highlights the importance of
gc-independent emergency NK-cell lymphopoiesis in tumour
protective immunity.

Discussion
Even though gc-cytokines regulate various aspects of NK-cell
biology, only IL-15 is essential for NK-cell development7,10.
Under physiological conditions, NK cells develop in the BM from
lymphoid precursor cells34, and this maturation pathway is
aborted in the absence of IL-15R signalling11. Here, we
demonstrated that IL-12 can bypass this developmental road
block and induce unconventional eNK cells independently of
gc-signalling. We propose that this pathway serves to combat
infections or other threats to normal tissue homeostasis (for
example, cancer) and can be exploited therapeutically.

Early evidence of IL-15-independent NK-cell expansion upon
CMV infection13 suggested that mammals might utilize
alternative mechanisms to ensure the availability of NK cells
during inflammatory responses. Our findings show that IL-12 is
sufficient for the generation of NK-like cells, a process that is also
triggered when gc-signalling is functional. To date, IL-15 has
been the only cytokine known to act on the progenitor stage to
generate mNK cells in mice12. We now demonstrate that NKPs
also respond to IL-12, leading to the generation of eNK cells.
Even though the signalling pathways downstream of IL-12 differ
to those triggered by IL-15, both cytokines induce T-bet
expression and IFN-g-production by NK cells20,35. However,
neither Tbx21 or Ifng are required for the generation of eNK cells
(data not shown), and the search for additional factors that
control this process is ongoing.

Figure 2 | IL-12 induces eNK cells in lungs of naive Rag2� /� Il2rg� /� mice. (a) Representative plots and absolute numbers of CD45þCD3�

CD122þCD49bþ cells in lungs from IL-12 or Fc-treated (Ctrl) WT or Rag2� /� Il2rg� /� mice. The expression of NK1.1 on CD45þCD3�CD122þ

CD49bþ cells in lungs from IL-12 or Ctrl-treated WT or Rag2� /� Il2rg� /� mice is shown. Data represent five experiments (nZ4 mice per group per

experiment). (b) Cytospin (� 100) of sorted CD45þCD3�CD122þCD49bþ cells from lungs of IL-12-treated WT or Rag2� /� Il2rg� /� mice stained

with May–Grünwald–Giemsa solution. Two independent experiments were performed. Scale bar, 20mm. (c) Expression levels of Eomes, NKG2D, NKp46

and DNAM-1 on the NK1.1þ subsets of CD45þCD3�CD122þCD49bþ cells isolated from lungs of Ctrl (NK) and IL-12-treated WT mice

(NK1.1þ NKþ IL-12), the NK1.1low subset of CD45þCD3�CD122þCD49bþ cells isolated from lungs of IL-12-treated WT mice (NK1.1low NKþ IL-12) and

eNK cells from Rag2� /� Il2rg� /� mice. Three independent experiments were performed with at least three mice per group. (d) Ki-67 and Bcl-2

expression levels were quantified in lung NK, NK1.1þ NKþ IL-12, NK1.1low NKþ IL-12 and eNK cells. Data shown represent three independent experiments

(n¼ 3–5 mice per group per experiment). (e) Leukocytes isolated from lungs of WT and Rag2� /� Il2rg� /� mice either treated with IL-12 or Ctrl were

cultured for 4 h with PMA/ionomycin and CD45þCD3�Gr-1� cells were analysed for their IFN-g production. NK1.1 and NKp46 expression was examined

on IFN-g expressing cells. (f) NK cells and eNK cells were isolated from lungs of WT mice and Rag2� /� Il2rg� /� mice, respectively. Their cytotoxicity was

tested using YAC-1 cells at an effector:target ratio of 6:1. Data are representative of two independent experiments with three mice per group each. Data are

expressed as mean±s.e.m. *Po0.05, **Po0.01, ***Po0.001 as determined by unpaired Student’s t-test with Welch’s correction or one-way analysis of

variance with Bonferroni post-test.
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NK cells have been classically identified based on their
expression of NK1.1 and NKp46 (ref. 22). Thus, the finding that
eNK cells only express low levels of both lineage markers initially
raised doubts whether eNK cells are actually NK cells. Further-
more, the similarities between NK cells and the group 1 innate

lymphoid cells (ILC1)36,37 could place eNK cells into the latter
category. We propose that eNK cells generated by IL-12 described
here are bona fide NK cells based on: (a) the expression of several
lineage defining NK-cell molecules (for example, Eomes), (b) the
lack of IL7-R expression and (c) their ability to kill target cells.
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eNK cells express high amounts of the transcription factor
Eomes, required for NK cells to mature past the TRAILþ

