










mRNA expression, increased progressively in LPS-injected
mice compared to PBS controls (Supplemental Fig. S4, D–F).

Activation of Signal Transduction Pathways

After LPS injection, the MAPK/AP-1 pathway was
activated, with increased phosphorylation of MEK1 and p38
at 3 h post-LPS (Fig. 7, A and E). ERK1/2 increased slightly
and nonsignificantly at 3 h and then declined and was
significantly lower in labor than the 3-h peak (Fig. 7C). JNK
showed a progressive decline in phosphorylation (Fig. 7G).
Phospho-cJun behaved in a similar fashion to ERK1/2, with a
nonsignificant increase at 3 h and then a decline to a
significantly lower level in labor than at the 3-h peak (Fig.
7I). In contrast to the MAPK/AP-1 system, phospho-p65 levels
increase progressively, peaking in labor (Fig. 7K). In addition,
at 7 h and in labor, phospho-p65 levels were higher in LPS-
treated mice compared to PBS controls (Fig. 7L).

DISCUSSION

This study shows that intrauterine LPS causes marked
systemic inflammation that promotes leucocyte infiltration into

the lungs and liver but with relatively little myometrial or
placental infiltration until the onset of parturition. This is
associated with increased circulating and myometrial cyto-
kines, the latter associated with activation of the NFjB and
MAPK/AP-1 pathways. Fetal death occurred in the absence of
any increased fetal brain cytokine expression prior to death but
with evidence of placental inflammation.

The lower numbers of infiltrating neutrophils and Ly-6CHI

monocytes in the myometrium at 7 h in LPS-injected compared
to PBS-treated mice did not mean less inflammation; indeed, at
3 h after LPS injection, myometrial activation of NFkB and
cytokine levels were much greater than in PBS-injected mice.
Similarly, systemic inflammation, demonstrated by plasma
chemokine and cytokine protein levels, was also significantly
increased. The high levels of cytokines in both compartments
were sustained from 3 h to the onset of labor. The marked
leucocyte infiltration into the lungs was associated with
increased local levels of cytokines at 7 h post-intrauterine
LPS challenge, suggesting that the response of the innate
immune system to the intrauterine LPS may be associated with
significant lung damage. Our group has previously shown that
a subclinical endotoxemia is sufficient to induce monocyte
mobilization from the bone marrow and a prolonged

FIG. 5. A–J) Cytokine levels in the myometrium of untreated mice on E16 and following a laparotomy and intrauterine injection of either PBS or LPS (10
lg of E. coli LPS serotype 0111:B4) at 3 and 7 h postprocedure and in labor. The data are expressed as median interquartile range. Cytokine levels at each
time point were compared using an unpaired t-test when normally distributed and a Mann-Whitney test when not. E16 untreated data were included as a
guide (*P , 0.05, **P , 0.01, ***P , 0.001, n¼ 5–6).
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margination of these monocytes in the lung microvasculature
[24]. Further, O’Dea et al. [23] demonstrated that subclinical
endotoxemia was able to prime the inflammatory marginated
monocytes to a second LPS challenge. The high numbers of
leukocytes sequestered to the maternal lungs and liver at 7 h
post-LPS may be a limiting factor in their recruitment to the
myometrium. This has been previously reported by Andonegui
et al. [25], who demonstrated that when neutrophils are
sequestered in the lungs, they are unavailable for entry into
other sites of infection. A higher dose of LPS would be
expected to increase inflammatory cell mobilization from the
bone marrow, but it would also have a greater effect on the
margination of inflammatory cells into the lung vasculature.
Overall, it is difficult to predict whether the net effect would be
to increase the myometrial inflammatory cell infiltration.
Indeed, the neutrophil and monocyte cell density in the
myometrium was significantly higher after PBS injection than
LPS. This may have been because of the greater systemic
inflammation, as shown by the higher levels of circulating
chemokines and cytokines at all time points, and inflammatory
cell sequestration into the lungs and liver after LPS, but it is
intriguing that the markedly greater myometrial inflammatory

cell infiltration in the PBS group (compared with control or
LPS-injected mice) was not associated with an earlier onset of
labor. This—and the relatively lesser increases (compared to
the 7-h PBS levels) in monocyte and neutrophil numbers in
LPS-induced laboring myometrium—suggests that intrauterine
LPS causes labor through a direct effect on myometrial
function and/or mediated via a TLR4-driven increase in local
inflammation, as has been suggested by in vitro studies [26].

Macrophages may also be a target of LPS action, as they are
present in the uterus and express TLR4 [27]. Our earlier work
showed that inflammatory cytokine levels were increased at 2 h
post-LPS in association with increased COX-2 mRNA
expression at 4 h [16]. In the current study, we found that
myometrial cytokines were increased at 3 and 7 h and in labor,
consistent with these observations. Shynlova et al. [17]
demonstrated that administration of a broad-spectrum chemo-
kine inhibitor significantly delayed LPS-induced PTL and also
reduced the LPS-induced increase in IL-1b, IL-6, IL-12, CSF2,
CCL2, CCL4, CXCL1, and CXCL2 gene expression in the
myometrium, suggesting that inflammatory cell infiltration was
important in the process of labor induction. However, we
previously found that IL-8 alters gene expression in human

