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Abstract 

Concerns regarding the influence of the marine environment, such as surface currents 

and winds, on autonomous marine vehicles have been raised in recent years. A number 

of researchers have been working on the development of intelligent path planning 

algorithms to minimise the negative effects of environmental influences, however most 

of this work focuses on the platform of autonomous underwater vehicles (AUVs) with 

very little work on unmanned surface vehicles (USVs). This paper presents a novel 

multi-layered fast marching (MFM) method developed to generate practical trajectories 

for USVs when operating in a dynamic environment. This method constructs a 

synthetic environment framework, which incorporates the information of planning 

space and surface currents. In terms of the planning space, there are repelling and 

attracting forces, which are evaluated using an attractive/repulsive vector field 

construction process. The influence of surface currents is weighted against the 
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obstacles in the planning space using a 4-regime risk strategy. A trajectory is then 

calculated using the anisotropic fast marching method. The complete algorithm has 

been tested and validated using simulated surface currents, and the performance of 

generated trajectories have been evaluated in terms of different optimisation criteria, 

such as the distance and energy consumption.  

 

Key words: Anisotropic fast marching; Marine environment; Path planning; Surface 

currents; Unmanned surface vehicle 
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Nomenclature 

Roman symbols 

A   A matrix that determines the strength of the simulated currents data 

AR   Anisotropic ratio 

C   A constant equalling to 𝜌/𝑐 

c   the nominal speed of the USV 

Cfree   Collision-free space 

Cobs   Obstacle space 

C-space  Configuration space 

Datt, Drep Attractive and repulsive potential fields 

Dcum  The total distance cost  

di   The length of ith path segment 

dSA    The minimum distance that the USV should keep away from the obstacle 

𝑒p⃗    The unit vector of USV heading at p⃗  

Fatt, Frep  Attractive and repulsive vector fields 

Fbase  Base layer vector field 

Fenv   Environment layer vector field 

Fsyn   Synthetic vector field 

h   step size 

J   The integration of the relative velocity of USV to the surface currents 

M⃗⃗⃗    Intersection point of the optimal path and p⃗ 
i
p⃗ 
j
 

min_Obs The minimum distance to the obstacles 

𝑛⃗    Local ellipse direction 

p⃗    Grid point position 

p⃗ 
i
, p⃗ 

j
  Neighbouring points of p⃗  

p⃗ 
obs

   Obstacles’ locations 

p⃗ 
start

, p⃗ 
goal

 Positions of start and goal points 

r   Wave propagation speed along 𝜃    

Rβ1,β2
  Risk regime 

ra, rb  Major and minor radii along the X and Y axes of the local ellipse frame 

𝑟 𝑎, 𝑟 𝑏   The major and minor axes of the local ellipse frame 

∆𝑡   Time step 

U(p⃗ )  Wave arrival time at p⃗  

up⃗ ip⃗ j
(p⃗ )  Temporary cost at p⃗  

Vu, Vv  Two orthogonal components of currents vector field 
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W   The total energy cost 

Wi   The power consumption at each position 

Greek symbols 

𝛼   Propagation scale limit 

𝛽1, 𝛽2  Field weightings of Fenv and Fbase respectively 

𝜑   Angle between 𝑛⃗  and X axis 

𝜌   The water density 

𝜏(p⃗ )   Wave propagation speed related to p⃗  

𝜏(𝜃 (t))  Wave propagation speed related to p⃗  and orientation 

𝜃 (t)  Cost/speed vector 
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1. Introduction 

Unmanned surface vehicles (USVs) can be used in various marine applications. When 

operating individually, USVs can be deployed in pollutant tracking missions (Xu et al. 

[2006]) as well as environmental and hydrographic surveys (Caccia et al. [2005]). In 

addition, when collaborating with autonomous underwater vehicles (AUVs), a USV 

can be used as the mother ship to monitor a mission (Alves et al. [2006]) and as a 

platform for the launch and recovery of AUVs (Ferreira et al. [2006]). To successfully 

complete such missions, it is necessary to improve reliability and autonomy of the USV.  

Path planning is a critical part in the USV’s development, with the aim of using the 

algorithm to determine the optimal trajectory to guide the USV’s voyage. It not only 

determines the level of autonomy of the vehicle, but it is also the premise of the 

reliability of a mission and the likelihood of success (Statheros et al. [2008]). When 

developing the algorithm, factors such as the total path distance as well as safety are  

main concerns (LaValle [2006]). In addition, the quality of the generated trajectory, 

such as smoothness and continuity, also needs to be taken into account (Smierzchalski 

[1999]). Path planning algorithms can be generally divided into two categories: the pre-

generative approach (path generated prior to launching the USV), such as Chen et al. 

[1995], and the reactive approach (path generated while the vehicle is en route), such 

as Kamon and Rivlin [1995], which is regarded as the ‘dynamic path planning 

approach’. To calculate the path, different computational methods can be applied such 

as genetic algorithms (GAs), graph search techniques and artificial potential field 
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methods amongst others. 

GAs generate a population of possible paths which are evolved iteratively, using 

genetic operators (such as the mutation and crossover) (Goldberg [1989]) to pursue 

optimal results. However, drawbacks to GAs include a lack of convergence, which 

means the generated path may be suboptimal, as well as a lack of consistency, which 

makes the vehicle’s trajectories difficult to track. 

Compared with GAs, graph search techniques such as A* and Dijkstra’s methods have 

better consistency and convergence because they use a discretised representation of the 

environment, known as a grid map. However, as a result of the non-holonomic 

constraint of the vehicles, a further path smoothing procedure is needed (Petres et al. 

[2007]). Moreover, the computational time can be potentially high. The computational 

time is proportional to the number of grid points on the map, which is in turn dependent 

on the resolution of the graph (finer or coarser). Rapidly exploring random tree (RRT) 

approaches introduced by LaValle [1998] do not need to explicitly set any resolution 

parameters so the RRT method has the ability to explore the environment space quickly 

and uniformly using a random sampling scheme. However, the RRT approach is not 

suitable in the scenario of dynamic path planning as they are incapable of providing a 

global optimal solution with the least distance cost (Lolla et al. [2014]).  

Potential field algorithms search the path by constructing an artificial potential field 

(APF) to weigh the influences of obstacles and goal points (Andrews [1983] and Khatib 
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[1986]). These algorithms are computationally efficient, but are susceptible to the local 

minima problem (the vehicle can be trapped in a U-shaped obstacle) (Andrews [1983]). 

To address the defect of these algorithms, Wu et al. [2015] have proposed a modified 

APF method to improve the performance of path planning. The local minima problem 

has been addressed by integrating a wall-following method, which enables the vehicle 

to move away from the ‘trapped’ point by following the edge of the obstacle. In addition, 

a combinatorial strategy has been proposed by combining the APF with the ant colony 

optimisation (ACO). The ACO is utilised for global path planning with the generated 

path being used as the primary guidance route. When the vehicle encounters a moving 

obstacle, or experiences a change of the environment, the APF will be used as a local 

path planner to modify the path and avoid collisions. However, such an algorithm may 

increase the computational burden because additional algorithms are added. An 

alternative is to create the potential field which has no local minima. Garrido et al. 

