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Abstract—Dynamic adaptive streaming addresses the user
heterogeneity by providing multiple encoded representations for
different videos. However, the selection of the optimal source cod-
ing parameters of each encoded representation is still challenging
for delay sensitive applications, such as live streaming. To address
this, we propose a representation selection optimization problem
for complexity constrained adaptive video streaming that prop-
erly takes into account the different complexity-rate-distortion
(C-R-D) characteristics of the videos when implementing rate
control for desired representations. Our objective is to maximize
the expected video distortion reduction of users, subject not only
to encoding rate constraints, but also to complexity constraints.
We prove that our optimization problem is a submodular maxi-
mization problem with two knapsack constraints. A weighted rate
and complexity cost benefit greedy algorithm is then developed to
obtain an approximate solution with polynomial time complexity
and good approximation performance in simulations.

Dynamic adaptive video streaming, complexity-rate-
distortion, rate control, submodular function maximization.

I. INTRODUCTION

The management of video streaming services has become
a more complex task due to the ever-increasing heterogeneity
of user population in terms of demands for specialized video
contents, devices used to display, and access network capacity.
Dynamic adaptive streaming over HTTP (DASH) has been
recently proposed as an effective method to improve the
overall user satisfaction by offering several representations
of the same video content to the different clients [1]. Each
representation is encoded by the DASH server at a pre-
defined bitrate and/or resolution such that users can be served
by the most suitable representation in accordance with their
requirements and heterogeneous network conditions. While
most of the research community focuses on the client-side
adaptation schemes for given encoded representations, little
work has been done to address the representation selection
problem at the server [2]. This representation selection prob-
lem becomes more crucial for delay sensitive applications,
e.g., real-time video streaming, with strict requirements on
the encoding time (delay) and usually a total power budget
for all the encoded representations. Constrained by such delay
and power requirements, the server cannot encode as many
representations as possible to individually serve each user’s
request. Noting that both the encoding time and power are
closely related to the encoding complexity, it is therefore
worth investigating the selection of the optimal representations
encoded for each video with the corresponding encoder param-
eters under complexity constraints, i.e., the total complexity
used to encode the desired representations should not exceed

the maximum load affordable by the server. Meanwhile, the
running time of such representation selection procedure should
also be short enough to enable delay sensitive applications.

To address the above complexity issue, we formulate a
joint representation selection and rate control optimization
problem for DASH streaming with proper consideration of
the C-R-D properties of representations from different videos,
under both the encoding rate and complexity constraints. We
further prove that the proposed optimization problem is a
submodular maximization problem subject to two knapsack
constraints, which is NP-hard. Thus, a weighted rate and
complexity cost benefit greedy algorithm is developed in order
to obtain an approximate solution with low (i.e., polynomial)
time complexity and theoretical approximation guarantees.
Simulation results show that the proposed algorithm can seek
the tradeoff both between the rate and complexity cost and
between the algorithm’s performance and computational time.

Existing works address some of these issues partially. In
[2] and [3], the optimal representation set selection problem
of adaptive streaming under the encoding rate or power
constraint is proposed as an integer linear program (ILP),
revealing the best coding parameters in terms of the bitrate
and resolution for each representation. However, it requires
very high (usually exponential) computational complexity to
solve this ILP, which is thus not feasible for delay sensitive
applications. In addition, the specific source coding parameters
(e.g., the quantization parameter, QP) needed to encode each
desired representation with the optimal bitrate and resolution
is unknown and not provided. As another line of research, the
rate control scheme to achieve the minimum encoding distor-
tion for single representation has been investigated in [4] under
the consideration of delay, rate and power aspects. However,
it is still unclear how to choose the optimal source coding
parameters for multiple related representations simultaneously
competing for the rate and complexity resource.

The rest of this paper is organized as follows. Sections II
and III describe the notations, system models, and optimization
formulation. In Section IV, we show that it is a submodular
maximization problem and develop an approximate algorithm.
Section V presents experimental results, and evaluates the
proposed algorithm compared to the performance upper bound.
Conclusion is given in Section VI.

