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Abstract 

The eastern Lesotho Highlands host an array of periglacial and glacial geomorphic 

features. Their analysis has provided past climate interpretations predominantly for 

cold periods, yet no multi-proxy temporally continuous palaeoenvironmental records 

exist. This study presents a palaeoenvironmental reconstruction based on 

sedimentary characteristics, fossil pollen and diatoms from an alpine wetland located 

in the Sekhokong Mountain Range. The record commences in the late Pleistocene 

with a wet period from ~16,450-14,440 cal a BP, interrupted by dry conditions from 

~16,350-15,870 cal a BP. From ~14,150-8,560 cal a BP, drier conditions are 

inferred, slowly transitioning to warmer, wetter conditions. Warmer, dry conditions 

are inferred for ~8,560-7,430 cal a BP, followed by cold, wet conditions from ~7,280-

6,560 cal a BP. A dry, warmer period occurs from ~6,560-3,640 cal a BP indicated 

by pollen, diatom and sedimentary records, followed by cool, wet conditions from 

~3,400-1,200 cal a BP. The period from ~1,110 cal a BP to present is characterised 

by progressive drying. Pronounced cold events are detected from the diatom record. 

Moisture records appear relatively specific to the topographic setting of Sekhokong 

near the Great Escarpment edge; thus likely driven by orographically constrained 

synoptic controls.   
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Introduction 

The Sani Top region of eastern Lesotho has been a focus of research on relict and 

active periglacial and glacial geomorphic features for many decades (cf. Marker & 

Whittington, 1971; Marker, 1994; Boelhouwers et al., 2002; Mills et al., 2009; Grab, 

2010; Borg, 2012). This includes the north-facing valley-heads of the Sekhokong 

Range, 3.5km southwest of the Sani Top border post (Figure 1), with initial debates 

focussing on their slope origins (Marker & Whittington, 1971; Grab & Hall, 1996; 

Marker, 1994). More recently the site has been the focus of analyses on 

environmental features responsible for gully development (Grab & Deschamps, 

2004). Most notably, the site has been investigated to develop palaeoenvironmental 

reconstructions based on variable sedimentary properties exposed along relatively 

deep wetland gullies (Marker, 1994, 1995, 1998). Further research has interpreted 

conspicuous debris ridges on the south-facing aspect of the Sekhokong Range as 

small glacial moraines (Mills et al., 2009). While these past studies have provided 

valuable information on contemporary geo-ecological stresses and some insights to 

past environments in the region, no biological proxies have yet been investigated in 

these records, limiting their interpretative capacity and potential for regional 

corroboration (Grab et al., 2005).  

 

Detailed multi-proxy, temporally continuous palaeoenvironmental studies have been 

encouraged for eastern Lesotho (Mitchell, 1992; Grab et al., 2005). With precipitation 

exceeding evaporation, the catchment is hydrologically important, supplying regional 

water transfer schemes (Zunckel, 2003; Haas et al., 2010). Despite the concerns of 

climate change to the region, past instrumental meteorological data are sparse and 

of relatively poor quality (Grab & Nash, 2010). Climate modelling projections for the 

region, essential for adaptation, therefore rely strongly on high resolution, well 

corroborated palaeoclimatic reconstructions (Ziervogel & Calder, 2003; Jones et al., 

2009).  

  

Better insight to palaeoenvironmental conditions in eastern Lesotho will also 

contribute to late Quaternary science in the sub-continent. High altitude, relatively 

high latitude for mountainous regions in the Southern Hemisphere, and frequent 
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cold-season frosts and snowfalls in eastern Lesotho, constrain the flora to only very 

hardy species (Carbutt & Edwards, 2006; Mokotjomela et al., 2009). Any climatic 

change can potentially lead to the extirpation of certain plant groups, as particularly 

cold temperatures restrict elevational range shifts (Parmesan & Yohe, 2003; Carbutt 

& Edwards, 2006; Inouye, 2008). Botanical responses to smaller climatic shifts are 

therefore more likely to be detected at high altitudes than in adjacent down-slope 

locations.  

 

This study presents a multi-proxy palaeoenvironmental reconstruction from sediment 

exposed along a 5m deep gully face on the north-facing slope of the Sekhokong 

Range. The study utilises pollen, diatoms and sediment as palaeoenvironmental and 

palaeoclimatic proxies, constrained by a radiocarbon chronology.   

 

Study Site 

The Sekhokong Mountain Range is located in eastern Lesotho, south of the Sani 

Top border post at an altitude of 2,920 m asl and with co-ordinates 29°36.517’S, 

29°15.897’E. The north-facing slope of the Sekhokong Range has at least four valley 

heads eroded into it, separated by basaltic ridges located just south of its highest 

point at Hodgson’s Peaks (Marker, 1994). The valley heads are approximately 800m 

wide and 1200m deep, each with a tributary stream flowing into a wetland at the foot 

of the slope (Marker & Whittington, 1971; Marker, 1994; Grab & Deschamps, 2004). 

The sampling site (Figure 2) is a gully side-wall formed by one such stream (Marker, 

1994: hollow C), which provided an exposed sedimentary sequence of more than 5m 

depth (Figure 3), with alternating colluvial and peat layers (Marker, 1994; Grab & 

Deschamps, 2004). 