CD11blow to the CD49bþCD11bhigh stage38. Our data indicate
that despite being Eomesþ , eNK cells express a wide array of
immature markers that resemble TRAILþ NK cells found in fetal

and neonatal mice29. This NK-cell subpopulation, retained
in the liver of adult mice and identified as TRAILþ

NK1.1þCD49bdimCD11bdimLy49�CD94þNKG2high, exhibits
anti-metastatic function against TRAIL-sensitive tumour cells in
an IFN-g-dependent manner39,40. Given the high expression of
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TRAIL in eNK cells and their dependence on IFN-g to exert
metastatic control, it is possible that these two populations utilize
similar mechanisms for anti-tumour surveillance. Of note, eNK
cells were able to kill two TRAIL-sensitive cell lines such as MC38
and 4T1.

A special feature of eNK cells is their unusually high expression
of the activating receptor DNAM-1. Recently, two functionally
distinct subsets of splenic NK cells, namely DNAM-1þ and
DNAM-1� NK cells, were described: Highly proliferative
DNAM-1þ NK cells show an enforced IL-15 signalling and
can give rise to DNAM-1� NK cells with reduced anti-tumour
activity41. We propose that the lack of IL-15 signalling arrests
eNK cells at a stage characterized by elevated expression of
DNAM-1 and a high proliferation rate. Along this line, we
attribute the limited expression of NKp46, NK1.1 and Ly49
receptors in these cells to the absence of gc-cytokine signalling.
The upregulation of NKp46 and NK1.1 in eNK cells upon
adoptive transfer into an IL-15 proficient environment supports
this idea. Moreover, the induction of NKp46 and Ly49 on
NK cells by IL-15 has been previously reported42,43. The high
expression of CD49b by NK1.1lowNKp46low eNK cells is unusual,
and suggests that these cells might be generated via an alternative
pathway of NK-cell development. NKp46, together with NK1.1,
have been shown to be acquired before CD49b in early NK-cell
development25,42. However, Rosmaraki et al.44 also identified a
population of CD122þNK1.1�CD49bþ cells with lytic activity
in the BM of C57BL/6 mice. The mechanisms that regulate
CD49b expression during NK-cell development as well as the
precise developmental stage in which this marker is acquired will
require further investigation.

Collectively, our data present a new paradigm for IL-12-
induced emergency NK-cell lymphopoiesis. As such, IL-12
impacts on NKPs to generate a population of unconventional
yet functionally competent NK cells. The early production of
IL-12 during infections45,46 suggests that IL-12-induced NK-cell
lymphopoiesis occurs in parallel to induction by gc-cytokines to
augment host’s innate immunity, while shaping the ultimate
antigen-specific immune responses. Thus, this pathway may be
exploited in patients with severe combined immunodeficiencies
(SCID)47,48. Since SCID is characterized by markedly reduced
numbers of lymphocytes and an increased susceptibility to
infection, the generation of eNK cells by a local, controlled
delivery of IL-12 might be considered as a potential therapeutic
approach for this disease.

Methods
Animals. BALB/c and C57BL/6 mice were obtained from Janvier labs (Roubaix,
FR). C57BL/6 Rag2� /� Il2rg� /� and IL12rb2� /� mice were obtained from The
Jackson Laboratory. BALB/c Rag1� /� mice were kindly provided by M. Suter
(Vetsuisse Faculty, University of Zurich, Switzerland), BALB/c Rag2� /� Il2rg� /�

mice by A. Aguzzi (Institute of Neuropathology, University Hospital of Zurich,

Switzerland), BALB/c Ifngr� /� mice by M. Kopf (Institute for Molecular Health
Sciences, ETH Zurich, Switzerland) and C57BL/6 EomesGFP/þ mice by Arnold
et al.49. All animals were kept in house according to institutional guidelines under
specific pathogen-free conditions at a 12 h light/dark cycle with food and water
provided ad libitum. All experiments were performed using female mice at the age
of 7–10 weeks and were performed according to institutional guidelines and
approved by the Swiss cantonal veterinary office (license 147/2012 and 142/2015).

