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Abstract— Effects which arise as a result of Hertzian contact 

between adjacent spheres of a granular chain can potentially 

change the nature of a signal as it propagates down the chain. 

The possibility thus exists of generating signals with a different 

harmonic content to the signal input into one end of the chain. 

This transduction mechanism has the potential to be of use in 

both diagnostic and therapeutic ultrasound applications. Due to 

metrological challenges which arise when characterizing this 

transduction process, numerical models play a fundamental role 

in assisting the design of these novel devices. Previously, a finite 

element model was presented, which predicts the acoustic 

pressure generated by a sinusoidally excited granular chain 

coupled into an acoustic medium. The study described here 

exploits this model to carry out sensitivity analyses of the system 

to key input parameters, including excitation frequency and 

amplitude, sphere diameter and the number of spheres present in 

the chain. Granular chains were excited at one end using tone 

burst displacement signals with fundamental frequencies of 73 

kHz and 100 kHz. The final sphere of the chain was assumed to 

be in contact with a cylindrical vitreous carbon layer, coupled to 

a half-space of water. Using the finite element method, it was 

possible to predict the acoustic pressure in the fluid, for a specific 

dynamic excitation of the first sphere of the granular chain. The 

sensitivity analyses demonstrated that, under tone burst 

excitation conditions, a train of impulses could be propagated 

into an acoustic medium. The sensitivity analyses also show that, 

due to inherent nonlinearities present in this type of system, the 

time and frequency domain characteristics of the signals are 

highly sensitive to input conditions. 
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I.  INTRODUCTION 

Granular materials can be thought of as a conglomeration 
of discrete solid macroscopic particles characterized by a loss 
of energy whenever the particles interact. Granular crystals are 
defined as ordered aggregates of elastic particles in contact 
with each other and can be thought of as a type of nonlinear 

periodic phononic structure. Granular crystals display nonlinear 
characteristics which result from the nonlinear relationship of 
the force at the contact and the displacement between 
neighboring element centers (described by Herzian contact 
laws – a consequence of linear mechanics) and an asymmetric 
potential which arises between neighboring elements from the 
inability of granular crystals to support tensile loads [1]. An 
unusual feature of granular crystals that results from these 
nonlinearities is the negligible linear range for interaction 
forces between neighboring elements (in vicinity of zero pre-
compression force). This results in a non-existent linear sound 
speed in the uncompressed material. This leads to a 
phenomenon known as “sonic vacuum” where the traditional 
wave equation does not support a characteristic speed of sound 
[2]. Granular crystals support a wide array of nonlinear 
phenomena: compact solitary waves, nonlinear normal modes, 
anomalous reflections and energy trapping Granular crystals 
remain one of the most studied examples of nonlinear lattices. 

The study of the generation of solitary waves in a granular 
chain has recently been extended to biomedical applications 
[3,4,5]. In [3], high-amplitude focused acoustic pulses were 
generated using a one-dimensional array of granular chains. An 
investigation was conducted where the amplitude, size, and 
location of the focus could be controlled by varying the static 
pre-compression of the chains. Furthermore, granular chains 
have been used to assess the structural integrity of orthopedic 
implants [4]. In a recent study [5], displacements of the order 

of 1 m were produced by a resonant 73 kHz ultrasonic source 
to drive a granular chain consisting of six 1 mm diameter 
chrome steel spheres. The final sphere of the chain was in 
contact with a fixed support. Travelling solitary wave impulses 
were observed, which were due to both nonlinearity between 
adjacent spheres and reflections within the chain. The axial 
velocity of the final sphere of the chain was measured using a 
laser vibrometer. The acquired waveforms showed a train of 
impulses possessing both high amplitude and wide bandwidth, 
and featuring spectral content up to 200 kHz. This work was 
subsequently expanded upon to study the response of granular 
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chains to a narrow band ultrasonic source, as a function of the 
static pre-compression of the chain, and of its properties [6]. A 
transduction mechanism based on the nonlinear dynamics of 
granular chains may in fact possess distinct features that could 
make it attractive to both therapeutic high-intensity focused 
ultrasound applications and diagnostic applications [5,6]. A 
recent study showed that coupling a sinusoidally excited six-
bead granular chain to water could generate acoustic pressures 
in the form of wideband impulses, featuring spectral content 
close to the biomedical ultrasound frequency range [7]. Due to 
the complexities associated with varying the experimental 
parameters and also due to the metrological challenges 
involved in acquiring traceable acoustic pressure 
measurements, theoretical models capable of simulating the 
nonlinear transduction process have a vital role to play in 
understanding and optimizing the mechanisms involved. The 
use of the finite element method to analyze the dynamic 
behavior of a granular chain was investigated in [8], providing 
good agreement with the discrete mechanics solution proposed 
and with experimental results described in [9] and [10]. Finite 
element analysis (FEA) was subsequently employed in [11] to 
model the dynamics of granular chains with signals relevant to 
biomedical ultrasound. This yielded good agreement with the 
discrete mechanics solution and demonstrated that the multiple 
collisions which occur between the beads of the chain could be 
accurately modeled using FEA. The coupling of this granular 
chain to an acoustic medium to predict the acoustic pressures 
generated by the sinusoidal excitation of a six-bead granular 
chain was described in [12]. 