II. C-R-D MODEL FOR VIDEO CODING

In [4], the models of source coding complexity, rate and
distortion have been derived for hybrid video coding. Both the
source rate and distortion of an inter-coded frame are derived



as functions of the standard deviation o of the transformed
residuals and the quantization step size @). For a video f € F,
the source rate is approximated by the entropy of the quantized
transformed residuals, and the source distortion is mainly
incurred by the quantization error:
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where L = \/2/0 denotes the Laplacian distribution param-
eter; y() represents the rounding offset and v is a parameter
between (0, 1), such as 1/6 for H.264/AVC inter frame coding;
Py =1—e LR01=7) is the probability of quantized transform
coefficient being zero. Given a video f € F, o can be well
fitted by a closed form function of the search range A in motion
estimation and the quantization step size () [4], as:
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where ay1-ay4 are empirical parameters dependent on the
encoding structure and the video content of f. Integrating Eq.
(3) into Egs. (1) and (2), both the source coding rate and
distortion of video file f can be then expressed as functions
of A and @, denoted as R;(\, Q) and D¢ (A, @), respectively.

On the other hand, since motion estimation (ME) takes
up the majority of the total encoding time, the encoding
complexity can be approximated by the ME complexity, which
is determined by the total number of CPU cycles consumed
by the SAD (sum of absolute difference) operations in ME
[4]. Thus, for the single reference frame prediction case and
given the desired frame encoding time AT, the CPU load in
clock frequency for encoding a specific video f can also be
expressed as a function of A and Q:
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where N is the number of Macroblocks (MBs) in a frame;
(2A + 1)2 - 9(Q) is the total number of SAD operations in
the two dimensional search area for each MB, and 7(Q) is
an empirical parameter that denotes the ratio of the actual
number of SAD operations in the practical video codec to the
theoretical total number of SAD operations; ¢y is the number
of clock cycles of one SAD operation over a given CPU.

III. OPTIMIZATION PROBLEM FORMULATION

The complexity constrained representation selection and rate
control problem for DASH streaming can be summarized as:
for a given set of source video files, file popularity distribution,
and the users’ downlink bandwidth, how to decide both the
encoded representations for each video and the corresponding
source coding parameters for each representation such that the
total system utility in terms of the aggregate users’ satisfaction

is maximized, subject to both the total encoding rate and
complexity (in CPU load) constraints of the DASH server.
For video files, let 7 = {1,2,..., F} denote the set of F
video files at the DASH server. Denote M = A x Q as the
set of M = |M]| possible representations. Each element in
M corresponds to a specific source coding parameter pair
(\Q) with A € A and Q € Q, where A is the search
range set containing all the possible search range values
and Q denotes the quantization step size set including all
the available quantization step sizes. We further sort the
representation set M in an decreasing order of the encoding
bitrate, i.e., Rf()\f,inf,i) > Rf()\ﬁj,Qﬁj),Vi,j € M and
1 < ¢ < j £ M. The finite ground set of the DASH
representation selection and rate control problem is:

V = {vpm|Vf € F, ¥m € M} (5)

The ground set V is defined in Eq. (5) to denote the full set
of all representations of all video files that could be encoded
by the DASH server, and a specific element vy, represents
that the m-th representation is encoded for video file f.
From the perspective of users, for each user u € U, let
Q, denote the set of representations of all video files that
can be downloaded by user u according to his/her download
link bandwidth B,, i.e., Q, = {vfm € VIRF(Afm, Qfm) <
B,, Vf € F, YVm € M]}. Then, based on a specific
DASH encoding decision A C V specifying that which
representations should be encoded for which video files, the
expected average reduction in video distortion for user w is:
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In Eq. (6), 1|,¢y is an indicator function the value of which
is 1 if v € V and 0 otherwise; the term [H;";ll(l -
1y, e(anen))] - 1|vf‘m€(AmQu) = 1 indicates that the m-
th representation of video file f is the best representation
that is both encoded at the server and can be downloaded
according to user u’s bandwidth, and O otherwise; p, ¢ is
the probability of user u requesting video file f; and D,,q,
represents a constant maximal distortion when no video is
decoded and [D,,45 — Dy(Afm, @fm)] denotes the distortion
reduction (or quality improvement) after successful decoding
the representation with coding parameter pair (Af m, Qf.m )
Therefore, the optimization problem can be formulated as:
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The objective in Eq. (7a) is to maximize the overall system



utility defined as the expected video distortion reduction of
all users, and the decision variable is the actual encoded
representation set .4 C V. The constraint in Eq. (7b) specifies
that the sum of encoding bitrates of all representations does
not exceed the bitrate capacity R,,q, Which is constrained by
either the storage capacity of the server or the bottleneck link
of the network. The constraint in Eq. (7c) ensures that the
overall complexity consumed to encode all representations is
limited by the server’s maximum CPU load C,4, .

