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Summary statement: 

In this study we evaluated the impact of scan density on spectral domain OCT 

(SDOCT) thickness and volume measurements in patients with Neovascular 

Age-Related Macular Degeneration. In particular, we define the minimum 

scanning density (32 B-scans) required in order to obtain reliable retinal 

thickness and volume maps for different choroidal neovascularization features 

like sub retinal fluid, sub retinal hyper reflective material, pigment epithelial 

detachment.  
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Abstract 

Purpose: To assess the influence of varying B-scan frame sampling densities 

on retinal thickness and volume measurements from spectral domain optical 

coherence tomography (OCT) in eyes with neovascular age-related macular 

degeneration (AMD). 

Methods: Volume OCT data (512x128 macular cube over 6x6 mm) were 

collected from 39 eyes with neovascular AMD. All 128 B-scans in each image 

set were manually segmented, allowing quantification of the neurosensory 

retina, subretinal fluid (SRF), subretinal hyperreflective material (SRHM), and 

pigment epithelium detachment (PED). Thickness maps were generated for less 

dense subsets of scans, ranging from every other (64 B-scans) to every 64th (2 

B-scans). For each less dense subset, foveal central subfield thickness and 

total macular volume (TMV) were compared with values obtained using all 128 

scans (considered the reference). 

Results For each parameter, the mean absolute difference compared to the 

reference increased with reducing B-scan density. However, these differences 

did not reach statistical significance until frame sampling density was reduced to 

every eighth scan (i.e., 16 B-scans spaced 375 µm apart) for neurosensory 

retina and every fourth scan (i.e., 32 B-scans spaced 188 µm apart) for SRF, 

SRHM and PED. For neurosensory retina, the mean (% error) and maximum (% 

error) absolute differences in TMV, were 0.02 mm3 (0.24%) and 0.06 mm3 

(0.79%), respectively. Similarly at a density of 32 B-scans, mean and maximum 

differences for SRF were 0.004 mm3 (3.47%) and 0.02 mm3 (22.22%). The 

mean differences for SRHM and PED were 0.01 mm3 (8.03%) and 0.01 mm3 

(4.04%), respectively. 
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Conclusions: A minimum of 16 equally spaced B-scans, covering a 6 x 6 mm 

area, appears necessary to generate retinal thickness measurements similar to 

those obtained using all 128 B-scans in eyes with CNV. When considering other 

CNV lesion features, a minimum of 16 B-scans for SRF and PED and 32 B-

scans for SRHM, are required to generate volume maps similar to ground truth 

values. These findings may have implications for the design of acquisition and 

grading protocols for clinical trials using OCT in neovascular AMD. 
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Age-related macular degeneration (AMD) is a common cause of visual 

impairment in the United States,1 with its neovascular form a leading cause of 

irreversible blinding in elderly populations.2 Spectral domain optical coherence 

tomography (OCT) is commonly used to visualize and monitor choroidal 

neovascularization (CNV) associated with AMD. This non-invasive, non-

destructive method of obtaining detailed anatomical data in vivo 2, 3 is used to 

evaluate, diagnose, and monitor diseases such as diabetic retinopathy 4, 5 and 

diabetic macular edema, 6, 7 as well as pigment epithelial layer abnormalities 

and CNV.8 The ability of commercial OCT algorithms to automatically segment 

retinal boundaries and generate thickness and volume maps has been very 

important for its use in clinical practice and in clinical research trials.9, 10 

In disorders such as CNV, however, the automatic segmentation 

boundaries generated by OCT systems are often inaccurate,9,11,12 likely due to 

the extensive outer retinal disruption caused by the disease process. In such 

cases, the retinal layer boundaries must be manually corrected to assure 

accurate measurements.13 The Cirrus and Topcon OCT machines primarily 

segment two boundaries as a means of defining retinal thickness: the inner 

limiting membrane (ILM) and the retinal pigment epithelium (RPE). These 

machines do not differentiate subretinal fluid (SRF) from neurosensory retina, 

nor do they separately quantify subretinal hyperreflective material (SRHM) or 

pigment epithelial detachment (PED). The measurements from volume maps 

generated using OCT can also be affected by artifacts,14-17 poor signal,18 

operator errors, and decentration due to poor fixation.19 

Even newer third-party automated algorithms for CNV lesions require 

human input and optimization.11,12 Since manual correction of the scans is 
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exhaustive and time consuming, it is unsuitable for regular clinical practice and 

presents a challenge even in the context of a reading center for clinical trials.20 

