Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO₄ Cathodes M. J. Loveridge ^{a*}, M.J. Lain ^a, I. Johnson ^b, A. Roberts ^a, S. D. Beattie ^a, R. Dashwood, J. A. Darr ^b and R. Bhagat ^a ^a Warwick University, Coventry, UK, CV4 7AL. ^b University College, London WC1E 6BT ^{*} Corresponding author. Correspondence to m.loveridge@warwick.ac.uk **S1.** Transmission Electron Micrograph (TEM) of the edge of a V-doped LiFePO₄ particle and is highlighting the uniformity of the thickness of the pyrolyzed carbon coating (introduced to improve the conductivity of the particles surfaces). **S2.** Electrode microstructures with SEM images **a.** V-LFP cathode coating. **b.** Si-FLG anode coating. The FLG is seen repeatedly between silicon particles to generate long-range electrically conductive networks, with smaller carbon black particles supporting short-range conductivity. **S3.** Low and high magnification TEM of the V-LFP cathode particles showing a consistent particle size and aspect ratio. The X-ray diffractogram on the right shows the well-defined crystalline phases common to the V-LFP material and confirms that there are no impurity phases present. **S4.** Differential capacity plot (dQ/dV) to cycle 170 and is an extension of the dQ/dV plot in Figure 9 to characterise peak magnitudes and shifts as a function of cell voltage. **S5.** Charge-discharge curves in a Potential (V) vs. Specific Capacity (mAh g⁻¹) plot to determine the maximum capacity achievable with the V-LFP material.