[2008] therefore applies the fast marching (FM) method to construct such a field by 

simulating electromagnet wave propagation. The wave starts from the mission start 

point and continues to iterate until reaching the end point. The generated field will only 

have one global minima point which is located at the start point with the potential value 

being 0. 

It should be noted that the majority of the aforementioned studies focus on generating 

a collision free path but ignore environmental impact on the vehicles. The marine 

environment is an uncertain, complex and volatile space which impacts path planning 
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as evidenced from experiments carried out by Song [2014] when a discrepancy caused 

by surface currents was found to exist between a planned path and the actual trajectory 

track taken by a USV. Such discrepancy can jeopardise marine vehicles’ missions, 

especially when vehicles have limited operating speed and relatively small dimensions 

and displacements. It is therefore very important to consider the influences of 

environmental factors when developing the path planning algorithms for marine 

vehicles.  

Agarwal and Lermusiaux [2011] used the level set method to solve the environmental 

influence problem for AUV path planning. Petres et al. [2005] used the anisotropic fast 

marching (AFM) method to address similar problems but in an environment where 

relatively stronger currents exist. The AFM is an improved version of the FM method 

with higher computational efficiency than the level set method (Agarwal and 

Lermusiaux [2011]). Also, the optimal collision free path generated by the AFM is able 

to provide the guaranteed convergence, which has been intuitively explained in 

Konukoglu et al. [2007] and mathematically proven in Mirebeau [2014]. However, 

these studies have only been applied on AUV platforms, where only the constraints of 

deep ocean currents and collision avoidance (limited distance to the obstacles) are 

considered. For surface vehicle navigation, additional constraints such as wind, tidal 

currents and traffic regulations such as COLREGs also need to be considered, for 

which the conventional AFM cannot implement. 

To address the shortcomings, an improved AFM named as the multi layered fast 



9 
 

marching (MFM) method has been proposed with initial work presented in Song et al. 

[2015]. However, the improved AFM only considers a time-invariant environment with 

no surface current changes. Additionally, an obstacle’s impact on the USV is assumed 

to be uniform regardless of location changes. In this paper the framework has been 

improved by adding a geometrical analysis to assist with minimising the negative 

effects from both physical obstacles (coastal lines and islands) and environmental 

factors, such as currents and wind. An attractive/repulsive vector field construction 

process, a 4-regime risk strategy and two operation handlers have been developed to 

process and evaluate the environmental conditions. These modifications make 

important improvements to the method with the main focus being on generating a 

feasible trajectory in the presence of dynamic surface currents, while striving for 

distance and energy optimisation. This new multi-layered concept can facilitate the path 

planning algorithm to generate an optimal trajectory by layering various constraint 

costs in a complex environment. 

This paper is organised as follows: Section 2 defines the problem and introduces the 

relevant notation. Section 3 briefly explains the conventional FM and the AFM methods, 

which have been adopted as the basis of the proposed algorithm. The structure and 

implementation of the new path planning algorithm are discussed in Section 4. 

Simulation results in self-constructed environments and complex environments are 

presented in Section 5. Conclusions are presented at Section 6. 

  



10 
 

2. Problem statement 

To achieve the autonomous navigation of USVs in the practical maritime environment, 

two critical problems need to be addressed. The first is: Can the algorithm intelligently 

prioritise a number of different missions in different environments? For example, when 

the USVs take small-scale ocean missions, such as the bathymetric surveys and data 

collection in hostile areas or cluttered environments, the collision avoidance capability 

has the highest priority compared to other requirements. Comparatively, undertaking 

large-scale missions, such as cooperating with AUVs to observe ocean movements, 

energy efficiency becomes critical. Interest now lies in increasing the endurance of the 

USV, hence an energy efficient path planning algorithm is necessary. 

The second problem is: Can the algorithm generate a feasible and optimal trajectory in 

a complex maritime environment including changing surface currents? Surface currents 

have a direct effect on the displacement of the vehicle along its generated trajectory. 

Especially in strong surface currents, how best to make the trade off between the 

optimisation criteria, such as safety and other costs including energy cost, travel time, 

and trajectory distance? Downstream surface currents can help to reduce energy 

consumption, but it may sacrifice the distance cost or even total energy cost hence, the 

question is complex to answer. In some circumstances, such as unflavoured surface 

currents, cross currents operation is necessary. 
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To address the aforementioned problems and challenges, a hybrid algorithm combining 

the conventional algorithms becomes necessary in order to optimise the path planning 

of a USV. Whilst the potential field method potentially offers a good solution the 

challenges are:  

 Develop a pre-analysis process to construct a comprehensive environment 

framework representing the environment of interest.  

 Design and employ the governing principles and equations to evaluate the obstacles 

and environmental influence priorities. 

 Apply the path searching algorithm to generate an optimal trajectory. 

2.1 Environment framework 

In the majority of previous work, the path planning algorithm has been primarily applied 

on the configuration space (C-space), which consists of obstacle space (Cobs) and 

collision-free space (Cfree). Within the C-space, the movement of the USV can be 

represented as a configuration, i.e. a vector specifying all the motions of the USV such 

as its position and orientation (LaValle [2006]). Overall, C-space is a set of all possible 

configurations.  

A new environment framework is constructed here to represent both obstacles and 

environmental influence in the form of a vector field. This framework is called the 

Synthetic Vector Field (Fsyn) and includes two main layers:  
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1) The C-space is the base layer of the Fsyn, denoted as Fbase, which can be obtained 

from the data acquisition module of the USV’s navigation system (Liu et al [2015]). 

Normally, the base layer is represented as a binary grid map, where the obstacle and 

collision free space are distinguished in black and white. Configuration at each grid has 

its coordinate relative to the C-space frame coordinate, and has the corresponding 

weighting with values of 0 (Cobs) or 1 (Cfree). Only static obstacles, such as islands and 

coastlines are considered.  

2) The environmental influence factors such as surface currents are represented as the 

environment layer, denoted as Fenv. Here, it is assumed that the surface currents are 

known in advance. Such data are available from a tidal atlas or admiralty charts for 

different time periods and are predictable for different astronomical influences. Even 

though the data associated with surface currents contain uncertainties, it is a reasonable 

assumption that satisfactory currents data models can be established by calculating the 

mode or the mean of the predicted surface currents. In addition, it was assumed in Lolla 

et al. [2015] that the distance travelled by a USV is much longer than the vehicle’s 

overall length, hence the interaction between the vehicle and the currents can be 

regarded as purely kinematic, namely the fluid dynamics are ignored.  

As the Fenv is represented in the vector field format, the Fbase needs to be vectorised to 

have the same format, which can be achieved using the conventional FM method and 
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the central differential method. The details of the vectorisation and the construction of 

Fbase will be explained in Sections 4.1 and 4.2, respectively. 
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3. Methodologies 

The conventional FM method and the AFM method are the main methodologies used 

to create the comprehensive environment framework (Fsyn) and to calculate an optimal 

trajectory. 

3.1 Fast marching method 

The FM method is a level-set method introduced in imaging processing (Caselles et al. 

[1995]). Its aim is to generate an arrival time map U that satisfies the Eikonal equation, 

which describes a wave front propagation scenario. The Eikonal equation can be 

expressed in the form of: 

 ‖∇U(p⃗ )‖τ(p⃗ )=1, (1) 

where τ(p⃗ ) is the wave propagation speed that is related to position p⃗ = (𝑥, 𝑦). The 

solution U(p⃗ ) is the wave arrival time at p⃗ . Note that U(p⃗ ) can be interpreted as the 

distance cost from the start point to p⃗ , if the wave propagation has a constant speed.  