Furthermore, many clinicians do not obtain dense volume scans, but less dense 

sets with only 25-50 B-scans per cube, particularly when using acquisition 

protocols that utilize extensive B-scan averaging. We have shown that features 

of exudation in CNV lesions can be missed when using these reduced 

densities.21 

We have also previously demonstrated that accurate retinal thickness 

and volume maps can be generated using only a small subset of B-scans (32 B-

scans) in a volume cube13,20; however, this study included retinal pathologies of 

various origins and not specifically CNV, wherein significant disruption of the 

outer retina leads to more frequent and severe segmentation errors.16,18,22 

Furthermore, the accuracy of volumes of more localized pathologic features, 

such as PED or SRF, may be more severely compromised by lower sampling 

densities. Thus, in the present study, we address these issues by evaluating the 

impact of reduced B-scan frame sampling, specifically in eyes with neovascular 

AMD, and incorporating CNV lesion parameters such as SRF, SRHM, and 

PED.  

  

Materials and Methods 

 

Data collection 

For this retrospective study, we collected OCT data from 39 eyes of 38 patients 

clinically diagnosed with wet AMD who presented consecutively to the Doheny 

Eye Institute Retina Clinics. All data was generated by one of two spectral 

domain OCT instruments available in the clinic: Cirrus 5000 (Carl Zeiss 
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Meditec, Dublin, CA, 24 patients) or Topcon 3DOCT-2000 (Topcon Medical 

Systems, Inc., Oakland NJ, 15 patients). Data collection and analyses were 

approved by the Medical Institutional Review Board of the University of 

California Los Angeles and the research adhered to the tenets set forth in the 

Declaration of Helsinki. Clinical characteristics such as age, gender, best-

corrected visual acuity, and diagnosis were also obtained from the patient 

records. 

Imaging from both spectral domain OCT machines was performed using 

a standardized macular cube protocol consisting of 128 equally spaced, 

horizontally oriented, 6-mm raster B-scans, each composed of 512 A-scans, 

with scanning performed over a 6 mm square centered on the fovea. This is the 

most commonly used protocol in the Doheny Imaging Unit and is the most 

widely accepted acquisition protocol for clinical trials of retinal disease at the 

Doheny Image Reading Center (DIRC). The raw data from the OCT machines 

were collected and imported into previously described and validated spectral 

domain OCT reading center grading software (3D-OCTOR). 20,23 This software 

allowed the grader to manually segment the relevant boundaries and generate 

retinal thickness and volume maps using the common Early Treatment of 

Diabetic Retinopathy Study macular grid.20 

 

Grading procedure 

The OCT scans were analyzed and graded by three experienced, certified 

DIRC graders (S.B.V., M.G.N., R.K.K.). Boundaries drawn in each of the 128 

OCT B-scans included the ILM, outer border of the photoreceptors, borders of 

SRF and SRHM (if present), inner surface of the RPE, and estimated normal 
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position of the RPE layer (in cases of RPE elevation). All boundaries were 

drawn in accordance with the standard OCT grading protocol of DIRC, which 

has been demonstrated to yield highly reproducible grading in previous 

reports.24 After grading, 3D-OCTOR was used to calculate output parameters 

for various morphologic spaces such as the neurosensory retina, SRHM, SRF, 

and PED (Figure 1). 

 

Generating thickness and volume maps 

Maps were generated to evaluate the relationship and differences between 

each B-scan density for foveal central subfield (FCS) thickness and total volume 

measurements of the neurosensory retina, SRHM, SRF, and PED. As in 

previous publications,24 the space extending between the ILM layer and the 

outer surface of the photoreceptor outer segments was defined as the 

neurosensory retina; the hyporeflective space (Figure 1) between the outer 

photoreceptor border and the inner surface of SRHM (if present) or RPE was 

defined as SRF; the hyperreflective space (Figure 1)  between the outer surface 

of the photoreceptors or SRF (if present) and the inner surface of the RPE was 

defined as SRHM; the space between the inner surface of the RPE and the 

estimated original position of the RPE (often recognized by a thin hyper-

reflective line believed to correspond to the Bruch’s membrane-choriocapillaris 

interface) was defined as PED (Figure 1). Inter-grader reproducibility using the 

OCTOR software and this grading protocol has been demonstrated 

previously.24 

  Retinal thickness maps were generated using all 128 B-scans, and then 

with sequentially smaller subsets of evenly spaced scans: 64 B-scans (every 
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other scan, 94 µm apart); 32 B-scans (every 4th B-scan, 188 µm apart); 16 B-

