UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Three Dimensional Bistatic Tomography Using HDTV

Sego, DJ; (2017) Three Dimensional Bistatic Tomography Using HDTV. Doctoral thesis , UCL (University College London). Green open access

[thumbnail of Sego_Thesis with Corrections Sego 950771 UCL RPS.pdf]
Sego_Thesis with Corrections Sego 950771 UCL RPS.pdf - Accepted Version

Download (15MB) | Preview


The thesis begins with a review of the principles of diffraction and reflection tomography; starting with the analytic solution to the inhomogeneous Helmholtz equation, after linearization by the Born approximation (the weak scatterer solution), and arriving at the Filtered Back Projection (Propagation) method of reconstruction. This is followed by a heuristic derivation more directly couched in the radar imaging context, without the rigor of the general inverse problem solution and more closely resembling an imaging turntable or inverse synthetic aperture radar. The heuristic derivation leads into the concept of the line integral and projections (the Radon Transform), followed by more general geometries where the plane wave approximation is invalid. We proceed next to study of the dependency of reconstruction on the space-frequency trajectory, combining the spatial aperture and waveform. Two and three dimensional apertures, monostatic and bistatic, fully and sparsely sampled and including partial apertures, with controlled waveforms (CW and pulsed, with and without modulation) define the filling of k-space and concomitant reconstruction performance. Theoretical developments in the first half of the thesis are applied to the specific example of bistatic tomographic imaging using High Definition Television (HDTV); the United States version of DVB-T. Modeling of the HDTV waveform using pseudonoise modulation to represent the hybrid 8VSB HDTV scheme and the move-stop-move approximation established the imaging potential, employing an idealized, isotropic 18 scatterer. As the move-stop-move approximation places a limitation on integration time (in cross correlation/pulse compression) due to transmitter/receiver motion, an exact solution for compensation of Doppler distortion is derived. The concept is tested with the assembly and flight test of a bistatic radar system employing software-defined radios (SDR). A three dimensional, bistatic collection aperture, exploiting an elevated commercial HDTV transmitter, is focused to demonstrate the principle. This work, to the best of our knowledge, represents a first in the formation of three dimensional images using bistatically-exploited television transmitters.

Type: Thesis (Doctoral)
Title: Three Dimensional Bistatic Tomography Using HDTV
Open access status: An open access version is available from UCL Discovery
Language: English
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Electronic and Electrical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/1534631
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item