Both Sethian [1996] and Tsitsiklis [1995] have provided an individual algorithm to 

numerically solve the Equation (1). Tsitsiklis’s method will be explained in detail as its 

concept has been adopted as the basis for the AFM method to search for the optimal 

path in Fsyn. 



15 
 

As shown in Fig. 1(a), if the optimal path to p⃗  arrives from northwest and intersects 

p⃗ 
i
p⃗ 

j
 at M⃗⃗⃗ , the arrival time at p⃗  can be computed from p⃗ 

i
 and p⃗ 

j
, denoted as up⃗ ip⃗ j

(p⃗ ), 

and expressed as: 

 
up⃗ ip⃗ j

(p⃗ )= min
t1t2

(t1up⃗ i
+t2up⃗ j

+
√𝑡1

2+𝑡2
2

τ(p⃗ )
), (2) 

where up⃗ i
 and up⃗ j

 are the arrival time at p⃗ 
i
 and p⃗ 

j
 respectively. t1 and t2 satisfy the 

following conditions: t1 + t2 = 1 and t1, t2 > 0. Note that U(p⃗ ) in Equation (1) represents 

the total cost at the grid point p⃗ . The value of U(p⃗ ) is fixed and does not change while 

the algorithm is iterating; whereas, up⃗ ip⃗ j
(p⃗ ) in Equation (2) is a temporary cost at p⃗ , 

which is calculated from neighbouring p⃗ 
i
  and p⃗ 

j
 . In this paper, the 4-geometry 

connection scheme (8 neighbours around p⃗  , see Fig. 1b) is adopted to describe the 

neighbour points allocation. Therefore, eight different up⃗ ip⃗ j
(p⃗ )  values will be 

calculated and compared. The smallest one will be selected and set as U(p⃗ ).  

As a grid map based algorithm, the time complexity of the FM is O(NlogN), where N 

is the total number of grid points in the domain of interest. In addition, the travel of the 

wave front follows a circular cost/speed characteristic at each p⃗   so there is no 

directional preference, which means that the 8 neighbouring points of p⃗  have the same 

priority when they are updated. 

3.2 Anisotropic fast marching method 

It is required to take the effect of vector orientation into consideration when the path 

planning algorithm is applied to the synthetic vector field (Fsyn), where any useful 
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information is expressed in the vector form. However, from Equation (2), it can be 

observed that the conventional FM method only takes the distance cost into account. 

To integrate the orientation information, the conventional FM method was improved in 

Lin [2003], to a new algorithm named as the ‘anisotropic fast marching algorithm’ 

(AFM). The AFM algorithm uses a similar strategy to the FM method making the 

AFM’s time complexity remain as O(NlogN), where N is the total number of grid points 

in the domain of interest. The AMF algorithm is described in Algorithm 1. There are 

three types of point sets defined as: 

 the Accepted set in Algorithm 1 is defined as the set of the configuration points with 

the updated U values. The U values will not be changed when the algorithm is 

executing;  

 the Trial set is the set of configuration points that have had their U values calculated 

and that are going to be updated;  

 and the Far set is the set of all other configuration points that have not had their U 

values computed.  

The updating scheme of the AFM is described in Algorithm 2, where up⃗ ip⃗ j
(p⃗ )  is a 

temporary U value of p⃗  and is expressed as, 

 

up⃗ ip⃗ j
(p⃗ )= min

t∈[0,1]
(tup⃗ i

+(1-t)up⃗ j
+

‖𝜃⃗⃗ (t)‖

τ(𝜃⃗⃗ (t))
). (3) 

Here 𝜃 (t)=p⃗ − (𝑡p⃗ 
i
+ (1 − 𝑡)p⃗ 

j
) is a vector that gives the direction of the cost/speed 

profile (see in Fig. 2b). ‖𝜃 (t)‖ is the distance between p⃗  and the intersection point 
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between p⃗ 
i
 and p⃗ 

j
. The wave propagation speed is now dependent on orientation as 

denoted as τ(𝜃 (t)). To simplify the notation, 𝜃 (t) is replaced as 𝜃  in the following 

sections. 

In contrast to the conventional FM method, the local cost/speed characteristic of the 

AFM method is no longer circular. In Lin [2003], an elliptical shape was used to 

represent the local cost/speed model as it is easy to convert to a circle (conventional 

FM case). The direction of each vector on the synthetically generated vector field is 

defined as the major axis of the ellipse; while its minor axis is perpendicular to the 

vector’s direction. In this case, the wave front travels along the major axis as the 

propagation preferred direction. In the general case, the ellipse speed profile is 

described as: 

 
x2

ra
2
+

y2

rb
2
= 1, (4) 

where ra and rb are the major and minor radii along the X and Y axes of the local ellipse 

frame. If the ellipse is along a direction of 𝑛⃗ , and the wave front comes from the first 

octant (as shown in Fig. 2b), then the radius r along 𝜃 , satisfies: 

  𝑟2 (
(cos ∠(𝜃⃗⃗ ,𝑛⃗ ))

2

ra
2

+
(sin∠(𝜃⃗⃗ ,𝑛⃗ ))

2

rb
2

) =1, (5) 

where ∠(𝜃 , 𝑛⃗ ) is the angle between 𝜃  and 𝑛⃗ , r is used as the wave propagation speed 

along the 𝜃  direction, hence τ(𝜃 ) in Equation (3) can now be written as: 

 τ(θ⃗ )=
1

√(cos ∠(𝜃⃗⃗ ,𝑛⃗⃗ ))
2

ra
2 +

(sin ∠(𝜃⃗⃗ ,𝑛⃗⃗ ))
2

rb
2

=
‖𝜃⃗⃗ ‖

√(θx cos φ)2

ra
2 +

(θy sin φ)
2

rb
2

, (6) 

where φ is the angle between 𝑛⃗   and X axis. θ𝑥  and θ𝑦  are the components of 𝜃  



18 
 

along the X and Y axes. Therefore, Equation (3) can be rewritten as, 

 up⃗ ip⃗ j
(p⃗ )= min

t∈[0,1]
(tup⃗ i

+(1-t)up⃗ j
+√(θx cos φ)2

ra
2

+
(θy sin φ)

2

rb
2

). (7) 

As described in Algorithm 1, the AFM algorithm is terminated once the Trial set is 

empty. After this propagation process, a potential field can be generated with the highest 

potential value (U value, the arrival time cost) located at the end point p⃗ end, while the 

lowest one is at the start point p⃗ start (potential is 0). A path can now be extracted from 

p⃗ end to p⃗ start following a gradient descent manner in this field. 