scans (every 8th B-scan, 376 µm apart); 8 B-scans (every 16th B-scan, 752 µm 

apart); and 4 B-scans (every 32nd B-scan, 1504 µm apart). Thickness and 

volume maps were generated not only for the neurosensory retina, but for the 

CNV lesion features (SRF, SRHM and PED) using a simple bilinear 

interpolation for each sampling density, as previously described.13  

 

Statistical methods: 

The thickness and volume measurements obtained using all 128 B-scans were 

considered to be the reference standard or ground truth. The difference (error) 

between the reference standard and analogous values at each reduced frame 

sampling density was then calculated for all retinal and CNV lesion parameters 

(data from only eyes with CNV features were used for analysis). The means of 

the absolute difference values were compared as opposed to a simple mean, 

which could potentially mask or minimize apparent differences. Percentage 

(relative) errors were calculated by dividing the value of the difference between 

the two measurements by the ground truth/reference (i.e. based on all 128 B-

scans) measurements and multiplying by 100. Bland-Altman plots were 

generated to facilitate comparisons between each B-scan sampling density and 

the ground truth reference values. Best-corrected visual acuity was converted 

into logMAR notation for statistical analysis. The relationship between visual 

acuity and the various calculated parameters was also compared to evaluate for 

consistency with previously published findings.  

All data were analyzed using commercially available SPSS 15.0 

statistical software (SPSS, Chicago, IL) and MedCalc (MedCalc Software, ver. 
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11.3.8, Mariakerke, Belgium). A P value of ≤ 0.05 was considered statistically 

significant. One-way ANOVA and Bonferroni correction were used to determine 

significant differences between and within B-scan densities. 

 

Results 

Clinical characteristics 

A total of 39 eyes with CNV from 38 patients with AMD were included in this 

study. Among the 39 eyes, CNV features such as SRF, SRHM and PED were 

present in 26, 29 and 34 eyes, respectively. The mean patient age was 82.7 ± 

6.27 and the mean logMAR visual acuity was 0.84 (Snellen ≈ 20/140) ± 0.72. 

Twenty-five (66%) of the 38 patients included in our analysis were female, and 

23 (59%) of the eyes studied were left eyes. The association between logMAR 

visual acuity and total volumes of each of the CNV parameters was also 

evaluated. A positive correlation was found between LogMAR visual acuity and 

total volumes of SRHM (r = 0.785, P = <0.001), SRF (r = 0.701, P = <0.001), 

and PED (r=0.963, P = <0.001).  Similar correlations were found for desired 

scan densities. A positive correlation was found between LogMAR visual acuity 

and total volumes of SRHM (at 32 B-scans; r = 0.789, P = <0.001), SRF (at 16 

B-scans; r = 0.700, P = <0.001) and PED (at 16 B-scans; r = 0.955, P = 

<0.001). 

 

Neurosensory retina 

Table 1 demonstrates the absolute difference and percentage error of 

neurosensory retinal thickness measurements. Neurosensory retinal FCS 

thickness and total volume measurements were computed from maps 
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generated after manual grading of retinal boundaries. No statistically significant 

difference was observed between FCS thickness and volume measurements 

until the density was reduced to 1/8 B-scans (375 µm apart) (P = 0.02) or less. 

The mean ± SD for absolute error (relative to ground truth value from all 128 B-

scans) of FCS thickness was 1.21 ± 1.05 µm with 64 B-scans, increasing to 

14.28 ± 14.02 µm with 8 B-scans; whereas for total volume, the mean ± SD of 

absolute error increased from 0.01 ± 0.01 mm³ (64 B-scans) to 0.04 ± 0.03 mm³ 

(8 B-scans). The mean ± SD of percentage errors for FCS NRT thickness and 

total volume were 0.49 ± 0.43% and 0.13 ± 0.10% with 64 B-scans, increasing 

to 6.30 ± 6.95% and 0.56 ± 0.5% with 8 B-scans. Comparative graphs with 

mean and max of absolute difference and percentage error for neurosensory 

retina FCS thickness and total volume are shown in Figure 2. Figure 3 shows 

Bland-Altman plots for the mean difference in neurosensory retina FCS 

thicknesses between ground truth and frame sampling densities of 64, 32, 16 

and 8 B-scans. 