Murine cell lines. 4T1 cells were kindly provided by M. Detmar (Institute of
Pharmaceutical Sciences, ETH, Zurich, Switzerland), YAC-1 cells by M. van den
Broek (Institute of Experimental Immunology, University Zurich, Zurich,
Switzerland) and MC38-GFP cells by Lubor Borsig (Institute of Physiology,
University Zurich, Zurich, Switzerland). OP-9 and 293T cells were purchased
from ATCC.

Expression and purification of IL-12Fc. As previously described50, IL-12Fc
expressed in 293T cells was purified from supernatant using a protein A column
(1 ml, HiTrap, GE Healthcare). After elution with 0.1 M citric acid, pH 3.0 using a
purifier (ÄktaPrime) and dialysis for 40 h in PBS, pH 7.4, the concentration
and purity of IL-12Fc were measured using the mouse IL-12 (p40) ELISA kit
(BD OptEIATM, 555165) and silver staining (Pierce Silver Stain Kit, Thermo
Scientific), respectively.

Orthotopic 4T1 injection. 4T1 cells (1� 105) were injected in 50ml PBS in the
second mammary fat pad of 7–10 week-old female BALB/c mice. Lung metastases
were analysed after B23 days. To deplete eNK cells, Rag2� /� Il2rg� /� mice
were treated three times with 50 ml of anti-asialo GM1 antibody (Wako Pure
Chemical Industries, Japan) starting 7 days after 4T1 tumour inoculation. Lung
metastases were quantified at day 18.

Vaccinia virus infection. C57BL/6 WT and Rag2� /� Il2rg� /� mice were
injected intraperitoneally (i.p.) with 2� 106 or 2� 105 p.f.u. of the VV strain WR,
respectively. IL12rb2� /� mice were injected i.p. with 2� 106 p.f.u. Virus was
propagated as described51. Rat anti-IL-12/23p40 (C17.8, BioXCell) or IgG2A
isotype control antibody (2A3, BioXCell) were injected at 500mg per mouse on day
0 and 2 after VV infection. Mice were taken for analysis 5 days postinfection.

IL-12 treatment. At day 7, when a small primary tumour was palpable, 200 ng of
IL-12Fc or the IgG fragment as control (Ctrl) diluted in 25 ml PBS were intranasally
administered per mouse. Mice were treated three times per week and taken for
analysis at day 23 after tumour inoculation. Naive mice were treated three times
every 2 days with 200 ng of IL-12Fc or Ctrl IgG diluted in 100 ml PBS intravenously
and taken for analysis 6 days after the first injection.

Quantification of lung metastases. Pulmonary metastases were quantified by
intratracheal injection of India ink (15% India ink in PBS). India ink injected lungs
were washed in PBS and subsequently placed in Feket’s solution (300 ml 70%
ethanol, 30 ml 37% formaldehyde and 5 ml glacial acetic acid) overnight. White
lung metastases were counted under a dissection microscope. Metastatic index was
calculated as the number of lung metastases divided by the primary tumour weight.

Flow cytometry. Flow cytometric analysis of lungs from 4T1 tumour-bearing
mice was performed at day 23 after tumour cell injection. Lungs were harvested,
digested with Collagenase IV (0.4 mg ml� 1) for 45 min at 37 �C and erythrocytes
were lysed with ACK (Ammonium-Chloride-Potassium) lysis buffer. Tibiae and
femora were flushed with PBS and erythrocytes were lysed subsequently. Cells
were incubated for 20 min in Fc-blocking buffer (2.4G2, 1:1,000, BD Bios-
ciences). The cells were stained with the following antibodies: anti-CD45 (30-

Figure 6 | Reduced metastases upon induction of eNK cells in Rag2� /� Il2rg� /� mice. (a) Representative plots and quantification of eNK cells and