The study described in this paper features an extension of 
the prior model in order to carry out sensitivity analyses of the 
system to key input parameters. The granular chains were 
excited at one end using 30-cycle sinusoidal displacement 
signal with a Gaussian envelope, and with a fundamental 
frequency of either 73 kHz or 100 kHz. The final sphere of the 
chain was assumed to be in contact with a cylindrical vitreous 
carbon Sigradur® K layer of 0.25 mm thickness, coupled to a 
half-space of water. Using the finite element method, it the 
acoustic pressure at 1 mm from the fluid/structure interface was 
predicted, for a specific dynamic excitation of the first sphere 
of the granular chain. The beads were assumed to be made of 
chrome steel. The first sphere of the chain was excited via a 
stainless steel cylindrical piston. The displacement magnitude 

was varied between 1.65 m and 4.95 m. This is 
representative of the experimental conditions described in 
[5,6]. The FEA was carried out using a transient analysis in 
ANSYS Mechanical version 16.1 [13]. 

II. MATERIALS AND METHODS 

A. Finite element analysis 

It is common to formulate the problem of frictionless 
contact between two solid bodies as a variational inequality. 
This presents a special type of minimization problem with 
inequality constraints. The Lagrange multiplier method, or the 
Normal Lagrange Formulation as it is described in ANSYS 
Mechanical [13], was used to solve the minimization problem. 
This method adds an extra degree of freedom (contact 
pressure) to satisfy contact compatibility. Consequently, 

instead of resolving contact force as contact stiffness and 
penetration, contact pressure is solved for explicitly as an extra 
degree of freedom. Whilst more computationally intensive than 
penalty methods, it has the advantage of enforcing near-zero 
penetration when modelling frictionless contact between two 
bodies. 

Damping was implemented in the form of dashpots 
connecting adjacent solid bodies. One of the principle sources 
of damping arises from internal viscoelastic mechanisms which 
occur as the bodies are compressed together [14]. Previous 
work [5] suggests that good comparison with experiment is 
obtained by using a value of 0.3 N∙s∙m

-1
 for the longitudinal 

damping factor when adjacent bodies are in contact. Damping 
was set to zero when bodies were not in contact with one 
another. This task involved extracting the displacements at the 
dashpots nodes at each time step of the analysis, and assigning 
a zero or a 0.3 N∙s∙m

-1
 damping factor, depending on the 

relative positions of the dashpot nodes. 

The propagation of acoustic waves inside the fluid was 
assumed to be governed by the linear, inviscid acoustic wave 
equation, so that the fluid could be defined in terms of its 
equilibrium density and speed of sound. Coupling at the 
fluid/structure interface assumed continuity of normal velocity. 
An absorbing boundary was placed around the acoustic finite 
element mesh in order to simulate the Sommerfeld radiating 
condition and propagation of acoustic waves into a half-space. 
Details of the underlying equations and physical principles may 
be found in [13]. 

A mesh of the structural section of the model is displayed 
in Fig. 1, with a description of the forcing and boundary 
conditions. This mesh features refinements around the contact 
regions to improve accuracy of the solution, as well as 
convergence. In all simulations, a mesh conversion analysis 
was carried out to ensure that the mesh density and time step 
were suitable for the generation of accurate results.  

 

Fig. 1. FEA model mesh: 3D visualization of the axisymmetric model for a 

ten-sphere, 1 mm bead diameter granular chain, coupled to a fluid region. 

B. Sensitivity analysis 

Four granular chain configurations were investigated: 

(1) Six-sphere granular chain with 1 mm diameter beads. 
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(2) Six-sphere granular chain with 0.5 mm diameter 

beads. 

(3) Six-sphere granular chain with 2 mm diameter beads. 

(4) Ten-sphere granular chain with 1 mm diameter beads. 