FIG. 6. A–J) Circulating cytokine levels of untreated mice on E16 and following a laparotomy and intrauterine injection of either PBS or LPS (10 lg of E.
coli LPS serotype 0111:B4) at 3 and 7 h postprocedure and in labor. The data are expressed as median interquartile range. Cytokine levels at each time
point were compared using an unpaired t-test when normally distributed and a Mann-Whitney test when not. E16 untreated data were included as a guide
(*P , 0.05, **P , 0.01, ***P , 0.001; n¼ 4–6).
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myometrial cells directly, increasing COX-2 and its own
mRNA expression; consequently, a chemokine antagonist
might mediate its effects independent of any reduction in
inflammatory cell infiltration [28]. Moreover, others have
shown that depletion of both circulating neutrophils and Ly-
6CHI monocytes did not delay LPS-induced PTL or term labor,
respectively [14, 29], although depletion of macrophages
(treating mice with anti-F4/80 antibodies) prevented preterm
labor in LPS-treated mice [30]. Macrophages are the most
abundant leucocyte population in the mouse myometrium and
increase with advancing gestation [6]. To assess macrophage
activity, we measured the expression of CD86, a costimulatory
molecule found on the surface of antigen presenting cells,
which correlates with an increase in proinflammatory cytokine
production. In our study, CD86 expression on myometrial
macrophages increased approximately threefold in LPS-
induced labor versus PBS labor, but no increase was seen
prior to labor at the 7-h time point. However, macrophage
depletion prevents LPS-induced parturition [30], suggesting
that these cells play an important role in the process, although
no data showing a reduction in macrophage numbers in the

uterus or cervix were presented. Isolating the infiltrating and
resident populations to assess their functional and phenotypic
characteristics at various stages of pregnancy may provide
further insight into this area.

Different serotypes of LPS have been used in the
intrauterine LPS mouse model of PTL, and this may account
for the inconsistent results. For example, fetal death after an
LPS challenge has been attributed to fetal brain inflammation
[31], but in the current study, we found no evidence of fetal
brain inflammation prior to death. Earlier work from our own
group [31] and from Elovitz et al. [32] found that intrauterine
LPS results in fetal brain inflammation. However, more recent
data from our group indicate that these differences may be
related to the different types of LPS used [19]. While Elovitz et
al. [32] used the E. coli-derived LPS serotype O55 [32],
Pirianov et al. [31] used a salmonella-derived LPS, which has
major differences in both the lipid A and the oligosaccharide-
specific chain of the molecule and which may alter placental
transfer and therefore the fetal inflammatory response.
Consistent with this, in a rat study using LPS 0111 labeled
with I125, none was detected in the fetus, suggesting that LPS

FIG. 7. MAPK phosphorylation levels (A–F) and MAPK/AP-1 and NFjB phosphorylation (G–L) in the myometrium following a laparotomy and
intrauterine injection of either PBS or LPS (10 lg of E. coli LPS serotype 0111:B4). The data are expressed as median interquartile range. The data in graphs
A, C, E, G, I, and K were analyzed using a one-way ANOVA with Bonferroni posttest when normally distributed and a Friedman test and with a Dunn
multiple comparisons post hoc test when not. Data in graphs B, D, F, H, J, and L representing the levels of PBS versus LPS at each time point were
analyzed using an unpaired t-test when normally distributed and a Mann-Whitney test when not (*P , 0.05, **P , 0.01, ***P , 0.001; n ¼ 6).
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0111 does not cross the placenta [33]. Rather, studies in rats
and sheep suggest that LPS induces neonatal brain damage and
causes death through impaired placental perfusion [34, 35].
Our findings are consistent with this, although the cytokine
mRNA expression in the placenta was increased at 3 and 7 h
and markedly elevated in the laboring samples. In contrast,
placental leucocyte infiltration of neutrophils and Ly-6CHI

monocytes was unchanged from controls at 7 h, while at labor,
Ly-6CHI monocyte cell density was actually lower in the LPS-
treated mice despite the increase in cytokine mRNA expres-
sion. If there is an abrupt cessation of blood flow to the
placenta, as has been suggested [34, 35], then this may lead to
an altered pattern of immune response compared to the
situation in the human, where chorioamnionitis is likely to
develop gradually and where placental blood flow does not
appear to be compromised. These are potentially notable
limitations to the ability of intrauterine LPS to reproduce the
changes seen with chorioamnionitis in human pregnancies.
However, a substantial literature suggests that inflammation
plays a role in the onset of human term labor through
upregulation of prolabor genes [36], repression of progesterone
action [37], or a direct effect on myometrial contractility [26,
38]. Indeed, we previously found commonalities between LPS-
induced labor in the mouse and human labor [39], suggesting
that intrauterine LPS may be a reasonable model for human
term labor.

In this study using a murine model of intrauterine LPS-
induced PTL, we found no evidence of a relationship between
labor onset or fetal demise and changes in leucocyte
populations in reproductive tissues and systemic sites.
Generally, this model is used to reproduce the changes seen
with chorioamnionitis in human pregnancies, and while it does
reliably induce labor, our data suggest that this may be through
an increase in myometrial cytokine levels or a direct effect of
LPS on myometrial function rather than an increase in
myometrial inflammatory cell infiltration. Although this
mechanism is probably active in human chorioamnionitis, it
seems likely that inflammatory cells also have an important
role in the onset of chorioamnionitis-associated preterm labor,
meaning that the murine LPS model does not totally reproduce
all of the aspects of human chorioamnionitis [38]. Further, in
this study, despite placental inflammation, fetal death occurred
without evidence of preceding fetal inflammation and may
have been caused by a reduction in placental perfusion [40]. In
contrast, in the human, inflammation plays a prominent role in

the fetal compromise [41, 42]. Overall, our data suggest that
the intrauterine LPS mouse model reproduces some but not all
of the features of human chorioamnionitis.
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