MC38-GFP cells in lungs of Rag2� /� Il2rg� /� mice treated with control IgG or anti-asialo GM1 antibody (b) Primary tumour weight and metastatic index

from WT, Rag1� /� and Rag2� /� Il2rg� /� 4T1 tumour-bearing mice at day 23 after tumour cell injection. Data are representative of two pooled

experiments. Each dot represents one mouse. (c) Metastatic index and India-ink-stained lungs from WT, Rag1� /� and Rag2� /� Il2rg� /� 4T1 tumour-

bearing mice treated with either IL-12 or Ctrl. Data are pooled from two independent studies. Each dot represents one mouse. (d) CD45þCD3� leukocytes

from lungs of 4T1 tumour-bearing WTor Rag2� /� Il2rg� /� mice treated with IL-12 or Ctrl were analysed for CD122þCD49bþ cells. Data represent three

independent experiments (nZ4 mice per group per experiment). (e) Eomes, NKp46, NKG2D, DNAM-1, CD27, CD11b and KLRG1 expression on

CD45þCD3�CD122þCD49bþ NK cells. Data represent three experiments (nZ4 mice per group per experiment). (f) Representative plot for IFN-g
production of PMA/ionomycin stimulated cells isolated from metastatic lungs of 4T1 tumour-bearing WT and Rag2� /� Il2rg� /� mice treated with either

IL-12 or Ctrl. Frequency of NKp46þCD49bþ of total IFN-g-producing cells. (g) Metastatic index and India-ink-stained lungs from Ifngr�/� 4T1 tumour-

bearing mice treated with IL-12 or Ctrl. Pooled data from three experiments with at least four mice per group. (h) Metastatic index and India ink-stained

lungs of 4T1 tumour-bearing Rag2� /� Il2rg� /� mice treated with either IL-12 or Ctrl and control IgG or anti-asialo GM1 antibody. Error bars

represent±s.e.m. (a,e) One-way analysis of variance and (b) unpaired Student’s t-test with Welch’s correction was used to determine significance

(*Po0.05; **Po0.01; ***Po0.001).
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F11; 1:400, BioLegend), anti-CD49b (Dx5, 1:200, BioLegend), anti-NKp46
(29A1.4, 1:100, eBioscience), anti-CD3 (17A2, 1:100, eBioscience), anti-Gr-1
(6-8C5, 1:400, BioLegend), anti-CD11b (M1/70, 1:200, BioLegend), anti-CD27
(LG.3A10, 1:200, BioLegend), anti-NKG2D (CX5, 1:50, eBioscience), anti-
DNAM-1 (10E5, 1:100, BioLegend), anti-CD122 (TM-beta 1, 1:100, BioLegend),
anti-CD244.2 (2B4, 1:100, eBioscience), anti-CD127 (A7R34, 1:100, eBio-
science), anti-CD135 (A2F10, 1:100, BioLegend), anti-NK1.1 (PK136, 1:200, BD
Biosciences), anti-KLRG1 (2F1, 1:100, eBioscience), anti-TRAIL (N2B2, 1:100,
BioLegend), anti-Ly49G2 (eBio4D11, 1:100, eBioscience), anti-Ly49A (A1, 1:100,
eBioscience), anti-Ly49I (YLI-90, 1:100, eBioscience), anti-NKG2A/C/E (20d5,
1:100, BD Biosciences), anti-CD94 (18d3, 1:100, Biolegend) and anti-Ly49D
(4E5, 1:100, Biolegend). To exclude dead cells, we used the Zombie Aqua fixable
viability kit (BioLegend). Doublets were excluded by FSC-A/FSC-H gating. For
intracellular cytokine staining, cells were stimulated for 4 h at 37 �C and 5% CO2

in RPMI 1640 medium containing 10% FCS, 50 ng ml� 1 PMA, 500 ng ml� 1

ionomycin and 1 ml ml� 1 GolgiPlug (BD Bioscience). For detection of intra-
cellular cytokines, cells were fixed after surface staining and permeabilized with
Cytofix/Cytoperm (BD Biosciences) and were then stained with an anti-IFNg
mAb (XMG1.2, 1:100, BD Biosciences). For nuclear stainings, cells were fixed
and permeabilized with Fixation/Permeabilization Kit from eBioscience and the
following antibodies were used: anti-Eomes (Dan11mag, 1:100, eBioscience),
anti-Bcl-2 (BCL/10C4, 1:100, BioLegend) and anti-Ki67 (SOLA15, 1:400,
eBioscience). Acquisition was performed on a LSRII Fortessa flow cytometer
(BD) and data were analysed using FlowJo Version X (Tree Star).