 

 

Subretinal fluid 

No statistically significant difference (P = 1.00) was observed between the total 

SRF volume with any of the reduced sampling densities of 64, 32, 16, 8, or 4 B-

scans and total SRF volume measurements obtained with all 128 B-scans. The 

mean ± SD for absolute error (relative to ground truth) of total SRF volume was 

0.002 ± 0.004 mm³ (64 B-scans) and 0.02 ± 0.02 mm³ (8 B-scans). The mean ± 

SD for percentage error was 2.11 ± 6.53% with 64 B-scans, increasing to 25.32 

± 39.57% with 8 B-scans. Table 2 shows the absolute difference and 
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percentage error measurements of SRF volume at the reduced sampling 

densities. Figure 2 shows the comparative graph of absolute difference and 

percentage error of SRF volume for various sampling densities. 

 

Subretinal hyperreflective material 

No statistically significant difference (P = 0.72) was observed between the total 

SRHM volumes with sampling densities of 64, 32,16, 8, or 4 B-scans relative to 

that obtained with all 128 B-scans. The mean ± SD for absolute error (relative to 

ground truth) for total SRHM volume was 0.01 ± 0.01 mm³ (64 B-scans) and 

0.04 ± 0.03 mm³ (8 B-scans). The mean ± SD for percentage error was 5.44 ± 

11.03% with 64 B-scans, increasing to 30.06 ± 32.45% with 8 B-scans. Table 2 

shows the absolute difference and percentage error measurements of SRHM 

volume at the reduced sampling densities. Figure 2 shows the comparative 

graph of absolute difference and percentage error of SRHM volume for various 

sampling densities.  

 

Pigment epithelium detachment 

No statistically significant difference (P = 0.80) was observed between the total 

PED volume measurements with sampling densities of 64, 32, 16, 8, or 4 B-

scans and that of total PED volume obtained with all 128 B-scans. The mean ± 

SD for absolute error (relative to ground truth) of total PED volume was 0.01 ± 

0.01 mm³ (64 B-scans) and 0.04 ± 0.06 mm³ (8 B-scans). The mean ± SD for 

percentage error was 2.99 ± 7.42% with 64 B-scans, increasing to 10.38 ± 

12.06% with 8 B-scans. Table 2 shows the absolute difference and percentage 

error measurements of PED volume at the reduced sampling densities. Figure 2 
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shows the comparative graph of absolute difference and percentage error of 

PED volume for various sampling densities.  

 

Alternate Starting Scan 

Choosing an alternate starting scan did not yield any difference (p > 0.05) in the 

results, suggesting that the observations were quite stable. The percentage 

error for the volume of each feature with the various starting scans is shown in 

Table 3 

 

Discussion 

In this retrospective cross-sectional study, we observed that a reduction in 

frame sample density of a spectral domain OCT volume scan was associated 

with an increase in the error of FCS thickness and volume measurements in 

eyes with neovascular AMD. The error or difference was not statistically 

significant until the scanning density was reduced to every 8th scan (i.e., 16 B-

scans, with an equal spacing of 376 µm seemed to yield measurements similar 

to the ground truth). At a density of every 8th scan, the percentage difference for 

total neurosensory retinal volume was 0.24%. However, a sudden and 

statistically significant rise in the error was observed with lower sampling 

density, with 0.56% error at a density of 8 B-scans (i.e., every 16th B-scan) and 

1.33% error at a density of 4 B-scans (i.e., every 32nd B-scan). The mean 

percentage error in FCS neurosensory retinal thickness was approximately 

2.5%, with a maximum error of approximately 13.6%. In total neurosensory 

retinal volume, the mean and maximum percentage errors were approximately 

0.2% and 0.8%, respectively, at a scanning density of 16 B-scans.  
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There was no statistically significant difference for the total volume 

measurements of retinal subcomponents such as SRF, SRHM and PED at any 

scan density. This may be due to the smaller study sample with these 

parameters and larger standard deviation values at different scan densities. 