IV. SUBMODULARITY AND APPROXIMATION ALGORITHM

Proposition 1. The objective function in Eq. (7a) is a mono-
tone submodular function' over the ground set V in Eq. (5).

Proof. Through the definition and property of submodularity,
the monotone submodularity of Eq. (7a) can be proved, which
is omitted here due to the page limit. O

In Proposition 1, we have justified that Eq. (7a) is a mono-
tone submodular function. Further observing the encoding
rate and complexity constraints in Eqgs. (7b) and (7c), each
element vy ,, € A has non-uniform rate and complexity cost of
Ry(Afm, Qfm) and C¢(Afrm, Qfm), While the DASH server
has the encoding bitrate capacity and CPU load budget of
Ry and Ch,q,, respectively. These two constraints can be
viewed as two knapsack constraints on the finite ground set V.
Therefore, the rate control problem in Eq. (7) is a submodular
maximization problem subject to two knapsack constraints,
which is generally NP-hard and requires exponential compu-
tational complexity to reach the optimum by either integer
linear programming or other optimization methods [5].

To efficiently solve the constrained submodular maximiza-
tion problem in Eq. (7) with polynomial time complexity and
theoretical approximation guarantees, the (w, k)-weighted cost
benefit greedy algorithm is developed as shown in Algorithm
1. The two system parameters, w € [0,1] and £k =0,1,2,...,
specify the weight between the rate and the complexity
cost and the size of the initial set, respectively. Specifi-
cally, the proposed (w,k)-WCB greedy algorithm considers
all feasible initial sets A° C V of cardinality k. Starting
from any initial set A, at step ¢, the weighted cost benefit
greedy procedure iteratively searches over the remaining set
Vi=1\ A'~! and inserts into the partial solution A'~! an
element according to Egs. (8)-(10), until the remaining set
reduces to an empty set. In other words, this procedure adds
at each iteration an element that maximizes the weighted
marginal benefit D(A"™ U {vs.,}) — D(A"™!) and cost
Ri(Afm, Qtm) Cr(Afm,Qfm) ratio among all elements
still affordable with the remaining rate and complexity budget
until no more element can be added. The weight parameter w
could adjust the tradeoff between the rate and complexity cost.
In some extreme cases, for example, the algorithm reduces to
be pure rate cost benefit when w = 1 and pure complexity cost

et V be a finite ground set, and a set function g : 2V — R is submodular
iff g(X U {v}) — g(X) > g(Y U {v}) — g(Y) for any sets ¥ C Y C V
and for any element v € (Y \ X).

Algorithm 1 (w, k)-weighted cost benefit greedy algorithm

For all initial sets A° C V such that |A°| = k, implement the
following weighted cost benefit greedy procedure.
Initialization:
1)Set V' =Vandt=1.
Greedy Search Iteration: (at step t = 1,2,3,...)
1) Given a partial solution .A*~!, find
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Update and Determination:
1) Set A* = A"t U {vf, .m, }, and Vi = VP71 if
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and
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f=1m=1 (10)

otherwise, set A* = A"~ and V' = V"' \ {v}, m, }-

2) If VE\ A" £ (), set t = ¢+ 1 and return to the greedy
search iteration; otherwise, stop the iteration.
The solution is obtained and output as .4, which has the largest
value of the objective function D(A) = 3 ., Du(A) over all
the possible choices of the initial sets A C V.

benefit when w = 0. The proposed (w, k)-WCB greedy algo-
rithm then enumerates all initial sets A° C V of cardinality
k, augments each of them following the cost benefit greedy
procedure, and selects the initial set achieving the largest value
of the objective function D(A) = > ., Dy(A) and sets its
solution set as the final encoded representation set .A.

In terms of computational complexity, the running time
of the proposed algorithm is O((FM)**2U), indicating a
polynomial time complexity. As the value of k increases, the
running time of the proposed algorithm becomes larger while
the performance improves. As shown in [6], when k > 3 and
in the case of one active knapsack constraint, the theoretical
worst-case performance guarantee of the cost benefit algorithm
is 1 —1/e, i.e., its solution achieves at least the ratio 1 — 1/e
of the optimal objective value.