Algorithm-guided data analysis. To equalize the contribution of each marker in
subsequent automated data analysis steps, we normalized all data to the 99.9th
percentile of the combined dataset, thus preserving intersample variability in
maximum expression values, which might be biologically relevant. Following
preprocessing, all samples were combined into one file and subjected to the
FlowSOM clustering algorithm to identify meaningful immunological populations.
After the initial clustering step, resulting nodes were subjected to meta-clustering.
The respective k-value was chosen manually to correspond with the according
tSNE map. Heatmaps display median expression levels for the indicated popula-
tions and were drawn using the ggplot2 R package. Dendrograms were calculated
using hierarchical clustering. tSNE maps were calculated using the Rtsne package
in R.

NK-cell and NK-cell precursor isolation. To isolate CLPs, pre-NKPs, NKPs,
mNK and eNK cells, Tibiae and femora were flushed with PBS and erythrocytes
were lysed. We enriched for NK cells and their precursors by depletion of CD3þ ,
F4/80þ , Gr-1þ (anti-CD3-Bio (145-2C11, 1:100, BioLegend), anti-F4/80-Bio
(CI:A3-1, 1:200, Serotec), anti-Gr-1-Bio (RB6-8C4, 1:400, BD Biosciences), Strep-
tavidin Microbeads, Milteny Biotec.) and CD19þ cells (CD19 Microbeads, Milteny
Biotec.) using an autoMACS pro-separator (Miltenyi Biotec). CLPs (live,
CD45þLin�CD122�CD127þCD135þCD244þ ), pre-NKPs (live, CD45þ

Lin�CD122�CD127þCD135�CD244þ ), NKPs (live, CD45þLin�CD122þ

CD244þCD27þCD49b�NKp46� ), mNK (live, CD45þLin�CD122þCD244þ

CD49bþNKp46þ ) and eNK cells (live, CD45þLin�CD122þCD244þCD49bþ

NKp46� ) were sorted with an AriaIII Sorter directly into RLT lysis buffer (Qiagen)
or into MyeloCult M5300 media if further in vitro culturing was required. The
following markers were included in the lineage staining (anti-CD3 (17A2, 1:100,
BioLegend); anti-CD19 (1D3, 1:200, BD Biosciences); anti-CD14 (mC5-3, 1:400,
BD Biosciences); anti-Gr-1 (RB6-8C4, 1:400, eBioscience), anti-CD8 (53-6.7, 1:400,
BD Biosciences); anti-CD4 (GK1.5, 1:400, BD Biosciences). The characterization
of NKPs was performed according to Fathman et al.30

In vitro culture with IL-12. Sorted NKPs were cultured in MyeloCult M5300
media (Stem Cell Technologies) with either Fc or IL-12Fc (100 ng ml� 1) for
6 h before further lysed in RLT buffer (Qiagen). NKPs from BM of WT or
Rag2� /� Il2rg� /� mice were cultured on OP-9 cells in 96-well plates in Myelo-
Cult M5300 media (Stem Cell Technologies) with either IL-12 (100 ng ml� 1),
IL-15 (100 ng ml� 1) or no cytokine. After incubation for 4 days at 37 �C, cells were
collected and analysed by flow cytometry. 4T1 cells were seeded in 24-well plates
and cultured with either Fc or IL-12Fc (100 ng ml� 1) for 28 and 48 h. Total
number of cells were counted using a Neubauer chamber.

Adoptive transfer. CD45þCD3�CD122þCD49bþNK1.1low or NK1.1þ NK
cells were isolated from the spleen of IL-12-treated WT mice. 200.000 CD45þ

CD3�CD122þCD49bþNK1.1low or NK1.1þ NK cells were injected via the tail
vein into Rag2� /� Il2rg� /� mice. The phenotype of the transferred cells was
analysed in the lung of these mice 7 days after injection by flow cytometry.