 

A displacement excitation was applied to the steel piston in 

contact with the first sphere of the granular chain. Two 

fundamental excitation frequencies were considered for all 

four configurations: 73 kHz and 100 kHz. The displacement 

signals consisted of 30 cycles of a sinusoidal waveform with a 

Gaussian envelope. A sample displacement excitation is 

shown in Fig. 2, corresponding to a 73 kHz fundamental 

frequency and featuring a peak displacement of 3.3 m. 

 

 

Fig. 2. Normal displacement applied to the outer surface of the stainless steel 

piston in the FEA model. 

For all configurations, 11 displacement excitation waveforms 

were considered with a peak value varying linearly between 

1.65 m and 4.95 m. 

III. FINITE ELEMENT MODELING RESULTS 

The input properties used for each structural material is 
displayed in table I.  

TABLE I.  MATERIAL PROPERTIES 

Material Young’s 

modulus (GPa) 

Poisson’s ratio Density (kg∙m-3) 

Stainless steel 200 0.35 7800 

Chrome steel 201 0.35 7833 

Sigradur® K 35 0.15 1540 

 

The fluid region was assigned the properties of water, i.e. a 
speed of sound of 1500 m∙s

-1
 and a density of 1000 kg∙m

-3
. 

For all configurations, the velocity at the center of the final 
sphere of the chain was obtained as a function of time, along 
the y-direction (i.e. the axis of the chain). The resulting 
acoustic pressure radiated by the front face of the Sigradur® K 
cylinder was extracted at the post-processing stage, at 1 mm 
into the medium and along the axis of symmetry of the chain. 
Finally, the FFT magnitude of each acoustic pressure signal 
was evaluated and normalized to its maximum value. Three 
sets of results are discussed in this Section, which all bear a 
specific relevance to biomedical ultrasound applications. The 

results in Fig. 3 correspond to a 73 kHz 4.95 m peak 
excitation of a six-sphere chain of 1 mm diameter beads. 

 

Fig. 3. Six-sphere granular chain, 1 mm bead diameter, 73 kHz 4.95 m  
peak excitation. Top to bottom: velocity of last sphere of chain, acoustic 

pressure 1 mm from fluid/structure interface and normalized FFT of acoustic 

pressure. 

This set of results clearly shows that a pulse train is 

propagated into the acoustic medium, with a peak acoustic 

pressure of 20 kPa 1 mm from the fluid/structure interface. 

The acoustic signal has multiple harmonics and features 

spectral content up to 0.94 MHz, at -20 dB relative to the 

fundamental frequency. 

Fig. 4 shows results corresponding to a 73 kHz 3.63 m 
peak excitation of a six-sphere chain of 0.5 mm diameter 
beads. The acoustic pressure waveform also shows that a train 
of impulse is being propagated into the acoustic medium.  

 

Fig. 4. Six-sphere granular chain, 0.5 mm bead diameter, 73 kHz 3.63 m  
peak excitation. Top to bottom: velocity of last sphere of chain, acoustic 
pressure 1 mm from fluid/structure interface and normalized FFT of acoustic 

pressure. 
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However, in addition to higher order harmonics, it can be 
seen that broadband noise occurs. Rather than this noise 
being numerical in nature, it is thought that it is due to the 
propensity of such systems to exhibit chaotic behavior. 

In Fig. 5, results corresponding to a 100 kHz 4.29 m 
peak excitation of a six-sphere chain of 0.5 mm diameter 
beads. This specific set of results show that a high-
amplitude acoustic pressure time domain waveform is 
obtained (200 kPa peak positive pressure), and also shows 
that a train of impulse is being propagated into the acoustic 
medium. 

 

Fig. 5. Six-sphere granular chain, 0.5 mm bead diameter, 100 kHz 4.29 m  
peak excitation. Top to bottom: velocity of last sphere of chain, acoustic 

pressure 1 mm from fluid/structure interface and normalized FFT of acoustic 

pressure. 

IV. CONCLUSION 

A finite element model has been developed for the analysis 
of acoustic signals resulting from the coupling of a 
dynamically excited granular chain, into an inviscid fluid. A 
sensitivity analysis was carried out in which the excitation 
frequency and amplitude, the number of spheres in the chain 
and the sphere diameter were varied. Selected results presented 
in this paper demonstrate that when undergoing sinusoidal 
excitations, granular chains can propagate acoustic signals with 
time and frequency domain content relevant to biomedical 
ultrasound applications. This conclusion is substantiated by the 
experimental work carried out in [7]. 

Nevertheless, due to inherent nonlinearities present in such 
systems, the acoustic output pressure for a given input 

displacement can be highly sensitive to the small variations 
initial conditions. 
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