Algorithm 1 AFM 

Input: start point p⃗ start, end point p⃗ end 

1.  Initialisation add p⃗ start into the Trial set, where U(p⃗ start) = 0 

2.   add all other points p⃗  into the Far set, where U(p⃗ )=∞ 

3.  p⃗ c = p⃗  start 

4.  while Trial set is not empty  

5.  Do move p⃗ c from Trial set to the Accepted set 

6.   move 8 neighbours (p⃗ i) of p⃗ c into the Trial set,  

if p⃗ i ∈ Far set 

7.   update U values according to each neighbour using 

Algorithm 2 

8.   let p⃗ c be the point with the smallest U value in the Trial 

set 

9.  end while  

 

Algorithm 2 Updating scheme of the AFM 

Input: neighbour point p⃗ i, p⃗ j 

1.  Initialisation define p⃗ i and p⃗ j are a pair of two vertex points in the eight octants of 

p⃗  as shown in Fig. 2 (a) 

2.   for all eight pairs of p⃗ i and p⃗ j 

3.   
compute up⃗ ip⃗ j

(p⃗ )  

4.   end for 

5.   
𝑈(p⃗ ) = min {up⃗ ip⃗ j

(p⃗ )} 
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4. Multi-layered fast marching path planning approach 

4.1 Algorithm structure 

Fig. 3 outlines the schematic of the multi-layered fast marching (MFM) approach. The 

main concept is to apply the AFM algorithm on a pre-processed synthetic tensor field 

map to search for an optimal collision free path. As depicted in Fig. 3, the pre-processed 

synthetic tensor field map is generated from two-layered information. The first layer is 

called the Base Layer, which represents the general navigation information and mainly 

reflects the influence of static obstacles. The base layer has two sub-layers: 1) Attraction 

layer, on which the goal point of a path is given from the specific mission requirement 

and 2) Repulsion layer, where static obstacles information, such as islands and 

coastlines, is provided from the chart.  

The second layer is named the Environment Layer. It contains sub-layers of all the 

information of environmental factors that can affect a USV’s voyage, such as currents 

and wind. All the information (in the base and environment layers) used to search for a 

path is integrated and converted into a synthetic Tensor Field (TF). Two new operation 

handlers are developed to help the construction of the synthetic vector field and the 

tensor field. Details of how to obtain the synthetic TF and the strategies for the 

optimisation will be illustrated in the following sections. The final optimal path is then 

generated by applying the AFM algorithm and the gradient descent method onto the 

synthetic TF.  

4.2 Base vector field 
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In general, environmental disturbances, such as currents, are expressed in vector form, 

so it is necessary to vectorise the base layer information before merging it with any 

environmental information. A novel FM method based C-space vectorisation approach 

has been developed, named the attractive/repulsive vector field construction process.  

Attractive/repulsive vector field construction process 

This process consists of two steps: 1) using the FM method to generate attractive and 

repulsive potential fields, implicitly reflecting the risk (or influential strength) of the 

obstacles and attraction from the mission goal point and 2) calculating the gradients of 

the two potential fields to get the corresponding vector fields. In the first step, the FM 

method is run twice to obtain the attractive potential field, denoted as Datt, and the 

repulsive potential field, denoted as Drep, where the calculated distances represent the 

potential values. Datt and Drep can be calculated with expression of: 

 Datt(x,y)←FM(p⃗ 
goal

), (8) 

 Drep(x,y)←FM(p⃗ 
obs

,α),       α∈[0,1] (9)

 

 

where p⃗ goal is the goal point location and p⃗ obs is the obstacles’ locations in the C-space. 

FM(•) represents the procedure of running the FM method on the C-space, whereas 

FM(•,α ) represents the same FM process but with a new propagation scale limit 

αintroduced. In the latter process, after running the FM method, potential values of all 

points will be compared with α, and any values higher than α will be reset to α, which 

has been mainly introduced to control the influence area of obstacles. For example, as 

shown in Fig. 4, when α increases, the influence area of obstacle also increases. Also, 
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the higher the potential, the safer the position is. 

Fig. 5(a) depicts a simulated environment with two small islands located between a 

channel, where the start and goal points are represented by a shaded red circle and a red 

star respectively, and the obstacle areas are depicted in black. The generated Datt and 

Drep are shown in Figs. 5(b) and (c), where the greater the distance to the goal point (or 

obstacle), the higher the potential. 

In the second step of the attractive/repulsive vector field construction process, the Datt 

and Drep are vectorised by calculating the gradients as: 

 

(Fattx
,Fatty

)=∇(Datt)=(
∂Datt

∂x
,

∂Datt

∂y
), (10) 

 

(Frepx
,Frepy

)=∇(Drep)=(
∂Drep

∂x
,

∂Drep

∂y
). (11) 

∇(Datt)and ∇(Drep) are further normalised respectively. In this case, the Fatt and Frep 

become unit vector fields, which means that every element (Fx, Fy) in the Fatt and Frep 

satisfies:  

 Fx
2+Fy

2=1. (12) 

Base vector field construction process 

In Song et al. [2015], the base vector field (Fbase) is obtained by adding the Fatt and Frep 

together. However, to simplify the procedures it does not consider the influential 

strength at each point on the C-space. Therefore, in this paper the Fbase is generated as 

a weighted combination of Fatt and Frep as shown in Fig. 5(f), given by: 

 Fbase=Fatt×Datt+Frep×(1-Drep), (13) 

where Fatt×Datt and Frep×(1-Drep) represent the attractive forces pointing towards the 
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mission goal point as shown in Fig. 5(d); and the repulsive forces from the obstacles as 

shown in Fig. 5(e), where α. 

4.3 Environment vector field 

The predicted global ocean environmental data can be obtained from online resources 

such as the National Centre for Atmospheric Research (NCAR) and THREDDS data 

server (TDS). The surface currents vectors are provided as the North/East orthogonal 

vector components with the information for a particular time is stored in a NetCDF data 

format. However, as the data is obtained from the satellites observation, the highest 

precision is 2 km (Saha et al. [2011]). Because the domain of interest in this paper is 

within the 5 NM region (based on the effective range of most modern navigation radars 

and identification devices), the precision of the online data becomes relatively low and 

not suitable for this research. Simulated current information is therefore adopted in this 

paper.  

To simulate the surface currents with complex spatial variability, the FM method is 

applied to generate an isotropic power spectrum. Fig. 6(a) shows a ‘gyre’ flow generated 

with randomly selected centres’ positions ( p⃗ co). The central difference method and 

normalisation are then applied to calculate the two orthogonal components, denoted as 

Vu and Vv, of the ‘gyre’ flow and form the flow vector field, given by:  

  Fenv=Vu+Vv, (14) 

  Vu(x,y)=∇(Du)=(
∂Du

∂x
, 

∂Du

∂y
),  (15) 
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where 
∂Du

∂x
 has the similar expression with 

∂Du

∂y
, and is written as: 

  
∂Du

∂x
=A*

{
 
 

 
 (

Du(x+1,y)-Du(x-1,y)

2h
),                x = 2,3,…,N; y =1,2,…,M

(Du(x+1,y)-Du(x,y))

h
,                                x=1; y =1,2,…,M

(Du(x,y)-Du(x-1,y)))

h
,                               x=N; y =1,2,…,M

, (16)

 

 

where N and M represent the number of the grids along the X and Y axes respectively, 

and h is the step size. A is a matrix having the same dimensions as 𝑽u. The values of A 

depend on surface currents data and determines the strength of the simulated 

environmental disturbance. 