Quantitative real-time PCR. RNA was isolated from CLPs, pre-NKPs, NKPs,
eNK cells, mNK cells and 4T1 cells using the Qiagen Micro or Mini Kit according
to the manufacturer’s protocol. Random primers (Invitrogen) were used for
synthesis of complementary DNA. The following primers were used for quanti-
tative real-time PCR using a CFX384 Cycler (Bio-Rad Laboratories): Il12rb1

50-CGCAGCCGAGTAATGTACAAG-30 and 50- CGCAGCCGAGTAATGT
ACAAG-30 , Il12rb2 50-TGTGGGGTGGAGATCTCAGT-30 and 50-TCTCCT
TCCTGGACACATGA-30 , Pol II 50-CTGGTCCTTCGAATCCGCATC-30 and
50-GCTCGATACCCTGCAGGGTCA-30 , Ifng 50-GCATTC ATGAGTATTGCC
AAG-30 and 50-GGTGGACCACTCGGATGA-30 , Tbet 50-CAACAACCCCTT
TGCCAAAG-30 and 50-TCCCCCAAGCAGTTGACAGT-30 . Subsequent analyses
were performed with Excel calculating the dCt values.

Next-generation sequencing. Complementary DNA libraries were generated
from RNA purified from NK-cell populations, amplified using the SMART-seq2
Amplification Kit (Clontech), and sequenced for 200–250 million reads using 50 bp
paired-end at the Quantitative Genomics Facility in Basel. Reads were quality-
checked with FastQC. Low-quality ends were clipped (3 bases from the start, 10
bases from the end). Trimmed reads were aligned to the reference genome and
transcriptome (FASTA and GTF files, respectively, downloaded from the UCSC
mm10 repository) with STAR version 2.3.0e_r291 (ref. 52) with default settings.
Distribution of the reads across genomic isoform expression was quantified using
the R package GenomicRanges53 from Bioconductor Version 3.0. Differentially
expressed genes were identified using the R package edgeR54 from Bioconductor
Version 3.0. Sequencing information is available at the European Bioinformatics
Institute (EBI; ENA: PRJEB15668).

Killing assays. Lung NK cells (live, CD45þCD3�CD122þCD49bþ ) were sorted
with an BD FACSAria III sorter. YAC-1 cells were stained with PKH26 Red
Fluorescent Cell Linker Mini Kit (Sigma, MINI26-1KT). NK cells were incubated
with YAC-1 target cells at an effector:target ratio of 6:1 in RPMI supplemented
with 10% FCS for 5 h at 37 �C in 5% CO2. After removal of medium, Topro
(0.8 mM) was added to the cells and cells were acquired on a LSRII Fortessa flow
cytometer (BD). Data were analysed using FlowJo Version X (Tree Star). The
percentage specific lysis was calculated as followed: [(Experimental lysis—
spontaneous lysis)/(maximum lysis—spontaneous lysis)]� 100%.

For in vivo killing assays, Rag2� /� Il2rg� /� mice were injected three times
every two days with 200 ng of IL-12Fc. eNK cell depletion was performed by
injecting 50 ml of anti-asialo GM1 antiserum (Wako Pure Chemical Industries,
Japan) twice starting 1 day before IL-12Fc treatment. Together with the third
injection of IL-12Fc, mice were injected with 2� 106 MC38-GFP tumour cells.
Twenty-four hours later, animals were perfused with PBS and lungs were removed.
The percentages and total numbers of MC38-GFP cells and CD49bþCD122þ cells
in the lungs was analysed by flow cytometry.

Cytospin and May–Grünwald–Giemsa staining. Morphological analysis was
performed by cytospin (1� 105 cells per sample) followed by May–Grünwald–
Giemsa staining. Images were taken with an Olympus BX41 microscope using the
cell^B software (Version 2.8).

Enzyme-linked immunosorbant analysis. IL-12 levels were measured using a
mouse IL-12 (p40) ELISA kit according to the user manual (BD OptEIATM, 555165).

Statistics. P values were calculated using GraphPad statistical software (GraphPad
Software Inc.). P values o0.05 were considered significant. *Po0.05; **Po0.01;
***Po0.001. If no stars are indicated, no statistically significant difference was
found.

Data availability. Sequencing information is available at the European Bioinfor-
matics Institute (EBI; ENA: PRJEB15668). The authors declare that all data are
available within the Article and its Supplementary Information files, or are avail-
able from the author upon request.
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