 

Mean seasonal temperatures for the alpine belt at Sani Top vary from 10°C for 

summer (December through February) to 0°C for winter (June through August; Grab, 

2010). Precipitation in eastern Lesotho is strongly seasonal, with 70-80% falling 

between November and March, and less than 10% between May and August (Tyson 

et al., 1976). Summer precipitation is predominantly in the form of thundershowers 

and instability storms, controlled by the subtropical high pressure belt, with a smaller 

proportion of the summer rainfall occurring as lighter orographic drizzle, resulting 

from an influx of moist maritime air from the east (Sene et al., 1998; Nash & Grab, 
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2010). Most precipitation above ~3000m asl between May and September falls as 

snow, yet accounts for less than 10% of total annual precipitation, with an average of 

2-8 moderate to light snowfalls per year (Nel & Sumner, 2008; Grab & Linde, 2014). 

Summer winds dominate from the east and northeast, bearing moisture from the 

Indian Ocean, while winter winds are predominantly north-westerly (Sene et al., 

1998; Grab, 2010).  

 

The vegetation at the site comprises large expanses of meadow grasses, with 

increased sedge cover towards the more water saturated wetland regions, Erica-

Helichrysum shrubs closer to the mountain backwalls, and a variety of small shrub 

species typical of the ‘Drakensberg Alpine Centre’ (Carbutt & Edwards, 2004) found 

in smaller numbers (Marker & Whittington, 1971; Grab & Deschamps, 2004). At a 

regional scale, there is a considerable shift in vegetation along altitudinal gradients 

(Carbutt & Edwards, 2004; Mucina & Rutherford, 2006). The Sekhokong site is 

situated above the treeline, and given its high altitude and substantially depressed 

temperatures, much of the vegetation comprising late Quaternary 

palaeoenvironmental record and the contemporary flora at the lower altitude 

Drakensberg palaeoenvironmental sites Braamhoek Wetland at 1,700 m asl 

(Norström et a., 2009, 2014) and Mahwaqa Mountain at 2,083 m asl (Neumann et 

al., 2014) are not present. However, it is likely that during warmer periods, some of 

these species were able to establish further upslope (Inouye, 2008).   

 

Methods 

Sediment was extracted horizontally from a gully side-wall following methods 

employed by Grab et al. (2005) at a minimum sampling frequency of 5 cm, spanning 

a total depth of 5.03m (Figure 2). Bulk organic material from 11 samples obtained 

from relatively equally spaced depths throughout the profile was radiocarbon dated 

using accelerator mass spectrometry (AMS) by Beta Analytic (Table 1). Dates were 

calibrated using the Southern Hemisphere SHCal13 model (Hogg et al., 2013). The 

Bacon model v2.2 (Blaauw & Christen, 2011) was used to interpolate dates for the 

remainder of the profile, selected due to the improved performance of Bayesian over 

linear regression models, and the inclusion of information on sample thickness. No 

outliers were identified by the Bacon model.  
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Palaeoenvironments were investigated by comparing sediment properties, pollen 

and diatoms throughout the profile to the contemporary environment and reference 

collections. At the broadest scale, sediment properties were used to determine 

regional moisture availability, demonstrated predominantly by relative changes in 

percentage organic content (Meadows, 1988), and the proportions of gravel- and 

sand-sized particles to silt- and clay-sized particles (Masselink et al., 2014). It must 

be noted that very coarse gravels could not be measured using the Malvern 

Mastersizer, and were therefore excluded from sediment particle size plots. Distinct 

variations in the skewness:kurtosis ratio were used to identify likely changes in 

depositional environment, for example from riverine to colluvial sediment (Masselink 

et al., 2014). Pollen was used to reconstruct past vegetation composition. The 

presence and absence of indicator species for alternating wetland and grassland 

conditions for the eastern Lesotho highlands region provides useful qualitative 

climatic information. Diatoms were used to reconstruct the aquatic conditions and 

algal biodiversity within the wetland.  

 

Pollen preparation followed standard procedures outlined by Faegri et al. (1989). 

Once fossil pollen had been isolated and slides prepared, a minimum of 250 grains 

were counted per sample at a magnification of 400x using an Olympus BX51 light 

microscope. Identification was made with reference to the African Pollen Database. 

Due to morphological and environmental similarities, pollen counts from 

Chenopodiaceae and Amaranthaceae are summed as a single group ‘Cheno-Am’ 

(Scott & Nyakale, 2002). As has been conducted at the Braamhoek Wetland site, the 

Asteraceae:Poaceae ratio is presented as a proxy for the strength of precipitation 

seasonality (Coetzee, 1967; Norström et al., 2009), which is argued to represent 

changes in the latitudinal extent and strength of the Westerlies (Mills et al., 2012) 

Diatom preparation was undertaken using the procedures outlined by Battarbee et 

al. (2001). A minimum of 300 diatom valves were counted per sample at a 

magnification of 1000x using oil immersion. Diatoms were identified through 

consultation with both local (Schoeman, 1973; Schoeman & Archibald, 1976; 

Harding & Taylor, 2011; Matlala et al., 2011) and international literature (Krammer & 

Lange-Bertalot, 1986; Snoeijs & Balashova, 1998; Kramer, 2002). Sediment 

analyses involved determining the organic and carbonate content of each sample 
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through loss-on-ignition at 550°C and 950°C respectively (Heiri et al., 2001). 