Though the mean values were not statistically significant, the absolute 

differences were potentially clinically significant. Although the choice of 

repeatability standard/limit is somewhat arbitrary, if one wants to achieve a 

mean difference of less than 10%, this requires B-scan densities of 16 for SRF, 

32 for SRHM, and 16 for PED. 

We also observed a positive correlation between total volumes of SRHM, 

SRF, PED and LogMAR visual acuity. In other words, more SRHM, SRF, or 

PED was associated with worse vision. We first described this relationship 

between SRHM and visual function in a cohort of neovascular AMD patients 

using time-domain stratus OCT.25 This finding was subsequently replicated in 

the ABC trial26 and CATT studies.27 Although not main focus of the present 

study, it was reassuring to see that this apparent relationship between SRHM 

and vision was replicated.  

The findings from the present study have relevance for clinical trials of 

diseases associated with CNV that incorporate quantitative OCT analyses. 

Given the enhanced correlation with visual function, lesion sub-analysis would 

seem to be of value in these trials. The potential emergence of new 

therapeutics to specifically target or reduce SRHM may further increase the 

importance of delineating these structures. Manual drawing of retinal 

boundaries and/or correction of the segmentation errors in every B-scan is 

needed to ensure the accuracy of measurements in many eyes with CNV; but 
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the amount of effort required for these corrections may often be impractical, 

particularly with spectral domain OCT datasets having 128 (or more) B-scans.13 

Thus, reducing the sampling density for thickness map calculation may make 

reading center manual correction of SDOCT scans feasible and clinically 

relevant.28 Although use of reduced sampling densities was previously 

demonstrated by Sadda et al13 to be of potential value, the previous studies only 

considered neurosensory retinal thickness and did not focus on CNV lesions. 

Here, we were able to define the acceptable B-scan densities for quantifying 

specific sub-components of CNV lesion. However, it is important to note that an 

“acceptable” B-scan density level is somewhat arbitrary and depends on the 

desired level of precision (our threshold was a mean error of < 10%) for a 

particular study or application. 

Our study has some limitations which should be considered when 

assessing our findings. First, it is a retrospective study and from a tertiary care 

academic medical center and may be subject to ascertainment bias in the types 

of CNV lesions included. For example, our cohort only included eyes with FCS 

neurosensory retinal thickness ranging from 132.9 to 733.70 µm; thus, our 

findings may not extrapolate to eyes with more severe disease or with CNV 

lesions much smaller or larger than the ones included in this study.  In addition, 

because of the enormous time required to manually segment multiple 

boundaries on 128 B-scans per case, the number of subjects included in this 

study was relatively small. Thus, although no statistically significant differences 

were observed until the lower densities were reached, the study was not 

powered to identify smaller but potentially still relevant differences at the higher 

densities. Moreover, our study did not assess whether measurements would 
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differ if an even higher density (>128 B-scans over 6 mm) was used (as a new 

ground truth). High scanning density may also be critical for generation of OCT 

projection maps or en face images, which may be useful for certain ancillary 

analyses or for inter visit registration. Finally, qualitative morphologic 

assessment may still require higher density scans, even if only subsets of these 

scans are used for quantification. 

In summary, we observed that 16 equally spaced horizontal B-scans 

over a 6-mm square may be sufficient to adequately represent and generate a 

reliable macular thickness map of the neurosensory retina, after manual grading 

of retinal boundaries and correction of segmentation errors. Similarly for CNV-

associated features such as SRF or PED, a minimum of 16 B-scans (every 8th 

B-scan) are required to generate volume maps which are similar (within 10%) to 

the ground truth values. A minimum of 32 B-scans (every 4th B scan) is required 

to generate similar ground truth volume maps for SRHM. These findings may 

aid in the design of optimal and streamlined spectral domain OCT scanning and 

grading protocols for future clinical trials using OCT in neovascular AMD. 
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Titles and Legends to Figures 

 

Figure 1: [A] Optical coherence tomography B-scan demonstrating subretinal 

hyper reflective material (SRHM – “hyper reflective” space), subretinal fluid 

(SRF – “hypo reflective” space) and pigment epithelial detachment (PED). [B] 

The clinically relevant boundaries -- internal limiting membrane [ILM], outer 

border of photoreceptors, retinal pigment epithelium (RPE), inner and outer 

borders of SRHM and the estimated normal location of the RPE layer are drawn 

using 3D-OCTOR software. [C] 3D-OCTOR then computes the volumes of the 

spaces (retina, SRHM, SRF, and PED) defined by these boundaries. 