4.4 Synthetic vector field 

Once the Fbase and Fenv are obtained, the final synthetic vector field (Fsyn) is calculated 

as a function of Fbase and Fenv with expression of: 

 Fsyn=β
1
Fenv+β

2
Fbase, (17) 

where β
1
  and β

2
  are two field weightings for Fenv and Fbase respectively with the 

constraint of β
1
+ β

2
= 1. According to Equation (17), the Fsyn generated from Fig. 5(f) 

and Fig. 6(a) is shown in Fig. 6(b). The values of β
1
 and β

2
 are determined based 

upon a 4-regime risk strategy, which will be explained in the next subsection. 

4.5 Operation handlers 

As illustrated in Section 2, the energy cost and the obstacles influence are two of the 

main concerns when considering the environmental influence in path planning. 

Therefore, to address these two problems, two operation handlers are specifically 
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introduced into the MFM approach: one is called the anisotropic ratio (AR), and the other 

is the field weightings (β).  

Anisotropic ratio 

In the MFM approach, using the concept proposed in Section 3.2, AR is introduced to 

control the angle between the vehicle’s heading and the local synthetic vector to make 

the generated trajectory follow the vector’s guidance. AR can be expressed as: 

  AR = 
‖𝑟 𝑏‖

‖𝑟 𝑎‖
,        AR ∈ [0,1].  (18) 

where 𝑟 𝑎 represents the major axis of the local ellipse frame, with ‖𝑟 𝑎‖ equalling to 

the major radius of the local tensor. 

The value of AR ranges from 0 to 1. Explicitly, the tensor shape changes with the value 

of AR, as shown in Fig. 7. Implicitly, the AR has an effect on the orientation guidance 

of the vector field of interest as shown in Fig. 8. It can be seen that when AR=1, the 

MFM method ignores the vector field guidance. When AR tends to 0, the influence of 

the orientation guidance increases. However, it can be observed that when the AR value 

is below 0.04, the initial part of the trajectory does not follow this trend, as shown in 

Fig. 8(h) and (i). This is because when the value of AR is relatively small, the resolution 

of points in the Far set (refer to Algorithm 1) is low compared to those points in the 

Accepted set. 

Field weightings 
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The field weightings are the parameters representing the weightings of the 

environmental influence (β
1
) and the obstacle influence (β

2
). To apply the MFM path 

planning approach into dynamic path planning, where the surface currents change with 

time, the specific values of β
1
 and β

2
 need to be adaptively obtained based upon the 

real environment. To specify the values of β
1
 and β

2
, a new risk analysis scheme, 

named the 4-regime risk strategy, has been proposed. The schematic of the 4-regime 

risk strategy is depicted in Fig. 9. A risk domain is constructed to represent the 

relationship between the obstacles influences and the environmental influences.  

Two risk coefficients termed min(d[p⃗⃗ , p⃗ obs]) and E(p⃗ )=|Vu∙Vv| are introduced and used 

in Equation (19) to (22) to evaluate mission priority based upon risk assessment. The 

min(d[p⃗ , p⃗ obs]) indicates the minimum distance between the USV position (p⃗ ) and all 

obstacles (p⃗ obs), and the E(p⃗ )=|Vu∙Vv| is defined as the local surface currents strength at 

p⃗ . According to the risk coefficients, the risk domain is divided into four regimes and 

the values of β
1
 and β

2
 are defined as follows. 

1) Regime I (R1
β1,β2

): 

 R1
β1,β2

∈ {p⃗ |𝑑𝑆𝐴<min(d[p⃗ ,p⃗ 
obs])<

1

2
rng(obs)&min(E)<E(p⃗ )<

1

2
rng(E)}, (19) 

2) Regime II (R2
β1,β2

) : 

 R2
β1,β2

∈ {p⃗ |𝑑𝑆𝐴<min(d[p⃗ ,p⃗ 
obs])<

1

2
rng(obs)&

1

2
rng(E)<E(p⃗ )<max(E)}, (20) 

3)  Regime III (R3
β1,β2

): 

 R3
β1,β2

∈ {p⃗ |
1

2
rng(obs)<min(d[p⃗ ,p⃗ 

obs])<max(d[p⃗ ,p⃗ 
obs])&min(E)<E(p⃗ )<

1

2
rng(E)},(21)  
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4)  Regime IV (R4
β1,β2

): 

 R4
β1,β2

∈ {p⃗ |
1

2
rng(obs)<min(d[p⃗ ,p⃗ 

obs])<max(d[p⃗ ,p⃗ 
obs])&

1

2
rng(E)<E(p⃗ )<max(E)},(22) 

where rng(obs) is the obstacle range between dSA and max(d[ p⃗⃗ ,  p⃗⃗ obs]). dSA is the 

minimum distance that the USV should keep away from the obstacle (shown in Fig. 10). 

max(d[p⃗⃗ , p⃗⃗ obs]) is the maximum distance from p⃗⃗  to p⃗⃗ obs. rng(E) is the surface currents 

flow range between the min(E) (i.e. the minimum value of E(p⃗⃗ )) and the max(E) (i.e. the 

maximum value of E(p⃗⃗ )) in the framework. 

In Fig.9 each regime is used to assess the combined environmental and obstacle 

influence. For example, when the two risk coefficients are located in Regime I, L/H, it 

represents low environmental influence and high obstacle influence. It can be observed 

that in Regime I and II, the mission priority is given to obstacle avoidance. In Regime 

IV, the priority is to follow the surface currents direction to save energy. While in 

Regime III and on the two boundaries (green lines), the priorities of obstacle avoidance 

and energy saving are the same, and the USV is in a safe voyage mode.  

Based on these four regimes, β
1
 and β

2
 are calculated as shown in Table I, with the 

constraint β
1
+ β

2
= 1. Particularly, when the two risk coefficients lie on the green lines 

in Fig. 9 (min(d[p⃗ ,p⃗ 
obs])=

1

2
rng(obs) and E(p⃗ )=

1

2
rng(E)), β

1
=β

2
=0.5.   
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5. Simulations and results  

The proposed MFM approach has been tested and verified via three different simulations 

in a static environment subject to variant and invariant surface currents as: 

1) Path planning in a time-invariant environment with the purpose to evaluate the 

performance of the orientation guidance capability of the MFM approach (Section 5.1). 

2) Path planning controlled by operation handlers to validate the impacts of the two 

operation handlers, namely anisotropic ratio (AR) and field weighting (β(Section 5.2). 

3) Path planning in a time-variant environment to validate the dynamic path planning 

capability of the MFM method. Two different scenarios have been considered in this 

simulation: a) surface currents are stationary but the USV keeps changing positions 

(Section 5.3.1); b) surface currents vary with time and the USV keeps moving along the 

planned trajectory (Section 5.3.2).  

