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Abstract—In free viewpoint applications, the images are cap-
tured by an array of cameras that acquire a scene of interest
from different perspectives. Any intermediate viewpoint not
included in the camera array can be virtually synthesized by
the decoder, at a quality that depends on the distance between
the virtual view and the camera views available at decoder.
Hence, it is beneficial for any user to receive camera views
that are close to each other for synthesis. This is however not
always feasible in bandwidth-limited overlay networks, where
every node may ask for different camera views. In this work,
we propose an optimized delivery strategy for free viewpoint
streaming over overlay networks. We introduce the concept of
layered quality-of-experience (QoE), which describes the level of
interactivity offered to clients. Based on these levels of QoE,
camera views are organized into layered subsets. These subsets
are then delivered to clients through a prioritized network coding
streaming scheme, which accommodates for the network and
clients heterogeneity and effectively exploit the resources of the
overlay network. Simulation results show that, in a scenario with
limited bandwidth or channel reliability, the proposed method
outperforms baseline network coding approaches, where the
different levels of QoE are not taken into account in the delivery
strategy optimization.

I. INTRODUCTION

Recent advances in multimedia technology and communi-

cation have pushed ahead the diffusion of new user-centric

video services, such as interactive multiview (MV) video

applications. These services endow clients with the possibility

of freely changing their displayed viewpoint in realtime [1].

In such interactive scenarios, where only the views requested

by the final users need to be transmitted, classical MV coding

and streaming strategies become inefficient since they usually

target the delivery of the full set of views to each client. The

main challenge for effective delivery relies on the fact that

the subset of selected views varies over time, which leads to

an expensive view switching process in terms of delay and

bandwidth.

A tradeoff between storage, bandwidth and quality of the in-

teractive experience can be sought by free viewpoint streaming

applications [2]. In such systems, an array of closely spaced

depth and texture cameras acquire the same scene from differ-

ent perspectives, but the viewpoints that can be displayed at the
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Figure 1. Investigated scenario.

receiver side are not limited to the physically acquired camera

views. With help of depth-image based rendering (DIBR),

any intermediate view between two physical cameras can be

synthesized at the decoder. The quality of the synthesized view

increases with both the quality of the images used as reference

(usually the closest camera views) and the correlation between

the camera views and the synthesized view. The availability

of many camera views for high quality synthesis however

comes at a large price in terms of bandwidth. This has

not escaped the attention of the scientific community and

many research efforts have been made towards addressing

the tradeoff between bandwidth and quality by novel source

coding and data rendering strategies [3]–[6]. Differently from

these works, we focus on the optimization of the delivery

strategies, which are usually overlooked in the literature.

A few works however propose solutions for delivery of

interactive video data. The user’s head position is tracked and

predicted in [7], in order to estimate the views that most likely

will be selected by the user. However, the streaming scheme

becomes inefficient when several clients are considered to-

gether, possibly with conflicting requests. More distributed

scenarios for interactive communications have been consid-

ered for pan/tilt/zoom functionality [8], for video-on-demand

applications [9], and for interactive multiview scenarios [10],

[11]. The latter investigates collaborative live free viewpoint

applications, showing the benefit of sharing anchor views

among peers, though this is associated with a quality reduction

of the synthesized view. To the best of our knowledge, even

if distributed scenarios have been investigated in interactive

MV applications, an optimized streaming policy, which takes

into account both the links constraints and users’ requests in



such a way that the level of interactivity offered to clients is

adapted to individual channel constraints, is still missing.

In this paper, we propose an optimization problem for

live free viewpoint streaming techniques over distributed and

bandwidth-limited networks. As depicted in Fig. 1, we study a

scenario in which video sequences acquired from each camera

are real-time encoded into separate streams. These streams are

delivered to servers, which obtain part or all camera views.

The servers distribute the data over an overlay network, in

which each intermediate node is interested in navigating within

the scene of interest. The network is characterized by a large

diversity in terms of client capabilities, bandwidth, channel

conditions, and views required by the nodes. The portion

of camera views received by each client is limited by the

network conditions. Thus, there is the need to optimize the

MV delivering strategy, in such a way that each client is

able to maximize its quality-of-experience (QoE) during the

navigation. The QoE is here defined as the quality at which

users can navigate between viewpoints, i.e., the quality at

which the view of interest is decoded (or virtually synthesized)

and then displayed by each client.