Sediment particle size distributions, including mean grain size, skewness and 

kurtosis for each sample were determined using a Malvern Mastersizer 3000.  

 

Major gradients in the biological data were investigated using the indirect ordination 

technique principal components analysis (PCA) on the percentage composition of 

diatoms and pollen, while zonation of the multi-proxy profile was designated using 

the constrained incremental sum of squares (CONISS) cluster analysis technique 

using the Rioja and Cluster packages in R on the pollen assemblage data. For both 

pollen and diatom assemblages all statistics were performed on taxa with greater 

than 2% distribution, and square root transformed before analysis to down-weight 

dominant species. Redundancy analysis (RDA) was performed to determine the 

explanatory strength of the pollen distribution in influencing the diatom distribution for 

the profile (Legendre & Birks, 2012; Mackay et al., 2012). Changes in pollen are a 

proxy for major changes in landscape vegetation, and as these are predominantly 

associated with climatic or anthropogenic drivers, we use pollen here to indicate 

potential drivers of aquatic ecosystem change in local wetlands (Lotter & Birks, 2003; 

Mackay et al., 2012). All statistical analysis was undertaken using the code-based 

statistical platform R (Venables & Smith, 2015), and stratigraphic plots were 

produced using C2 (Juggins, 2007).  

 

Results 

The sediment record reflects alternating layers of dark coloured clays and peats, and 

orange coloured gravels (see Figures 2 and 3). The 11 AMS radiocarbon ages for 

the profile span the entire Holocene period, commencing during the late glacial, with 

a basal conventional date of 13,200 a BP (Table 1; ~15,870 cal a BP). The upper-

most AMS dated sample was at a depth of 16.5 cm, with a conventional date of 

1,430 a BP (Table 1; ~1,200 cal a BP). As this profile extends to the contemporary at 

the surface, the temporal resolution is relatively low for the surface layer of 

sediments. Given the topographic basinal locality of the sampling site, it is unlikely 

that substantial sediment has been lost through denudational processes during the 

Holocene. However, some past sediment loss through processes such as sheet 

erosion and wind deflation cannot be ruled out, but are impossible to ascertain.   
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The mean sediment accumulation rate, calculated by the Bacon model, is averaged 

for the sequence at 0.05 cm a -1. There are notable periods of slower sedimentation 

in the early to mid-Holocene between 10,550 ±40 cal  BP (~12,120 cal a BP) and 

6,470 ±30 cal  BP (~7,430 cal a BP), during which time only 40 cm of sediment had 

accumulated (Figure 3). Sedimentation occurs at a more constant, relatively rapid 

rate towards the late-Holocene, with a mean sedimentation rate of 0.03 cm a-1 from 

the surface to a depth of 107.5 cm (3,100 ±30 cal BP; ~3,190 cal a BP).  

 

Three zones in the profile were delimited using CONISS, performed on the pollen 

assemblage data (Figure 4). SKP3 represents the transition from the late 

Pleistocene to the early Holocene, extending from the bottom of the core at a mean 

sample depth of 502.5 cm to a depth of 302.5 cm (~~16,450 cal a BP to ~8,560 cal a 

BP ie. 7,890 a), comprising 12 samples. This is followed by SKP2, an extensive zone 

comprising 28 samples, yet representing a shorter period, spanning a depth of 287.5 

cm to 16.5 cm (~7,430 cal a BP to ~1,200 cal a BP, ie. 6,230 a). SKP1 encompasses 

only the top two samples, extending from a depth of 9.5 cm to the surface (~1,110 

cal a BP to present). These zones correspond closely with large shifts in the diatom 

and sediment records, and are used in the graphic representation (Figures 5-7) and 

discussion of each of the records. 

 

The sediment profile comprises alternating clearly-defined layers of coarse orange 

coloured gravels, dark black peats and organic clays, and green-grey fine clays. 

Very coarse gravels were found towards the bottom of the profile (Figure 3) but the 

particle sizes of these were too coarse to be measured using either the Mastersizer 

or traditional sieving methods. Interspersed in amongst these gravels was a greater 

proportion, by weight, of smaller particle sizes. As these dominated the samples, 

their particle sizes are plotted in Figure 5. Results from LOI and particle size 

analyses confirm fluctuations in organic and carbonate content, and particle size 

throughout the profile (Figure 5). A period with high percentage organic material 