The path planning methods have been coded in MATLAB and simulations are run on 

the computer with a Pentium i7 3.4 GHz processor and 8GB of RAM. The simulation 

area is presented in Fig. 11(b) with dimension of 2*2 km, which is rasterised to a 

uniform, 500*500 grid map (the size of each grid is 1*1 pixel, and 1 pixel equals to 4 

m). The magnitude range of the currents velocity is between 0 to 1 m/s. To quantitatively 

assess the performances of the generated paths, three types of evaluations are 

considered:  

 the minimum distance to the obstacles, denoted as min_Obs, is calculated as: 
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  min_Obs = min[d(p⃗ ,p⃗ 
obs

)] (23) 

where 𝑝  is the USV current position, 𝑝 𝑜𝑏𝑠 are the positions of all obstacles in the 

environment and d(p⃗ ,p⃗ 
obs

) returns the distances between 𝑝  and 𝑝 𝑜𝑏𝑠. min[] is the 

process that extracts the minimum value from d(p⃗ ,p⃗ 
obs

). 

 the total distance cost can be represented as the cumulated distance over the entire 

running time, and can be expressed as: 

  Dcum= ∑ 𝑑𝑖
𝑛
𝑖=1 ,  (24) 

where 𝑑𝑖 is the length of ith path segment during time ∆t, n is the total number of 

path segments. 

 the total energy cost, which is the sum of the power consumption at each position, 

can be expressed in the form of: 

   𝑊= ∑ Wi
n
i=1 , (25) 

where n is the number of points along the trajectory. Since USVs are built in different 

types with varying power sources, ideally the energy cost should be calculated according 

to each individual propulsion system, which is difficult to measure in this paper. An 

alternative is to express the total energy cost by calculating the added energy required 

to overcome the drag force generated by the surface currents along the trajectory, and 

such a force can be expressed as the angle between the USV velocity and current velocity 

(Alvarez et al. [2004]). Therefore, the power consumption (Wi) at each position is 

calculated using the Equation (26): 
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  𝑊𝑖=
ρJ

c
, (26) 

where ρ is the water density, c is the nominal speed of the USV and J is the integration 

of the relative velocity of USV to the surface currents, expressed as: 

  J = ∬||cep⃗  − Fenv|| dx dy, (27) 

where ep⃗  represents the unit vector of USV heading at point p⃗⃗ . 

In addition, before undertaking the simulations, the following assumptions have been 

made: 

1) The hydrodynamic forces have not been considered. The USV is configured as a mass 

point, and the influence of the forces acting on the USV is regarded as the effect of 

the generated vector at each grid point.  

2) In order to facilitate the implementation of the gradient descent method to effectively 

search for the path, the mission goal point is set as the start point of the anisotropic 

fast marching (AFM) method so that the mission goal point has the lowest potential. 

Then, the gradient descent method is used to search for the path from the mission 

start point towards the goal point. 

3) The USV is operating at a constant speed of 1.5 m/s over the ground for dynamic 

path planning scenarios. 

4) A safe margin has been defined as 20 m, which is considered to be sufficient for a 

small size USV to avoid obstacles. 
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5) The water in the environment is assumed to have a constant density, which means 

that ρ is constant. As the USV speed c in Equation (26) is constant, the total energy 

cost can be evaluated as the sum of 𝑊𝑖 that is a function of J. The total energy cost, 

can, therefore be calculated in the expression of: 

  W = C ∑ Ji
n
i=1 , (28)  

where C= 𝜌/𝑐. 

5.1 Path planning in a time-invariant environment 

The conventional FM algorithm is run first. The generated potential field is shown in 

Fig. 11(a), where the colour varies from blue to red, representing different potential 

values from low to high (0 to 1 as shown in the bar chart of Fig. 11(a)). It also can be 

observed that the goal point has the lowest potential. As discussed in Section 3, the 

‘wave’ propagates in a circular shape and does not enter the obstacles’ area, which has 

been pre-distinguished using the Otsu method (Otsu [1975]). The generated off-line 

trajectory is plotted as the blue line in Fig. 11(b). The trajectory is able to successfully 

avoid obstacles. However, as the primary aim of the FM method is to achieve the 

minimum distance cost, the generated path stays too close to the obstacle, which is not 

the best option for the USV.  

The MFM algorithm is then run in the same environment using the same mission start 

and goal points. The generated potential field and trajectory are shown in Fig. 12(a) and 

Fig. 12(b). From the potential field, it can be observed that the propagation ‘wave’ does 
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not follow a circular shape but instead trends towards a ‘synthetic’ direction based on 

the synthetic tensor field as shown in the shaded red ellipses in Fig. 12(a). The green 

line shown in Fig.12(b) is the off-line path planning result using the MFM method. It 

can be observed that as the green path needs to follow the vector’s direction, the initial 

section of the path has been calculated towards northeast, which is different from the 

blue path. However, similar to the FM method’s result, the last section of the green 

trajectory is also too close to the island obstacle with potential collision risk. This is 

because the values of the two operation handlers are set as 0.5, which means that the 

obstacle influence has the same weighting as the surface currents influence.  

To further compare the two results, quantitative evaluations of the two paths are 

represented in Fig. 13. Fig. 13(a) compares the minimum obstacle distances – the 

distance of each coordinate (CO) to the closest obstacle – along the blue and green 

trajectories. It can be seen that the minimum obstacle distances for both paths are above 

0, which proves that both the trajectories have no collisions with the obstacles. However, 

from CO number 390 to 690 and 800 to 950 for the blue path; and from CO 1450 to 

1680 for the green path, the minimum obstacle distances are both below 20 m, which is 

the predefined minimum safe margin. These indicate that there is potential for collisions 

when the USV is tracking along these sections of the two trajectories. In addition, the 

total number of CO for the green path is 2030, which is 33.55% larger than the blue path 

(the number of CO is 1520). When comparing the total distance cost (shown in Fig. 

13b), the green path is 33.98% greater than the blue path. The two increasing rates are 
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almost the same, but the green path consumes less energy cost (46.27% less) than the 

blue path as shown in the bar chart in Fig. 13(c). These data indicate that by tracking the 

generated trajectory from the MFM method can save on the energy cost while keeping 

the distance cost as low as possible. In terms of the computational time, it takes 0.13 s 

for the FM method to generate the blue path and 0.85 s for the MFM method to calculate 

the green path. Although the MFM method takes a longer time than the FM method, the 

MFM method is still very fast. 

5.2 Path planning controlled by operation handlers 

5.2.1 Anisotropic ratio variation 

To verify the effects of the anisotropic ratio (AR) on the generated trajectory in the 

presence of obstacles, different AR values are tested in the same environment with the 

same mission start and goal points in Section 5.1. The path planning results and the 

performance evaluations are shown in Fig. 14 and Fig. 15. The green line in Fig. 14 is 

the calculated path when AR is 0.5, the light blue line is the path result when AR is 

increased to 0.8 and the magenta line is the generated path when AR is reduced to 0.2. It 

can be seen from Fig. 15(a) that all the three paths have no collisions with obstacles, but 

there are some parts that fall below the safety margin so there is an increased collision 

risk. In Fig. 15(b) and (c), it shows that the magenta path has the least distance cost 

(958.92 m) and the best performance to follow the currents vectors guidance (90.27 

degrees). This indicates that when controlling the AR values, the optimisation 

performance of the generated trajectory has the same trend as explained in Section 4.5, 
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namely, as AR reduces, the energy cost reduces. The average computational time of the 

three tests is 0.83 s. 

 

5.2.2 Field weighting variation 

The effects of the field weightings β
1
 and β

2
) on the generated trajectories are shown 

in this section. Two simulations are undertaken when β
2
 equals 0.5 (β

1
=1-0.5= 0.5) 

and 0.8 (β
1
=1-0.8=0.2). The generated paths are depicted in the green line and magenta 

line in Fig. 16(a) and (b) respectively. It can be seen that after increasing the obstacle 

influence (β
2
), the magenta path keeps a further distance away from the obstacles. 

