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Abstract
Motivation:  Sequencing pools of individuals (PoolSeq) is a costeffective way to gain insight into the genetics of
complex traits, but as yet no parametric method has been developed to both test for genetic effects and estimate their
magnitude. Here, we propose GWAlpha, a flexible method to obtain parametric estimates of genetic effects genome
wide from PoolSeq experiments.
Results: We showed that GWAlpha powerfully replicates the results of GWAS from model organisms. We perform
simulation studies that illustrate the effect on power of sample size and number of pools and test the method on
different experimental data.
Availability: GWAlpha is implemented in python, designed to run on Linux operating system and tested on Mac
OS. It is freely available at https://github.com/aflevel/GWAlpha.
Contact: afournier@unimelb.edu.au 
Supplementary information: Manual available at 
https://github.com/aflevel/GWAlpha/raw/master/GWAlpha_manual.pdf.

1 Introduction 
1 Progress  in  sequencing  technology  has  enabled  genome-wide

association  studies  (GWAS)  in  potentially  any  organism  with
segregating  genetic  diversity,  even  those  lacking  prior  genomic
resources.  Nonetheless,  developing  association  panels  involving
extensive genotyping and maintaining living genotypes to repeatedly
measure phenotypes remains limiting in most organisms. Individual-
based phenotyping performed on fully sequenced genotypes such as
inbred  lines  is  not  always  technically  possible  or  biologically
relevant. As an alternative, the sequencing of pools of individuals
contrasting for a given phenotype is straightforward (Schlötterer et
al., 2014). This requires no prior knowledge on the genetic make-up
of  the  sampled  population  and  reduces  the  sequencing  time  and

effort  to a limited set of pools representing the diversity of the trait.
However, even if a substantial corpus of work has focused on the
calling  of  genetic  variants  in  Pool-Seq  experiments  or  obtaining
robust allele frequency estimates (Cao et al., 2014; Edwards et al.,
2012),  statistical  models  to measure  the  magnitude of  the  genetic
effects underlying complex trait  variation are scarce. The existing
methods  have  predominantly  applied  non-parametric  contingency
tests contrasting the count of alleles across pools (Kofler et al., 2011;
Magwene et  al.,  2011;  Yang et  al.,  2015).  There is  a  lack of  test
statistics  that  measure  the  effect  size  of  genome-wide
polymorphisms in the Pool-Seq context. Here, we propose a flexible
parametric  test  to infer  the size of  genetic  effects  from the allele
frequency  in  pools  covering  the  entire  range  of  variation  for  a
quantitative trait.

2 Model
2 Consider a population of individuals measured for a given trait Y and

binned into  k pools based on their trait values.   is
first  inverse-quantile  transformed  into  .  For  each  pool  i

encompassing  all  observations  with  trait  values  in  ,  we
observe   the distribution of  a specific allele across
the k pools summing to 1. GWAlpha estimates the parameters of the
distribution of the , both for a specified allele and for all alternative
alleles at the locus, combined into a single allelic class. It assumes
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the  Beta  distribution,  which  is  tractable  yet  flexible  enough  to
capture the relevant features of the true distribution.  Specifically, we
assume that the transformed phenotype Y' associated with a random
copy of the allele has a Beta distribution with parameters 
.  It  follows  that  the  expected  allele  fraction  for  the  i-th  pool  is:

. The parameters  Θ of
the distribution of the allele can be alternatively estimated by least-

square estimation solving:  or

maximising the likelihood: . The distribution of

the alternative allele states is modeled identically. Finally, the test
statistic is obtained as:  which compares
how   the mean  of  the  estimated  distribution  for  the  allele
deviates from   the mean of the estimated distribution of
the alternative states scaled by  the observed standard deviation of
the  trait,  and  where   is  a  default
penalisation  for  low allele  frequency  which can be  set  to  1 (no
penalisation). The distribution of the 's is modeled using a normal
distribution with parameters estimated through maximum-likelihood;
the cumulative density function of this normal distribution is used to
calculate empirical p-values. 

3 Results and Discussion 

3.1 Simulation

3 The GWAlpha method was tested by simulating 10000 diallelic SNP
genotypes  for  either  100,  200  or  500  individuals  and  randomly
selecting  either  one  or  ten  SNPs  as  additive  QTL to  generate  a
phenotype with heritability  h2=0.5.  The data were then converted
into  synchronised  genotype  files  (SYNC  files)  by  assigning  the
individuals into two to ten pools based on phenotypes and assuming
a 40X Poisson-distributed coverage. Each simulation condition was
replicated 500 times, and GWAlpha was performed using maximum-
likelihood estimation.