 

Figure 2: Effect of reduced B-scan densities on measurements of foveal central 

subfield (FCS) thickness of neurosensory retina (NRT). [A] Mean absolute error 

(µm), [B] Maximum absolute error (µm), [C] Mean percentage error and [D] 

Maximum percentage error; Effect of reduced B-scan densities on total volume 

measurements of neurosensory retina (NRT), subretinal hyper reflective 

material (SRHM), subretinal fluid (SRF) and pigment epithelium detachment 

(PED) - [E] Mean absolute error (mm³), [F] Maximum absolute error (mm³), [G] 

Mean percentage error and [H] Maximum percentage error.
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Figure 3: Bland-Altman plots demonstrating the level of agreement between the 

ground-truth and each reduced sampling density for the foveal central subfield 

(FCS) neurosensory retinal thickness. Central solid line indicates the mean 

absolute difference, and dotted lines indicate the 95% (upper and lower) 

confidence interval limits. [A] At a sampling density that includes every other B-

Scan (64 B-scans with an equal spacing of 94 µm). [B] At a sampling density 

that includes every 4th B-Scan (32 B-scans with an equal spacing of 188 µm). 

[C] At a B-scan sampling density that includes every 8th B-Scan (16 B-scans 

with an equal spacing of 376 µm). [D] At a B-scan sampling density that 

includes every 16th B-Scan (8 B-scans with an equal spacing of 752 µm). 
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Table 1: Mean absolute difference and percentage error of neurosensory retinal tissue, foveal 
central subfield thickness, and total volume in different sampling groups 

                  

Neurosensory Retinal FCS Thickness 
 

Total Neurosensory Retinal Volume 

Scan 
density  

Mean SD Range 
 

Scan 
density  

Mean SD Range 

128 262.46 107.1 132.9 - 733.70 
 

128 7.25 0.86 5.97 - 10.21 
64 262.56 106.9 133.7 - 732.1 

 
64 7.25 0.86 5.98 - 10.23 

32 265.17 119.1 135.3 - 731.1 
 

32 7.18 0.93 5.97 - 10.22 
16 263.33 102.9 147.5 - 727.1 

 
16 7.25 0.85 5.96 - 10.2 

8 268.9 99.4 149.8 - 713.9 
 

8 7.26 0.86 5.97 - 10.2 
4 266.57 96.3 119.3 - 696.9 

 
4 7.25 0.87 5.97 - 10.42 

         
Absolute difference (µm) 

 
Absolute difference (mm³) 

Scan 
density  

Mean SD Range 
 

Scan 
density  

Mean SD Range 

64 1.21 1.05 0 - 4.10 
 

64 0.01 0.01 0 - 0.04 

32 2.69 2.49 0.1 - 10.90 
 

32 0.01 0.01 0 - 0.07 
16 5.97 6.90 0 - 34.50 

 
16 0.02 0.02 0 - 0.06 

8 14.38 14.02 0.1 - 47.60 
 

8 0.04 0.03 0 - 0.14 
4 25.64 27.68 0 - 112.40 

 
4 0.1 0.08 0 - 0.30 

         
Percentage error (%) 

 
Percentage error (%) 

Scan 
density  

Mean SD Range 
 

Scan 
density  

Mean SD Range 

64 0.49 0.43 0 – 1.85 
 

64 0.13 0.1 0 - 0.52 
32 1.11 0.38 0.03 - 4.90 

 
32 0.2 0.21 0 - 0.91 

16 2.46 3.05 0 – 13.62 
 

16 0.24 0.24 0 - 0.79 
8 6.30 6.95 0.05 - 26.14 

 
8 0.56 0.5 0 - 2.3 

4 9.65 10.42 0 - 55.63 
 

4 1.33 1.03 0 - 4.04 

                  