(>45%) is noted for depths of 457.5-387.5 cm (Figure5). AMS dates place this period 

between ~15,630 cal a BP and 14,150 cal a BP, within the late glacial. Within this 

period, organic composition of greater than 75% is observed for depths of 427.5-

397.5 cm (~15,150-14,440 cal a BP). A second, smaller (>30%), peak in percentage 

organic content is observed for the late Holocene, for depths of 31.5-22.5 cm 
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(~1,320-1,260 cal a BP). The relative percentages of sand-, silt- and clay-sized 

particles demonstrate considerably greater fluctuation in the late Holocene, for 

depths of 134.5-2.5 cm (~3,400-940 cal a BP; Figure 5). Greater percentages of 

gravel-sized particles are observed for this period, albeit fluctuating. Notably, gravel-

sized particles cease at a depth of 211.5 cm (~6,370 cal a BP). Aside from the 

presence of gravel for a distinct portion, the overall sequence is dominated more by 

low-amplitude fluctuations than by any long-term trends (Figure 5). The skewness 

curve largely tracks the mean particle size, indicating that samples with large mean 

sizes are dominated disproportionately by sand- to gravel-sized particles. The past 

nature of hydro-geomorphic dynamics (e.g. diffuse overland flow; 

concentrated/channelized flow) at the site may well have influenced some of the 

sedimentological characteristics described here. However, sedimentological 

characteristics along the lengthy extent of exposed contemporary gully sidewalls 

suggest predominantly uniform deposition across the site through time. Evidence for 

palaeo channels or palaeo gullies is conspicuously absent and we thus infer that 

sedimentation processes were dominated by diffuse rather than channelized flow at 

this site through much of the Holocene. 

 

The pollen record (Figure 6) is dominated by Poaceae (49.2%), Cyperaceae (21.0%) 

and Asteraceae (19.2%), typical of southern African wetlands (Gasse & Van Campo, 

1998; Norström et al., 2009, 2014; Neumann et al., 2014). Pollen grains from 24 

families, or genera where identification was possible, appeared with a frequency of 

more than 1% at any point throughout the profile. The pollen sum is largely 

representative of the contemporary local environment comprising a wetland 

surrounded by a large expanse of meadow, vegetated by grasses, semi-aquatic 

species, shrubs, herbs and succulents (Figure 6). Occasional Podocarpus and Olea 

pollen grains were counted (<2% maximum occurrence; Figure 6). As the eastern 

Lesotho Highlands are situated above the tree-line, such pollen would have been 

windblown from adjacent lower altitude forests. PC1 accounts for 26.6% of the 

variance of the pollen distribution in the samples, separating at extremes Crassula, 

Aizoaceae and Asteraceae with the strongest negative scores, from Poaceae and 

Cyperaceae with the strongest positive scores. Similarity in species scores for 

Cyperaceae and Poaceae are notable for PC1, as they represent typically opposing 

environmental conditions of wetland and grassland respectively. Marked by the 
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extreme isolation of the SKP1 samples, PC1 appears to be driven by differences 

between the long-term vegetation regime of the wetland for the early to mid-

Holocene, contrasting that of the most recent 1,000 years. PC2 accounts for 22.2% 

of observed variance in relative pollen abundance across samples, separating 

Poaceae and Cyperaceae by extremes in species score, representing a division 

between environments dominated by grassland from those with a greater wetland 

expanse. 

 

The diatom record (Figure 7) is dominated by Synedra (Fragilaria) famelica (26.4%), 

with smaller populations of Eunotia bilunaris (8.2%), Hantzschia amphioxys (7.4%) 

and Pinnularia divergentissima (6.6%). Due to the similarities in their ecological 

preferences (Schmidt et al., 2004; Ohlendorf et al., 2009; Wang et al., 2013), 

Staurosirella (Fragilaria) pinnata and Fragilaria construens are grouped together, 

both of which are r-strategists which can tolerate frequent environmental changes, 

which for Lesotho, most notably involved being tolerant of seasonal ice cover. PC1 

accounts for 35.0% of observed variance in diatom species distribution across the 

profile, segregating at extremes Fragilaria famelica, Pinnularia borealis, Hantzschia 

amphioxys and Achnanthes minutissima with strongest negative scores from 

Fragilaria pinnata/construens, Cymbella laevis and Eunotia bilunaris with strongest 

positive scores PC2 accounts for 13.3% of the variance in diatom distribution, and 

separates planktonic and facultative planktonic Fragilaria pinnata/construens, 

Aulacoseira ambigua and Fragilaria famelica with negative scores, from aerophilic 

Hantzschia amphioxys, Diploneis parma, Pinnularia gentilis and Pinnularia 

divergentissima with positive scores.  

 

Discussion 

Environmental Reconstruction 

This study presents the longest continuous multi-proxy palaeoenvironmental record 

published for eastern Lesotho to date, spanning the termination of the Last Glacial 

Maximum (LGM) to present. The sedimentary profile demonstrates fluctuations 

between peat- and clay-rich sediment and coarse gravel, previously inferred to 

represent moisture fluctuations (Marker, 1994). The broad sedimentation patterns 

are consistent with those presented by Marker (1994, 1995, 1998), however, the 

frequency of these fluctuations is considerably higher. Pollen and diatom records 
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provide additional, higher resolution environmental information, enabling 

identification of short-lived events.  

 

The CONISS output for Sekhokong indicates few statistically significant zones 

relative to the long time period covered, and considerable variation in pollen. 