4 With a single SNP affecting the phenotype, GWAlpha recaptured the
causal SNP as the top candidate in over 95% of the simulations when
including three pools or more. When ten SNPs affect the phenotype
with random effect sizes,  a minimum of 26% of the causal SNPs
(average  over  500  replicates)  were  recaptured  in  the  top  100
candidates when 100 individuals  were  sampled in  two pools;  and
58% with 500 individuals in five pools (Suppl. Data 1). 

5 The results show that a large sample size which is non-limiting in
pool-seq yield accurate estimates of alpha (Suppl. Data 2); leading to
the  specific  detection  of  associated  SNPs  (Suppl.  Data  3)  and
showing  limited  bias  due  to  allele  frequency  and  coverage
differences (Suppl. Data 4). With a sample size of 500 individuals,
the best suggested pool number was determined to be five.

3.2 Data Analysis

6 We tested maximum-likelihood-based GWAlpha with four  GWAS
datasets in two different organisms (Brachi et al., 2015; Magwire et
al., 2012; Baxter et al., 2010; Battlay et al., 2016), converting the
genotypes and phenotypes into synchronised genotype files with a
200X  uniform  coverage  (Suppl.  Data  5).  For  the  Drosophila
melanogaster datasets, including within-population variability with
limited  population  structure,  the  two  associations  identified  in
Magwire et al. (2012) were recaptured as the two top peaks with four
sequencing pools (Suppl. Figure 5). The major association with the

Cyp6g1 gene identified in Battlay et al. (2016) was recaptured with
five pools as second top SNP. For the Arabidopsis thaliana datasets,
gathering across-population  variability, the  major  association  with
the AtHKT1;1 gene identified in Baxter et al. (2010) was recaptured
as the top candidate using five pools  (Suppl. Figure 6). The second
and  third  highest  associations  from  Brachi  et  al.  (2015)  were
identified with only three pools while the top association linked to
SNPs with frequency <10% was not detected. The results obtained
with  GWAlpha  are  consistent  with  those  of  GWAS,  showing
satisfactory  power  to  detect  associated  SNPs.  However,  higher
correlation among SNPs led to potentially spurious association peaks
in the more structured  A. thaliana sample, making GWAlpha more
suitable to identify genetic variants segregating within unstructured
populations.

4 Conclusion 

7 GWAlpha  provides  a  parametric  estimation  of  genetic  effect,
enabling  straightforward  comparison  across  populations  or
phenotypes. It provides a middle ground between costly individual-
based  GWAS and two extreme  pools  contingency test.  GWAlpha
outperforms contingency tests  in most  scenarios,  unless  replicated
experiments enable the use of the more powerful Cochran-Mantel-
Haenszel  test.  The  generic  input  format  and  flexible  python
implementation allow a straightforward integration to other genomic
analysis pipelines with reasonable speed and memory usage (Suppl.
Data 6) and is suitable for any organism, irrespective of the extent of
resources available.
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Supplementary Data 1: Power analysis
Power was assessed as the proportion of causal SNPs detected in the top 100 associations using 500 simulations
for each combination of pools and individuals number and compared to a Fisher's Exact Test (FET) performed
using two extreme pools each covering 1/3 of the distribution (situation where power is maximal, Magwene et
al.  2010) and to  a General  Linear Models (GLM) using individual  sequencing data and testing SNP effect
through  ANOVA.  In  most  cases,  GWAlpha  showed  significantly improved  power  to  identify causal  SNPs
compared to FET (Suppl. Figure 1). For a population size of 500 individuals, the power of GWAlpha using 5
sequencing pools almost matched the one of GLM.

Suppl Figure 1:  Power to detect causal SNPs among the top 100 associations using GWAlpha with varying
number of pools (x-axis), a General Linear Model based on individual sequencing data and a Fisher's Exact Test
between two extreme pools each representing 1/3 of the trait distribution.



Supplementary Data 2: Accuracy of the alpha estimates
The accuracy of the alpha estimates was assessed using each of the proposed estimation methods (Least-square
or Maximum-likelihood, with or without penalisation) for a range of simulated genetic effects from 0 to 0.4 units
of standard deviation and minor allele frequencies from 0.1 to 0.5. Each condition was simulated 1000 times
with 500 individuals distributed in 5 pools and an environmental/error standard deviation for the trait of 0.5. The
results are presented in Suppl. Figure 2.

The Root Mean Squared Error values across all simulated genetic effects and allele frequency suggested the
Maximum-likelihood estimation with penalisation is  the  most  accurate  method (mean RMSE=0.167,  Suppl.

Suppl. Figure 2: Accuracy of the estimated genetic effects (alphas) for different simulated values of genetic effects 
and minor allele frequencies. Red lines represent the actual simulated genetic effect; black dots represent the mean 
estimated effect; the dark grey envelop the top/bottom 25%-tile; and the light grey envelop the top/bottom 5%-tile.