Comparing the performances of these two paths, shown in Fig. 17(a)-(c), it can be seen 

that although the magenta path has longer distance cost (45.57% increased) and more 

energy cost (12.22% increased), the distances to obstacles have been increased 

significantly as is clearly shown. This indicates that as β
2
increases, the path becomes 

safer. The average computational time of generating the green and magenta paths is 0.84 

s. 

5.3 Path planning in a time-variant environment 

Two simulations have been undertaken to validate the dynamic path planning ability of 

the MFM method. In these two tests, the values of β
1
 and β

2
 are calculated according 

to Table I. Based on the simulation results shown in Section 5.2.1, the value of AR is set 

to be 0.04 in regimes III and IV of the 4-regime risk strategy, while in regimes I and II 

the value of AR is set to the same value as 2. The path recalculation process is executed 
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every 1 time step (∆t = 1) with a step size of 320 m. At each time step, the environment 

is re-analysed and a new path is generated on the updated synthetic environment 

framework. 

5.3.1 USV position changes with time 

The aim of the first simulation is to test the scenario where the USV voyage is in an 

environment with stationary surface currents. The launch and goal points for the USV 

are marked as a shaded red circle and a star in Fig. 18 with coordinates (76, 278) and 

(234, 349), respectively. The dynamic path planning results are shown in Fig. 18. The 

blue arrows represent the orientations and strengths of the synthetic vector fields at 

different time steps. The blue line is the generated path when the USV is at the launch 

point. The green lines represent the updated path results and the magenta lines are the 

USV tracked trajectory. The black circles represent the start point of each recalculation 

process. To further clarify and demonstrate the capability of the proposed algorithm, 

instantaneous values of the two operation handlers (AR and β) are represented at the 

right bottom section of each figure. 

Since the USV is close to the obstacle along the initial section of the trajectory (as shown 

in Fig. 18(a) and (b)), the mission priority has been given to collision avoidance rather 

than energy saving by using the 4-regime risk strategy analysis, and β
2
 is therefore 

assigned a higher value than β
1
. Using these two values and following corresponding 

trajectories, the magenta trajectory in Fig. 18(c) shows that the USV is able to keep a 
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safe distance away from all obstacles en route. However, as the USV moves farther 

away from the obstacles as shown in Fig. 18(c), (d) and (e), the mission priority is now 

changed to energy saving and the AR is consequently calculated to be equal to 0.04 with 

β
2
 being reduced accordingly. It can be observed that the re-planned path (green path) 

follows the orientation guidance of the blue arrows closely. It however should be noted 

that the green path cannot always guarantee the safety of the USV. For example, from 

Fig. 18(f), it can be seen that by following the green path, the USV could potentially 

collide with the obstacle. To ensure the safety of the navigation, β
2

 is therefore 

increased again to push the trajectory away from the obstacles, as shown from Fig. 18(g) 

to (i). The average computational time of the trajectory updating process, including the 

environment framework reconstruction and trajectory calculation, is around 0.91 s. 

5.3.2 USV position and currents change with time 

The second simulation shows how the dynamic path planning is undertaken in the same 

environment area in Section 5.3.1 but against dynamic surface currents. The results are 

shown in Fig. 19 where the launch point (90, 279) and goal point (323, 356) are depicted 

as a shaded blue circle and star respectively. In the free space, the black arrows represent 

the corresponding synthetic vector field. The red and yellow colours represent the 

surface currents coming from the east and west respectively with a more intense colour 

representing stronger surface currents. The blue line shows the generated path when the 

USV is located at the launch point. The green lines are the renewed path results after 

applying the MFM method upon the updated synthetic vector field and location of the 
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start point. The instantaneous USV position at different time steps is depicted as black 

circles. The sequence of black circles represents the USV tracking trajectory. 

Similar to the previous simulation, the priority of collision avoidance is higher when the 

USV moves along the initial part of the trajectory as shown from Fig. 19(a) to (c). Note 

that comparing Fig. 19(a) and (b), differences can be observed between the green path 

(re-planned path) and the blue path (initial path). The reason behind this is that as the 

surface currents coming from the east become stronger near the final section of the blue 

trajectory, β
1
 is being increased (AR decreased) to follow the guidance of the currents 

as much as possible. However, as the USV approaches the obstacles, β
2
 increases and 

the last part of the green path restores to the original trend even though the surface 

currents in Fig. 19(c) are stronger than that in Fig. 19(b). From time steps 11 to 39 as 

shown from Fig. 19(d) to (h), as the USV moves further away from the obstacles, the 

green path is updated according to the changing surface currents and follows the 

orientation guidance of the black arrows. It can be seen from Figs. 19 (f) to (h), as the 

surface currents strength increases, the green path comes too close to the middle 

obstacle. To reduce the collision risk, β
2
 starts to increase from time step 40 as shown 

in Fig. 19(i) until the collision risk is eliminated as shown in Fig. 19(k). The average 

computational time of the trajectory updating at each time step is 0.92 s. 
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6. Conclusions 

A novel multi-layered fast marching (MFM) path planning method has been developed 

to provide a practical trajectory and been tested. The path can be calculated to 

accommodate time dependent surface currents and has the advantage that it is adaptable. 

The algorithm constructs a synthetic environment framework, which consists of a base 

vector field and an environment vector field. The algorithm evaluates risks from the 

obstacles and environmental factors and ‘intelligently’ decides the mission priorities 

using the attractive/repulsive vector field construction process and the 4-regime risk 

strategy analysis. The AFM method is selected to search for an optimal path over the 

synthetic framework.  

The proposed algorithm has been validated against the conventional FM method. It 

shows that the FM method cannot take the ocean currents into account causing the 

generated path to have high collision risks in some areas. In contrast, the proposed 

MFM method provides a safer path by using two operation handlers. The path is able 

to keep a safe distance away from obstacles and saves on the energy cost by following 

counter-flow areas. In addition, the computational time of the MFM method has been 

tested to be less than 1 second, which satisfies the general sampling time requirement 

of the autopilot system of a practical USV (Naeem et al. [2006]). 

In terms of future work, the main focus will be on the improvement of the practicability 

of the algorithm. Currently, surface currents are considered as the only environmental 
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influence. Other factors such as wind also need to be taken into account, especially for 

a small sized vessel such as an autonomous sailboat (Stelzer and Pröll [2008]). Using a 

similar approach, wind can be converted into vector field and integrated onto the 

Environment Layer together with other environmental influences. In addition, to assist 

with the practical application, the proposed algorithm will extract the Base Layer 

information from the electronic navigational chart such that the practicability of the 

generated path will be increased. Moreover, when avoiding moving vessels, more 

feasible and practical manoeuvers should be adopted. COLREGs regulations can be 

integrated into the algorithm so that the most appropriate evasive action can be taken 

by the USV according to different encounter situations. When considering the 

regulations, a scheme will be developed to evaluate and prioritise the mission 

optimisation costs. The highest priority should be given to the COLREGs compliant 

collision avoidance with the distance cost having lower priority when applying the path 

searching algorithm (Tam and Bucknall [2010]). The energy optimisation will only be 

taken into consideration when the collision risk is cleared. 