Redundancy analysis (RDA) on the Sekhokong records reflects the low, yet 

statistically significant, explanatory strength of pollen in determining the diatom 

composition (13.3%), indicating that the diatom communities are more likely to be 

influenced by local habitat than broader regional vegetation. At a more local scale, 

however, Cyperaceae pollen closely tracks the percentage organic content of 

sediments, representing marsh conditions. The Asteraceae:Poaceae pollen ratio is 

very low throughout the profile (<0.5), indicating a wet, probably summer rainfall 

regime throughout much of the past ~16,450 cal a (Figure 6). As Poaceae and 

Cyperaceae dominate the contemporary landscape which is limited by relatively cold 

temperatures at the high altitude of the site, the periodic dominance of a wider range 

of taxa including Crassula, Aizoaceae and Asteraceae, and the coincident increase 

in absolute taxa for these periods, is interpreted as representing warmer periods 

during which upslope migration of species can occur, thus increasing the total taxon 

count (Inouye, 2008). The diatom profile demonstrates a shift from an environment 

with a large proportion of r-strategist ice tolerant Fragilaria pinnata/construens group 

in SKP3 to an environment dominated by snow tolerant, benthic Fragilaria famelica 

in SKP1 (Figure 7). PC1 for the diatom record separates the undisturbed conditions 

which comprise the majority of the profile, from a period of heightened pollution and 

wetland disturbance during SKP1. PC2 indicates moisture fluctuations throughout 

the profile. Interpretations of the diatom results largely relate to their habitat, with 

notable segregations in the profile of periods dominated by aerophilic species 

relative to those dominated by planktonic and benthic species. The relative 

abundance of Fragilaria species is of interest due to their tolerance of seasonal ice 

and snow, through their abiity to respond quickly to environmental change 

(Schoeman, 1973; Ohlendorf et al., 2000; Karst-Riddoch et al., 2005; Wang et al., 

2013). For periods during which the profile is dominated in great quantities by this 

group, conditions are interpreted as being particularly cold, prohibiting the survival of 

less ice/snow tolerant diatoms. As the group have a facultative planktonic and 
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benthic habitat (Sonneman et al., 1999), the alternate vegetation stressors of dry 

conditions are unlikely.  

 

SKP3: ~16,450-8,560 cal a BP 

SKP3 commences with the highest relative abundances of Cyperaceae pollen and 

planktonic diatom species Aulacoseira ambigua for the profile, indicative of rather 

wet conditions, allowing planktonic diatoms and wetland plants to thrive (Gasse & 

Van Campo, 1998; Sitoe et al., 2015). A peak in Fragilaria species (>40% of the 

diatom sum) occurs concurrently. Fragilarioids are r-strategists which tolerate 

disturbance well, and they are particularly common in high alpine lakes impacted by 

snow and ice cover (Schmidt et al., 2004; Ohlendorf et al., 2009; Wang et al., 2013) 

It may well be that their dominance at this time is indicative of cold, harsh 

environments associated with globally cooler temperatures, and more prolonged ice 

cover (Figure 7). The pollen profile is also characterised by large proportions of 

Poaceae during this period, which combined with the presence of the facultative 

planktonic Fragilaria pinnata/ construens and Cyperaceae pollen (Figures 6, 7), is 

indicative of a large wetland expanse, with at least ponds of shallow water to support 

this diatom community and Cyperaceae, but surrounded by meadow grasses. This is 

followed immediately by a short-lived, but very dry period from ~16,350-15,870 cal a 

BP, inferred from a decrease in the proportion of Cyperaceae pollen, a decline in the 

relative abundance of planktonic diatoms and increase in aerophilic species 

Diploneis parma, Eunotia praerupta, Hantzschia amphioxys and Pinnularia 

divergentissima (Gasse & Van Campo, 1998), and a lower percentage organic 

content of sediments (Figures 5-7).  

 

A return to wet conditions occurs from ~15,630-14,440 cal a BP, with a marked 

dominance of Cyperaceae pollen, a peak in organic content, and a re-emergence of 

planktonic Aulacoseira and facultative planktonic Fragilaria pinnata/construens 

(Figures 5-7). The diatom record during this period is dominated by epiphytic 

species, particularly Eunotia bilunaris and Cymbella laevis (Schoeman, 1973; Gasse 

& Van Campo, 1998), indicating a large presence of macrophytes in the wetland 

(Figure 7). The percentage carbonate content is particularly low throughout the 

period, which may be due to reduced levels of photosynthesis due to the 
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predominance of peat (Figure 5). Together, these proxies suggest the re-

establishment of a more extensive wetland, but with shallow water restricted to small 

ponds suitable for the establishment of macrophytes, and herbs along the drier 

wetland edge. This cool, moist period is consistent with results obtained from the 

eastern Drakensberg foothills (Neumann et al., 2014) indicating a progressive shift 

from the arid conditions during the LGM.  

 

By ~14,150 cal a BP, the relative abundance of Cyperaceae pollen had decreased to 

15%, coinciding with a decrease in Asteraceae pollen and a peak in Poaceae pollen 

(Figure 6). At the same time a peak in aerophilic diatoms, particularly Diploneis 

parma and Eunotia praerupta is noted, and an increase in the percentage 

composition of sand-sized particles and carbonates, but with a decrease in organic 

matter (Figures 5, 7. This indicates a drying of the site, reducing the spatial extent of 

the wetland. The percentage organic composition decreases more slowly, 

suggesting a change from wetland to grassland species which maintained the 

organic input in the sediment (Figure 5). If the Asteraceae:Poaceae pollen ratio 

accurately reflects the strength of seasonality (Norström et al., 2009), which for the 

eastern Lesotho highlands would be driven by shifts in the Westerlies (Mills et al., 

2012), then the low ratio for this period (Figure 6) would indicate warmer conditions 

associated with weakened Westerlies, which in turn would further increase the rate 

of peat production. Thereafter, the relative abundance of Cyperaceae and 

Asteraceae pollen progressively increases, paired with a more pronounced decrease 

in Poaceae pollen which persists throughout the remainder of the profile (Figure 6). 