Suppl. Table 1: RMSE of each estimation method for a range of simulated genetic effects and minor allele frequency.

No Penalisation With Penalisation
Minor Allele frequency

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
0 0.06 0.16 0.265 0.366 0.467 0.071 0.168 0.267 0.367 0.468

0.1 0.056 0.116 0.211 0.308 0.405 0.054 0.127 0.216 0.309 0.407
0.2 0.097 0.05 0.124 0.217 0.313 0.045 0.061 0.133 0.218 0.313
0.3 0.166 0.074 0.055 0.138 0.226 0.089 0.053 0.059 0.134 0.231
0.4 0.231 0.137 0.053 0.065 0.147 0.138 0.107 0.052 0.065 0.158

mean 0.18 mean 0.172
0 0.062 0.157 0.26 0.362 0.462 0.067 0.163 0.262 0.362 0.464

0.1 0.071 0.1 0.187 0.282 0.382 0.051 0.112 0.195 0.283 0.378
0.2 0.141 0.064 0.086 0.17 0.26 0.069 0.05 0.095 0.172 0.26
0.3 0.225 0.14 0.071 0.076 0.144 0.128 0.104 0.063 0.076 0.152
0.4 0.306 0.223 0.144 0.078 0.072 0.193 0.184 0.138 0.078 0.073

mean 0.181 mean 0.1669

Least-
square

Genetic 
Effect

Maximum
-likelihood

Genetic 
Effect



Table 1) and is also the most accurate under the null hypothesis of no genetic effect. However, each estimation
method showed to have better accuracy under specific conditions as reported in Suppl. Table 1.

Supplementary Data 3: False positive and false negative detection rates
The difference in rate of false positives and false negative was assessed for the General Linear Model (GLM,
based  on  individual  genotype  data)  and  the  Fisher's  Exact  Test  (FET, based  on  two extreme  pools)  using
Receiver-Operator Characteristic (ROC) curves (Suppl. Figure 3) and compared in terms of Area Under the
Curve (AUC).  We used one set  of  5000 simulations  in  low power  conditions  (100 individuals  in  4 pools)
compared to  5000 simulations  in high power  conditions (500 individuals in  6 pools).  Each simulation was
generated with 10 random genetic effects among 10000 SNPs contributing a total heritability of  h2=0.5. The
AUC obtained with GWAlpha ranged from  0.86 under the low power conditions to 0.93 under high power
conditions and complemented the results of the power analysis showing GWAlpha as an intermediate between
the  General  Linear  Model  and  the  Fisher's  Exact  Test,  converging  to  the  power  of  GLM  test  pending  a
sufficiently big sample size.

The ROC curve showed that pending a big sample size, GWAlpha  is not significantly less specific than GLM
(for a threshold of 100 most associated SNPs using a t-test, p-val>0.05). GWAlpha is thus not more prone to
false positive than GLM. Increasing the sample size from 100 to 500 individual strongly increased sensitivity
without decreasing significantly specificity therefore not inflating the false positive rate. 

Suppl. Figure 3: ROC curves for low and high power simulation for three classes of test (General Linear Model,
GWAlpha and Fisher's Exact Test, respectively).



Supplementary Data 4: Effect of allele frequency and sequencing coverage on power
5000 simulations were performed under the low power and high power conditions described in Suppl. Data 3 but
increasing the variance in sequencing coverage of the simulated data by generating a log-normal distributed
coverage of mean 40 and standard deviation 40. The effect of the minor allele frequency and the sequencing
coverage of the minor allele was tested on the association rank of the causal SNP obtained through GWAlpha
using  the  following linear  model:  rank  =  allele  frequency +  coverage  +  allele  frequency *  coverage;  and
modeling all variables as fixed effects. The ANOVA tables for the high and low power conditions models are
presented in Suppl. Table 2. Since both models have identical degrees of freedom (3 for the parameters and
49997 for the residual), the test statistics can be directly compared.

Based on the significance of their individual effects, both allele frequency and coverage have an effect on the
ranking of causative SNPs. Both these effects are in direction of higher allele frequency and greater coverage
lead to lower (more significant) ranking. However, the small R2 values support the fact that these effects are
marginal in explaining causative SNP rankings. In addition, the estimated effects of frequency and coverage
were similar for both high and low power conditions.
We also analysed the capacity of the GWAlpha model to identify true positives and rule out false positive using a
ROC approach for different allele frequencies (Suppl. Figure 4). While relatively little differences were observed
under the low power conditions with AUC values ranging from 0.84 to 0.86, the high power conditions showed 

Suppl. Table 2: ANOVA table for the effect of minor allele frequency and coverage on the ranking of causal
SNPs determined through GWAlpha.