We propose a network coding based camera scheduling

optimization scheme, aimed at maximizing the user QoE. To

reach this goal, we introduce the concept of layered QoE

offered to users: we organize cameras in layered subsets,

each of those enhancing the QoE with respect to the previous

subsets. To allow each user to experience the QoE level that

better fits its request and channel constraints, we propose

a transmission scheme which combines layered camera sets

with an unequal error protection (UEP) delivery schemes. In

particular, since network coding (NC) naturally accommodates

for network diversity and clients heterogeneity, we extend

the concept of prioritized NC, introduced in [12], [13] to

the free viewpoint scenario. With our definition of prioritized

layered camera subsets, a receiver-driven scheduling strategy

is proposed to optimize each node’s coding scheme, such

that the overall QoE in the overlay network is maximized.

Simulation results show the gain achieved by the proposed

scheme with respect to baseline network coding approaches,

where the different levels of QoE are not taken into account

in the delivery strategy optimization. The streaming scheme is

optimized with a low-complexity algorithm able to effectively

exploit the resources of the overlay network. The promising

concept behind this work is that a scalable streaming scheme

can be offered to heterogenous users by combining QoE levels

in free viewpoint navigation with prioritized NC schemes.

Overall, the main contributions of this paper are the fol-

lowing: i) we introduce the concept of layered QoE in in-

teractive MV streaming scenarios and we use this metric to

evaluate the utility function; ii) we study interactive streaming

in heterogeneous scenarios both in terms of network and

clients’ requests; iii) based on the concept of layered QoE, we

construct prioritized classes to be used into prioritized network

coding schemes.

The remainder of this paper is organized as follows. In

Sec. II, we first detail the free viewpoint model and then

Figure 2. Multicamera scenario with V = 3 camera views and 2 virtually
synthesized views from two adjacent cameras (e.g., K=3).

we introduce the layered QoE. Sec. III describes how QoE

levels are applied to prioritized network coding schemes and

how the streaming strategy is optimized. Finally, results and

conclusions are provided in Sec. IV and Sec. V, respectively.

II. LAYERED QOE IN INTERACTIVE STREAMING

In this section, we first detail the free viewpoint video model

considered in our work; then, we introduce the concept of QoE

layers in interactive MV applications.

A. Free Viewpoint Video Model

Let V = {1, 2, . . . , V } be a discrete set of V cameras

that acquire and encode the 3D scene of interest.1 At the

decoder side, a given view u can be virtually synthesized

using texture and depth map of two camera views (e.g., anchor

views) via DIBR, as described in [14]. In short, each user can

reconstruct any view of the discrete set U = {1, 1+(1/K), 1+
(2/K), . . . , V − (1/K), V } for some large K value, being

(K−1) the number of views synthesized between two adjacent

anchor views. Note that, if V is the set of cameras that acquire

the scene, U is the set of all possible viewpoints that the user

can select, including both the actual camera views and the

synthetic views, and V ⊆ U . In Fig. 2, a multiview scenario

is illustrated, where 3 cameras acquire the scene. From each

pair of cameras 2 views can be synthesized.

For any view u to be synthesized, a left (vl) and right (vr)

camera view are required, with vl, vr ∈ V and vl ≤ u ≤
vr. The clients reconstruct the requested view at a distortion

which depends on the level of spatial correlation that subsists

between the anchor views and the virtual one. More in details,

we consider aligned and equally spaced cameras such that the

correlation level decreases with the distance between views.

Hence, the distortion of the synthesized view depends on the

selected camera views as follows [11]

du(v
l, vr) = Dmin + γeαu(v

r−vl)
[

e(βu min{u−vr ,u−vl}) − 1
]

(1)

where γ, αu and βu are multiplicative coefficients that depend

on the video sequence and drive the increasing rate of the

distortion with the distance to camera views2. Note that Dmin is

1Both texture and depth map of the 3D scene are encoded.
2We remind the reader to [11] for further details on the distortion model

and for the specific meaning of each parameter.



the distortion at which each camera view can be decoded when

actually received (e.g., if u ∈ V). From Eq. (1), we observe that

the larger is the distance between u and the anchor views, the

larger is the distortion. The key intuition behind Eq. (1) is that,

when DIBR is adopted, the error in the disparity map (between

the reference view and the virtual synthesized one) is given by

(k f)/∆Z , where k is the distance between the camera view

and the synthetic view, ∆Z is the error in the depth map and

f is the rectified focal distance length of the cameras. Thus,

for f and ∆Z constant, the error is proportional to k.

It is worth noting that the optimization of the RD function

for DIBR methods is beyond the scope of this paper. The

model in Eq. (1) has been chosen because is quite simple

and yet accurate enough to build groups of cameras views as

proposed next. Our interactive MV live streaming framework

however is general and other source distortion function models

can be used.