This is concurrent with a low relative abundance of planktonic and facultative 

planktonic diatoms, but large proportions of epiphytic species (Figure 7). Such proxy 

evidence suggests that the region was slowly warming throughout this period, with 

surface water supporting macrophytes, indicating the persistence of wetland 

conditions Maximum temperatures are inferred from a reduction in Fragilariods and 

an increase in pollen taxon diversity to have been experienced between ~8,560-

7,280 cal a BP, consistent with the Holocene Altithermal in southern Africa 

(Neumann et al., 2014).  

 

SKP2: ~7,430-1,200 cal a BP 
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SKP2 commences with a change in the pollen, diatom and sediment record (Figures 

5-7). The gradual increase in Asteraceae and Cyperaceae pollen noted during the 

terminal period of SKP3 is reversed with a decrease in these taxa, while Poaceae 

pollen increases (Figure 6). This is paired with major increases in Fragilaria famelica 

and aerophilic diatom species (Figure 7), suggesting regional drying and a 

dominance of snow in mean annual precipitation to support the Fragilaria group. The 

pollen and diatom composition suggests a sudden, extreme drying of the wetland, 

potentially during a period of comparatively colder temperatures than those 

immediately preceding it, which possibly reflects cooling following the maximum 

temperatures of the Holocene Altithermal (Neumann et al., 2014). This is followed by 

an increase in Cyperaceae pollen and decrease in Poaceae until ~6,720 cal a BP 

(Figure 6), indicating progressively wet conditions. This terminates with a peak in 

Fragilaria diatoms (Figure 7), inferred as a second pulse of particularly cold 

conditions unsuitable to many other species. Consistent proportions of drought 

tolerant Crassula, Aizoaceae, Cheno-Am, Apiaceae and Anthospermum and the 

largest sum of aerophilic diatoms follows, persisting until ~3,640 cal a BP. The multi-

proxy evidence indicates that this was likely the driest period represented by this 

palaeoenvironmental sequence. Poaceae predominates the pollen sum during this 

period, suggesting regional grassland conditions, while the relative increase in the 

total observed taxa is interpreted to be driven by an increase in temperatures 

facilitating an up-slope plant succession in an environment otherwise too cold to 

support considerable plant diversity (Inouye, 2008; Figure 6).  

 

The second half of SKP2, from ~3,400-1,200 cal a BP, is marked by continuous 

fluctuations in the relative abundance of Poaceae, Cyperaceae and Asteraceae 

pollen, and in the ratios of benthic and aerophilic diatoms (Figures 6, 7). Very 

pronounced and frequent changes in sediment particle size distributions mark clearly 

defined sedimentary lenses observed in situ. This period is characterised by the 

emergence and maintenance of the ice tolerant, facultative planktonic Fragilaria 

species, suggesting persistently cooler conditions throughout SKP2 (Figure 7). The 

pollen and sediment record, and changes in the ratios of aerophilic to planktonic 

diatom species, indicate fluctuations in moisture throughout SKP2, resulting in large 

variations in wetland size. Wet phases, with greater wetland size and surface water 

depth, are indicated by peaks in Cyperaceae pollen and supported by increases in 
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the proportional representation of benthic diatoms from ~3,260-3,190 cal a BP, and 

at ~3,050 cal a BP. Dry phases with smaller wetland extent and drier wetland surface 

are indicated by pollen of drought resistant succulents, shrubs and grasses, 

supported by increases in aerophilic diatoms at ~3,260 cal a BP, ~2,690 cal a BP 

and ~1,380 cal a BP (Figure 5). A prolonged wet event is indicated from ~2,690-

1,470 cal a BP, inferred from a high percentage composition of organic material in 

the sediment record, and supported by a peak in benthic diatoms Fragilaria famelica 

and Eunotia bilunaris which would require a habitat comprising standing water, and 

greater proportions of Cyperaceae pollen, and which may include more regular 

snowfalls (Figures 5-7), (Gasse & Van Campo, 2001; Vilbaste, 2001). This is 

followed by the highest relative abundance of Poaceae pollen in the sequence, 

coinciding with a peak in aerophilic diatoms, indicating a particularly dry period 

(Figures 6, 7).  