Apart from the algorithm improvement, the implementation of the MFM on a practical 

USV will also be investigated. The possible platform will be Springer USV, which is a 

low-cost research vessel designed and developed by Plymouth University with the 

primary aim of undertaking pollutant tracking and environmental monitoring 

operations (Naeem et al. [2008]). Using the improved navigation guidance and control 

(NGC) system proposed in Liu et al [2015], Springer is capable of autonomously 
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planning the trajectory and robustly following the route based upon the mission 

requirements. The next step is to replace the current path planning algorithms of the 

NGC system (mainly the A* and the conventional FM method) with the MFM method 

to make the vehicle better able to deal with various tidal currents influence. It is 

expected that using the predicted tidal currents data, Springer can be used to conduct 

complicated missions in open sea areas. 
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Figures and tables 

                

  (a)               (b) 

Fig. 1 (a) the FM method updating scheme. (b) 4-geometry cell connection scheme. 
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         (a)         (b) 

Fig. 2 (a) Eight octants definition of the anisotropic FM updating scheme. (b) Schematic of calculating 

arrival time at neighbour point p⃗ . 
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Fig. 3 Schematic of the MFM method. PF and VF are short for potential field and vector field 

respectively. 
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(a)                               (b) 

 

(c)                                 (d) 

Fig. 4 Changes of potential field with different  values on a map of 500*500 grids. (a) Grid map with 

one obstacle. (b), (c) and (d) are the potential fields when α = 0.2, 0.6 and 1, respectively. The colour 

from blue to yellow represents the influence strength of the obstacle, where blue indicates the highest 

influence and yellow means there is no influence. 
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(a)                         (b)               (c) 

 

              (d)              (e)                       (f) 

Fig. 5(a) Map of the self-constructed environment, with dimension of 500*500 grids. Each grid size is 4 

m. The red dot is the p⃗ start with location at (66, 71) in the environment, and the red star is the p goal located 

at (361, 450). (b) The generated attractive potential field, Datt, by applying the FM method from the p⃗ goal. 

(c) The generated repulsive potential field, Drep, by applying the FM method from the p⃗ Obs. The coloured 

bar at right depicts the range of potential values. (d) The corresponding attractive forces (Fatt×Datt) of 

Datt. The length of the arrow represents the magnitude of force. (e) The repulsive forces (Frep×(1-Drep)) 

of Drep with α (f) The generated base vector field (Fbase).  
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(a)                                    (b) 

Fig. 6 (a) Simulated surface currents environment Fenv. (b) Generated Fsyn from Fig. 5(f) and Fig. 

6(a) with equal field weightings, namely β
1

=β
2
=0.5. 
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(a)                  (b)                   (c)                   (d) 

Fig. 7 Changes of a tensor field with different values of AR on a map of 10*10 grids. The shape of each 

tensor is represented in blue. (a) When AR=1, the tensor is a shaded circle. (b) When AR=0.5, the tensor 

is a shaded ellipse. (c) When AR=0.2, the tensor is a slim shaded ellipse. (d) When AR=0.01, the tensor is 

close to a shaded line. 
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Fig. 8 Generated trajectories with different AR. (a)-(i) are the generated paths depicted in corresponding 

potential maps when AR equals to 1, 0.8, 0.6, 0.4, 0.2, 0.08, 0.04, 0.02 and 0.01. The environment 

framework of a vector field with a single ‘gyre’ shape (represented by blue arrows) centred in the middle. 

The start and goal points are marked as the shaded magenta circle and star, respectively. The coloured 

bars at the right-hand side depict the range of potential values with colour from blue to red. 
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Fig. 9 4-regime risk strategy scheme. 
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Fig. 10 Illustrations of obstacle related definitions. 
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    (a)            (b) 

Fig. 11 Path planning results using the conventional FM method in an environment with double–gyre 

flow. (a) The generated potential field. (b) The generated trajectory, with computational time of 0.13 s. 

The start and goal points are represented in shaded circle and star.  
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(a)            (b) 

Fig. 12 Path planning results using the MFM method in the same environment with double–gyre flow as 

in Fig.11. (a) The generated potential field. (b) The generated trajectory, with computational time of 0.85 

s. Tensor field is shown in shaded red ellipses. The start and goal points are represented in shaded circle 

and star. 
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Fig. 13 Path performance comparisons between FM and MFM methods. (a) Comparison of the minimum 

distances to the obstacle. (b) Comparison of the total distance cost. (c) Comparison of the total energy 

cost. The blue results are the results of the FM method and the green ones represent the MFM results. 
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Fig. 14 Generated paths when using the MFM path planning method with the same values of field 

weighting β
1

=β
2
=0.5, but different values of AR. The magenta, green and blue colours represent the path 

when AR equals 0.2, 0.5 and 0.8, respectively. The computational time of each tests are 0.83 s, 0.82 s and 

0.84 s correspondingly. 
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Fig. 15 Performance evaluations when using the MFM path planning method with the same values of field 

weighting β
1

=β
2
=0.5, but different values of AR. (a) Comparison of the minimum distances to obstacle. 

(b) Comparison of the total distance cost. (c) Comparison of the total energy cost. The magenta, green and 

blue colour represents the results when AR equals 0.2, 0.5 and 0.8, respectively. 
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Fig. 16 Generated trajectories by using the MFM method with the same value of AR (0.2), but different 

field weightings. (a) The green line is the path when β
1

=β
2
=0.5; (b) the magenta line is the path 

whenβ
1
=0.2 and β

2
=0.8. The computational time of each tests are 0.83 s and 0.85 s correspondingly. 
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Fig. 17 Performance comparisons of the generated paths when using the MFM path planning method with 

the same value of AR, but different values of field weightings. (a) Comparison of the minimum distance 

to obstacles. (b) Comparison of the total distance cost. (c) Comparison of the total energy cost. The green 

and magenta colour represent the results when β
1

=β
2
=0.5 and β

1
=0.2, β

2
=0.8, respectively. 
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Fig. 18 Dynamic path planning results with in-variant surface currents. (a) to (f) show the generated paths 

at time step (t) equals to 1, 2, 7, 11, 16, 19, 22, 24 and 25, with step size equals to 320 m. The corresponding 

synthetic vector field is represented as blue arrows in each figure. The blue line is the generated path when 

USV at the start point, namely t =1. The green line represents the updated paths at different time steps and 

the magenta line shows the tracking trajectory of the USV. The average computational time of each time 

step is around 0.91 s. 
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Fig. 19 Dynamic path planning results with variant surface currents. (a) to (l) show the generated paths 

when the time step equals to 1, 2, 6, 11, 16, 24, 34, 39, 40, 43, 49 and 59 (step size = 320 m). The 

corresponding synthetic vector field is represented as black arrows. The colour varying from red to yellow 

represents the surface currents directions (from the east to west) and magnitudes. The blue line is the 

generated path when USV at the start point, namely t =1. The green line represents the updated paths at 

different time steps and the black circle shows the tracking trajectory of the USV. The average 

computational time of each time step is around 0.92 s. 
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TABLE I. FIELD WEIGHTINGS IN DIFFERENT REGIME 

Regime Weightings equation 

R1
β1,β2

, R2
β1,β2

 
β

2
=min(d[p⃗ ,p⃗ 

obs])/rng(obs); β
1
=1-β

2
 

R3
β1,β2

 β
1
=β

2
=0.5

 

R4
β1,β2

 β
1
=E(p⃗ )/rng(E); β

2
=1-β

1
 

 

 