FCS= foveal central subfield, Scan density= number of B-scans, SD = standard deviation 
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Table 2: Absolute difference and percentage error of total volumes of subretinal fluid, subretinal hyperreflective material 
and pigment epithelium detachment in different sampling groups 

              
         

     Total SRF Volume   Total SRHM Volume   Total PED Volume 

              
Absolute difference (mm³) 

 
Absolute difference (mm³) 

 
Absolute difference (mm³) 

Scan 
density  

Mean SD Range 
 

Scan 
density  

Mean SD Range 
 

Scan 
density  

Mean SD Range 

64 0.002 0.004 0 - 0.01 
 

64 0.01 0.01 0 - 0.06 
 

64 0.01 0.01 0 - 0.03 

32 0.004 0.01 0 - 0.02 
 

32 0.01 0.02 0 - 0.09 
 

32 0.01 0.01 0 - 0.05 

16 0.01 0.01 0 - 0.03 
 

16 0.02 0.02 0 - 0.1 
 

16 0.02 0.02 0 - 0.08 

8 0.02 0.02 0 - 0.06 
 

8 0.04 0.03 0 - 0.17 
 

8 0.04 0.06 0 - 0.32 

4 0.05 0.03 0 - 0.12 
 

4 0.07 0.06 0 - 0.19 
 

4 0.10 0.08 0 - 0.30 

              
Percentage error (%) 

 
Percentage error (%) 

 
Percentage error (%) 

Scan 
density  

Mean SD Range 
 

Scan 
density  

Mean SD Range 
 

Scan 
density  

Mean SD Range 

64 2.11 6.53 0 - 28.57 
 

64 5.44 11.03 0 – 50 
 

64 2.99 7.42 0 - 40 

32 3.47 6.20 0 - 22.22 
 

32 8.03 13.12 0 – 50 
 

32 4.04 7.41 0 - 40 

16 10.21 14.48 0 - 66.67 
 

16 15.43 27.20 0 – 100 
 

16 6.92 7.79 0 - 40 

8 25.32 39.57 0 - 200 
 

8 30.06 32.45 0 - 100 
 

8 10.38 12.06 0 - 60 

4 73.84 73.46 0 - 300 
 

4 52.35 60.88 0 - 266 
 

4 87.12 67.93 0 – 331 

                            

SRHM = subretinal hyperreflective material, SRF = subretinal fluid, PED = pigment epithelium detachment,  
Scan density = number of B-scans, SD = standard deviation 
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Table 3 Absolute difference and percentage error for Neuro sensory Retina, subretinal fluid, subretinal hyperreflective material and pigment epithelium 
detachment with various starting scans versus ground truth values 

  

Neuro Sensory Retina 
Thickness (FCS) 

Neuro Sensory Retina 
volume 

SRHM volume            SRF volume PED volume 

Abs % Error Abs % Error Abs % Error Abs % Error Abs % Error 

Scan starting 
with 0 

1.60 ± 1.1        
(0.21 - 3.10) 

1.52 ± 1.18        
(0 - 3.50) 

0.02 ± 0.02          
(0 - 0.04) 

0.14 ± 0.18           
(0 - 0.53) 

0.01 ± 0.01            
(0 - 0.02) 

2.21 ± 3.58      
(0 - 11.12) 

0.01 ± 0.01             
(0 - 0.01) 

0.37 ± 1.10  
(0 - 3.28 ) 

0.01 ± 0.01    
(0 - 0.02) 

2.74  ± 5.31     
(0 - 15.39) 

Scan starting 
with 1 

0.62 ± 0.43    
(0.09 - 1.17) 

1.14 ± 0.82        
(0 - 2.20) 

0.01 ± 0.01                
(0 - 0.03) 

0.18 ± 0.19                 
(0 - 0.53) 

0.01 ± 0.01          
(0 - 0.02) 

4.46 ± 6.09         
(0 - 14.29) 

0.01 ± 0.01          
(0 - 0.01) 

2.23 ± 4.72 
(0 - 13.34) 

0.01 ± 0.01    
(0 - 0.02) 

0.75 ± 1.54     
(0 - 4.17) 

FCS- Foveal central subfield; Abs-Absolute Difference; Abs and % Error were calculated against ground truth (all B-scans) value; SRHM - Sub Retinal 
Hyper reflective Material; SRF- Sub Retinal Fluid; PED- Pigment Epithelium Detachment 

 