 

SKP1: ~1,110 cal a BP - Present 

SKP1 comprises only two samples, representing the period from ~1,110 cal a BP to 

present, limiting the detail of climatic or environmental inferences. The two samples, 

however, indicate contrasting climatic and environmental conditions. An increase in 

organic content, silt-sized particles, and the Asteraceae:Poaceae pollen ratio occurs 

(Figures 5,6), suggesting wet, yet seasonally less distinct rainfall, likely a response to 

a strengthening of the Westerlies. The diatom record reflects a peak in snow-tolerant 

diatoms Fragilaria famelica (Wang et al., 2013) and of aerophilic species (Figure 6), 

supporting the inference of cold but relatively dry conditions. SKP1 terminates with a 

decrease in Cyperaceae pollen and continued increases in Crassula and Pentzia, 

which with increased aerophilic diatoms, suggests drying to present conditions 

(Figures 6, 7). Abundant Crassula pollen may be indicative of human and animal 

disturbance during recent centuries (Norström et al., 2009). A higher resolution 

record is required to determine the validity of these inferences of contrasting climatic 

conditions over the past ~1000 years.  

 

Regional Comparison  

The Sekhokong palaeoenvironmental reconstruction contributes to refining the 

Holocene environmental and climatic record for southern Africa. The commencement 
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of the Sekhokong record coincides with the phase of deglaciation following the LGM. 

Pollen records from Mahwaqa Mountain in the eastern Drakensberg foothills 

(Neumann et al., 2014), and multiproxy analyses of charcoal, pollen and diatoms 

from Braamhoek Wetland in the northern Drakensberg foothills (Finné et al., 2009; 

Norström et al., 2014), indicate a shift towards wetter conditions during this cool 

post-glacial phase, with maximum precipitation inferred from speleothem records 

from Makapansgat to have been attained by 13,000 cal a BP (Holmgren et al., 

2003). This period is further been confirmed to have been characterised by greater 

moisture availability in meta-analyses for southern Africa (Chevalier & Chase, 2016). 

This is consistent with wet conditions inferred for the start of the Sekhokong record 

based on diatom, pollen and sediment results. This is notable as the speleothem 

record suggests a progressive increase in moisture following the LGM, extending 

into the early Holocene (Holmgren et al., 2003). These wet conditions by 13,000 cal 

a BP may indicate a northerly shift of the Inter-tropical Convergence Zone (Truc et 

al., 2013; Singarayer & Burrough, 2015).  

 

The deglaciation period globally is interrupted by two cold events globally which 

coincide with this record: Heinrich event H1 from 18,000-15,000 cal a BP (Álvarez 

Solás et al., 2011) and the Younger Dryas from 13,000-11,500 cal a BP, both driven 

by meltwater pulses in the Northern Atlantic (Mayewski et al., 1996). The period of 

rapidly fluctuating environmental conditions detected in the Sekhokong record by an 

increase in Fragilaria species, is concurrent with and a decrease in the relative 

number of pollen taxa. It is possible, therefore, that these changes dated to ~15630 

cal a BP are indicative of particularly cold conditions resulting in increased seasonal 

ice cover and a decline in vegetation diversity. By contrast, sample SK24 which has 

an interpolated date of ~12,120 cal a BP, reflects evidence for warm conditions 

coincident with the Younger Dryas, but at too poor a sampling resolution for a 

definitive interpreation. Isotope records from the archaeological sites in western 

Lesotho similarly reflect contradictory evidence for a Lesotho manifestation of 

Younger Dryas conditions (Smith et al., 2002; Roberts et al., 2013), although 

arguably this may be attributed to cold dry conditions discouraging settlement during 

this period, and consequently not accumulating archaeological material at the 

excavated sites. More recent analysis of stable isotopes from organic material and 
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tooth enamel at Sehonghong in the eastern Lesotho Highlands, by contrast, provides 

supporting evidence for cold conditions associated with this event (Loftus et al., 

2015). Further evidence in support of a Younger Dryas event in southern Africa 

includes oxygen isotopes from mollusc shells at Elands Bay (Cohen et al., 1992), 

archaeological isotope evidence from Bushman’s Rock Shelter (Abell & Plug, 2000), 

a re-analysis of pollen data from Wonderkrater (Thackeray & Scott, 2006), and 

isotope records from hyrax middens in the Cederberg (Quick et al., 2011; Chase et 

al., 2015). Southern Hemisphere manifestations of global cooling events associated 

with instabilities in the Arctic ice sheets clearly requires further investigation. 

 

The overall warming period associated with deglaciation continues until optimal 

conditions at the Holocene Altithermal (Wanner et al., 2015). The timing of this event 

is unclear, with discrepancies for much of southern Africa, but it broadly spans the 

period 7,500-6,500 cal a BP (Holmgren et al., 2003; Truc et al., 2013; Neumann et 

al., 2014; Wanner et al., 2015). Maximum temperatures at Sekhokong are inferred to 

have been attained by 7,280 cal a BP. There is no clear warm signal coinciding with 

the Holocene Altithermal for the lower-altitude (1700m asl), more northerly 

Braamhoek Wetland (Norström et al., 2009, 2014; Finné et al., 2010). However, 

pollen records from a similarly low altitude eastern Drakensberg site, Mahwaqa 

Mountain, indicate a clearly defined Holocene Altithermal maximum at 6,500 cal a 

BP (Neumann et al., 2014). By this time, cooler conditions are indicated for 

Sekhokong by a reduction in pollen taxon diversity, and supported by a re-

emergence of Fragilariods.  