Low power (100 individuals in 4 pools) High power (500 individuals in 6 pools)

Adj. R2 0.002929 0.003793
Estimate Std. Error Pr(>|t|) Estimate Std. Error Pr(>|t|)

Intercept 2580.718 55.152 <2E-016 1155.797 40.454 <2E-016
MAF -1450.942 182.12 1.66E-015 -1442.701 379.762 0.000145
COV -3.915 1.806 0.0301 -5.856 1.76 0.000877

Suppl. Figure 4: ROC curves for low and high power simulation for all SNPs (solid black line), SNPs with
minor allele frequency (MAF) greater than 40% (dotted red) or lesser than 10% (green dashed).



significant differences with AUC values ranging from 0.93 to 0.96. Under the high power conditions, low minor
allele frequencies significantly decreased sensitivity to detect true positive as well as decreasing specificity (for a
threshold of 100 most associated SNPs using a t-test, p-val>0.05). Moreover, when comparing the analysis in
Suppl. Figure 3 and 4 which only differ by an increased variance in sequencing coverage in Suppl. Figure 4, an
increase in sensitivity and in AUC was observed,  suggesting high variance in sequencing depth is  actually
beneficial to the overall detection power. We further compared the detection power of GWAlpha with respect to
GLM (individual based) and FET (2 pools representing 1/3 of the distribution each) either for rare (< 0.1) or
balanced (>0.4) frequencies. We used the same framework as in Suppl. Data 1 but using 5000 simulations with
increased coverage variance as described above and scored the proportion of causative SNPs ranked among the
top 100 SNPs in the simulations. The results confirmed a loss of power to detect low frequency alleles, however
this loss of power was less pronounced for GWAlpha compared  to the alternative methods. 

Suppl. Table 3: Proportion of causative SNPs found in the top 100 associations using GWAlpha or alternative
methods for different range of frequencies.

Low power High power
All All

GWAlpha 0.28 0.13 0.39 0.77 0.63 0.81
GLM 0.4 0.11 0.45 0.78 0.55 0.83

Low frequency 
(<0.1)

High frequency 
(>0.4)

Low frequency 
(<0.1)

High frequency 
(>0.4)



Supplementary Data 5: Repeatability of GWAS applying GWAlpha to empirical data
In each of the four GWAS reanalysed, each individual i was assigned to a pool k bound by  based on

its trait quantile position y'i if . Since the boundaries of the pools are defined using the inverse-
quantile  function  for  the  trait  distribution,  GWAlpha  is  less  sensitive  to  the  initial  trait  distribution.  Each
individual is assigned to a single pool, and conversely all individuals with identical trait value are assigned in the
same pool. As a consequence, if numerous individuals have the same phenotype (as in Battlay et al. (2016) with
all  42 individuals in pool 1 showing no survival),  the number of individuals may be different across pools
(Suppl. Figure 5). 

Suppl Figure 5: Trait variation and design of the pools used in the data analysis. All datasets were analysed
using five pools with the exception of Magwire et al. (2012) where association could be repeated using four
pools only.



To further validate the coherence between GWAlpha and GWAS performed using GLM, correlations between
alphas and betas (the linear predictors of genetic effect from GWAlpha and GLM, respectively) were computed.
All GWAlpha/GLM correlations were positive and significant using Pearson's rho. The correlation coefficients
were the highest for the D. melanogaster datasets: 0.62 for the Magwire et al. (2012) dataset and 0.57 for the
Battlay et al. (2016) dataset; and slightly lower for the  A. thaliana datasets: 0.38 for the Brachi  et al. (2015)
dataset and 0.45 for the Baxter et al. (2010).

Suppl Figure 6: Convergence of the association signal between GWAlpha using 5 or 4 pools and individual-
based GLM was tested in different organisms using two published data sets (Baxter et al., 2010; Magwire et al.,
2012). The p-value threshold correspond to the empirical thousand-ile for each dataset.



Supplementary Data 6: Memory usage and Performance
The run time and performance of GWAlpha was tested on a  Linux architecture operating with Ubuntu 15.04. 12
GWAlpha simulations were run for each SNP and pools number combination, setting a memory usage limit of
1.25GB for each simulation and the average run time is presented in Suppl. Figure 7. Furthermore, GWAlpha
was able to run 5 million SNPs with 9 pools under this memory usage setting without exceeding the memory
limit.  However, since running 5 million SNP on 9 pools is expected to take ~130 hours to complete using
1.25GB of memory, we suggest computing the model in parallel as implemented in the GWAlpha.sh script.

As an indication for the examples reported in Data Analysis section, using 12 parallel processes on a 12 core
processor of 4GB each, the A. thaliana dataset (214,566 SNPs)  was analysed in less than 45 minutes and the D.
melanogaster dataset (4,438,427 SNPs), in less than 15 hours.

Suppl Figure 7: Run time in minute to complete a GWAlpha test for different number of SNPs and pools.