V. EXPERIMENTAL EVALUATION

We implement the proposed algorithm on a 48-processor
server with 252 GB of RAM using Linux 3.1 kernel, where
each processor is an Intel Xeon CPU E5-2680 at a clock
frequency of 2.50GHz. Suppose that there are U = 10 users
and their download bandwidth B, is randomly distributed
in the rate range of [1,10] Mbps as illustrated in Fig. (la).
Three test video sequences (F' = 3, Crowd Run, Tractor, and
Sunflower) with 1080p resolution (1920 x 1080), available at
[7], are selected as the source video files to be encoded at the
DASH server. These three test video sequences correspond to
different content types, i.e., dense object motion for Crowd
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Fig. 1. (a) Download bandwidth of the U = 10 users. (b) Distortion reduction
vs. encoding bitrate and complexity.

Run sequence, camera movement and medium object motion
for Tractor sequence, and small object motion for Sunflower
sequence, respectively. Assume that the encoding time of each
video frame is fixed at AT = 3 s, and the constant maximal
distortion is set as D4, = 500. At frame rate of 30 fps,
we further encode each video sequence f into M = 63
representations with the coding parameter pair (A s, Qf.m) €
A x Q, where A = {2,6,10} and the corresponding QP value
ranges between 30 and 50. The distortion reduction versus
encoding bitrate and complexity curved surfaces of these three
sequences are illustrated in Fig. 1(b). Generally, it can be
seen that the video content with smaller motion presents a
higher curved surface in the three dimensional space than
that with larger motion. For video with small object motion
(e.g., Sunflower), the representation with both small encoding
bitrate and low CPU load already introduces a large distortion
reduction, while increasing either bitrate or complexity cannot
incur significant additional distortion reduction; and vice versa.
For the video file popularity, we further assume that these three
sequences follow a Zipf distribution with parameter 0.56 [8],
i.e., the requesting probabilities of Crowd Run, Tractor, and
Sunflower sequences are 0.45, 0.31, and 0.24, respectively.

In Fig. (2a), we set the maximum bitrate capacity at the
server to Ry, = 30 Mbps, vary the value of maximum
CPU loads C,,qz, and illustrate the average distortion re-
duction per user under different parameter settings of the
proposed (w, k)-WCB greedy algorithm. The optimal solution
obtained by the generic solver IBM ILOG CPLEX [9] using
branch and bound method with a very high (i.e., exponential)
time complexity O(2F'MU) is given as a performance upper
bound. It confirms that the proposed algorithm achieves a
good approximation performance but with a more practical
(i.e., polynomial) time complexity O((FM)**2U). Through
comparison, two observations can be made from the curves
in Fig. (2a). Given a weight w, enlarging the number of &
incurs higher average distortion reduction per user for all
values of Cj,4., but the time complexity would also increase
from O((FM)2U) to O((FM)3U). On the other hand, when
the size of initial set k is fixed, the algorithm performance
is affected by the values of C),,, and w. It can be seen that
when the maximum CPU load is small (e.g., Cprar = 10
GHz), the algorithm with the minimum weight w = 0 (i.e.,
complexity cost benefit, 0.984 approximation ratio for k = 1)
outperforms the weight assignment of w = 1 (i.e., rate cost
benefit, 0.866 approximation ratio for £ = 1), and vice versa.
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Fig. 2. Given Rypaz = 30 Mbps, average distortion reduction per user vs.
(a) maximum CPU load Cyyaz, and (b) weight w when Chnqe = 30 GHz.

The reason is as follows. For small C,, ., complexity becomes
a more scarce resource compared to rate, which causes the
CPU load constraint to be active while the encoding bitrate
constraint remains inactive. In this case, the complexity cost
benefit greedy algorithm that adds at each iteration step an
element maximizing the marginal benefit and complexity cost
ratio would achieve better performance.

When C,4, = 30 GHz, both the CPU load and encoding
bitrate constraints become active. In Fig. (2b), the average
distortion reduction per user versus weight w is shown for the
cases of k = 0 and 1, respectively. Again, for a given value of
w, larger k indicates higher average distortion reduction. What
can be further observed is that for both values of £ there exists
an optimal weight w* = 0.001 achieving the peak average
distortion reduction (0.988 and 0.995 approximation ratio for
k = 0 and 1), which indicates the best tradeoff between the
complexity and rate cost when both resources are limited.

VI. CONCLUSION

This paper studied an encoding complexity constrained
representation selection and rate control problem for DASH
streaming to maximize the expected aggregate video distortion
reduction. It was proved to be a submodular maximization
problem with an approximate algorithm provided. Experimen-
tal results have shown that the proposed algorithm could seek
the tradeoff between the rate and complexity cost and between
the approximation performance and computational complexity.
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