 

Climate and environmental change over the past 2,000 years is of interest given 

rapid climate fluctuations and increased anthropogenic influence on the environment 

(Mayewski et al., 2004; Wanner et al., 2008, 2014). The LIA, a short-lived cold event 

from AD 1300-1800 (Wanner et al., 2008, 2015), has been of regional interest 

(Tyson et al., 2000). A peak in Fragilaria species coupled with a decrease in pollen 

taxa diversity tentatively suggests a cold period some time during the past ~1,110 

years at Sekhokong. Debate regarding precipitation during the LIA in southern Africa 

continues, with current understanding that dry conditions prevailed in the summer 

rainfall zone (cf. Ekblom et al., 2008; Gillson & Ekblom, 2009; Neumann et al., 2010; 

Chevalier & Chase, 2016) and wet conditions in the winter rainfall zone (Stager et 
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al., 2012; Weldeab et al., 2013). For Sekhokong, proxy evidence for the past ~1000 

years suggests dry conditions, in support of this hypothesis. However, due to the low 

temporal frequency of samples, any rapid fluctuations in moisture would not have 

been detected. Evidence for increased anthropogenic influence on the local and 

regional environment, similar to that inferred from the pollen and diatom records at 

Sekhokong for this period, have been reported from a range of locations since AD 

~1,800 (cf. Baxter & Meadows, 1999; Neumann et al., 2008, 2011, 2014; Norström 

et al., 2009). 

 

Comparisons with the pollen-based palaeoenvironmental reconstruction for 

Mahwaqa Mountain in the eastern Drakensberg foothills (Neumann et al., 2014) are 

notable due to the proximity of the sites. Of particular interest are delays in the onset 

of dry periods at Sekhokong relative to Mahwaqa. The driest period in the profile 

from Mahwaqa Mountain is inferred to occur from 4,600-3,500 cal a BP (Neumann et 

al., 2014). For Sekhokong, the period of driest conditions occurs earlier, at ~6,560-

3,640 cal a BP. This may reflect the influence of the escarpment in blocking 

moisture, as the Mahwaqa Mountain site is situated at a lower altitude to the east of 

the Great Escarpment, and would thus more easily receive moisture from the Indian 

Ocean than the eastern Lesotho highlands located in the rain shadow, particularly 

during periods of strengthened or more frequent coastal lows (Scott et al., 2012; 

Neumann et al., 2014). This hypothesis requires further investigation, and provides 

strong impetus for the analysis of synoptic climate drivers throughout the late 

Quaternary using spatial transects (Chase & Meadows, 2007). 

 

Conclusion 

This study presents the longest temporally continuous multi-proxy 

palaeoenvironmental reconstruction for eastern Lesotho. The high altitude setting is 

host to a niche environment of cold-resilient plant and diatom species, the analysis of 

which facilitates the detection of subtle fluctuations in local and regional climate. 

Results indicate cycles of dry and wet conditions throughout the late-Quaternary, 

and discrete, particularly cold events. Climatic and environmental variability is 

substantially more enhanced during the last ~5,450 years, with evidence for 

anthropogenic influence during the last ~1100 years.  
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Table 1: Raw AMS radiocarbon dates acquired from Beta Analytic for the Sekhokong profile. 

Beta Analytic 
Laboratory ID 

Sample Number 
14

C Age (yr BP) 
1σ Uncertainty 
(yr) 

2σ calibrated 
age range (BP) 

Mean depth 
(cm) 

Sample 
Thickness (cm) 

d13C 

Beta-405431 SK3 1,440 ±30 1,345-1,275 16.5 5 -24.5 

Beta-405432 SK7 1,380 ±30 1,300-1,185 45.5 5 -25.1 

Beta-405433 SK11 2,680 ±30 2,780-2740 75.5 5 -24.0 

Beta-405434 SK14 3,100 ±30 3,360-3,175 107.5 5 -25.3 

Beta-393710 SK21 3,130 ±30 3,375-3,215 134.5 3 -25.3 

Beta-405436 SK25 5,450 ±30 6,258-6,180 202.5 5 -26.5 

Beta-405437 SK30 6,420 ±30 7,415-7,225 267.5 5 -24.8 

Beta-405438 SK31 6,470 ±30 7,425-7,272 287.5 5 -26.8 

Beta-405439 SK34 10,550 ±30 12,555-12,420 327.5 5 -28.9 

Beta-405440 SK38 12,660 ±40 15,135-14,860 412.5 5 -28.5 

Beta-393710 SK41 13,180 ±40 15,880-15,675 472.5 5 -26.0 
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Figure 1: Location of the Sekhokong study site in the regional and local context.  
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Figure 2: Exposed gully profile sampled at Sekhokong.  
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Figure 3: Stratigraphic log of the Sekhokong gully section, with the Bacon age-depth model.  
 

143x159mm (220 x 220 DPI)  

 

 

Page 30 of 34

http://mc.manuscriptcentral.com/jqs

Journal of Quaternary Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Figure 4: CONISS output separating the Sekhokong pollen profile into zones.  
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Figure 5: Stratigraphic diagram reflecting changes in sediment properties at Sekhokong.  
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Figure 6: Pollen percentage diagram for the Sekhokong profile.  
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Figure 7: Diatom percentage diagram for the Sekhokong profile.  
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