B. Prioritized Cameras Streams

Equipped with the above notations, we now introduce the

concept of prioritized streams in interactive MV systems. We

consider a scenario in which each user has the possibility of

freely selecting a view u ∈ U for navigation. We assume that

the popularity qu of view u (that relates to the probability for a

client to select the view u) is known. Note that the popularity

can be described by either a uniform distribution, which is

typical for static scenes (e.g., museums), or by an exponential

or non-uniform distributions, for dynamic scenes where most

of the clients focus their attention on the same viewpoints (e.g.,

soccer game) [15], [16]. For any camera popularity model,

we define the interactive QoE level offered to the user as the

ability of switching to any view anytime and still preserving

the video quality. In other words, the QoE level is described

by the distortion at which the viewpoints in the navigation

domain (e.g., u ∈ U) can be virtually synthesized, given a set

of received cameras streams V ′ ⊆ V . This is given by

D(V ′) =
∑

u∈U ,

u:vl

u
,vr

u
∈V′

qu du(v
l
u, v

r
u) +

∑

u∈U ,

u:vl

u
,vr

u
/∈V′

qu Dmax (2)

where vlu (vru) is the left (right) camera in V ′ closest to u
such that vlu ≤ u ≤ vru, and Dmax is the maximum distortion

achieved when the viewpoint cannot be virtually synthesized.

In particular, each virtual view can be synthesized by a left

camera view vlu such that vlu ≤ u and a right camera view

vru such that vru ≥ u, with both vru and vlu available at the

receiver. When this conditions are not met, the view cannot

be synthesized. This happens when either views in V ′ are all

smaller than u (v′ < u, ∀v ∈ V ′) or when views in V ′ are

all larger than u (v′ > u, ∀v ∈ V ′). We denote this case by

u : vlu, v
r
u /∈ V ′. Usually, this event is experienced by the

lateral views that cannot be synthesized when only central

cameras are received.

Given the above definition, we can now organize the

cameras’ streams into layered subsets, each one offering an

incremental level of QoE. More in details, we divide the finite

set of cameras into C subsets such that V ′
1∪V

′
2∪. . .∪V

′
C = V ,

with V ′
i ∩ V ′

j = ∅, i 6= j. Subsets are organized based on their

priority level, where V ′
1 and V ′

C , respectively, are the most

and the least important subsets. These prioritized layers are

transmitted in an UEP fashion, sending in a more reliable way

more important subsets. We consider a prioritized transmission

which guarantees that the c-th subset is received only if the

(c− 1)-th is already available at the decoder side. This means

that when the frames from the c most important subsets of

camera are received and decoded, the quality of the interactive

navigation is

Dc = D

(

c
⋃

i=1

V ′
i

)

=
∑

u∈U ,

u:vl

u
,vr

u
∈
⋃

c

i=1
V′

i

qu du(v
l
u, v

r
u) +

∑

u∈U ,

u:vl

u
,vr

u
/∈
⋃

c

i=1
V′

i

qu Dmax

(3)

with Dc ≥ Dc+1 since we assume that each camera views

subset is a refinement of the quality experienced by the

interactive user.

III. PRIORITIZED NETWORK CODING

Due to distributed and heterogeneous structure of the net-

work, a scalable mechanism for delivering views to clients

can be reached by employing the prioritized network coding

strategy proposed in [12]. In short, source packets are orga-

nized in classes, sorted by their priority levels and a receiver-

driven prioritized random network coding (PRNC) method

is proposed to achieve UEP. The UEP strategy is obtained

by varying the number of packets from each class that are

used in the embedded network coding operations performed

at each node. The coding optimization is performed locally (in

a distributed manner) and every node requests from the parent

nodes the best rate allocation among different classes. In this

way, each node is able to experience the best QoE offered by

the overlay network.

The class c is defined as the set of packets that are linear

random combinations of packets from the c most important

subsets of camera views V ′
1∪. . .∪V

′
c. Each client node n needs

to optimize the coding strategy that should be implemented

at the parent nodes, based on the available network band-

width, the expected loss probability and the distortion gain

associated to each class. This can be formulated as follows.

Let www = [w1, w2, . . . , wC ] be the rate distribution vector

to be optimized, where wc indicates the portion of packets

from class c among the requested packets. The optimized

distribution vector is the one that minimizes the expected

distortion evaluated as follows

D(n) = D0 p0 +

C
∑

c=1

Dc pd(c) (4)

where D0 = Dmax is the maximum distortion achieved when

no classes are received, p0 is the probability of decoding

no classes, and pd(c) is the probability of decoding c video



classes (e.g., the probability of decoding frames within the c
most important subsets), which is derived in [12]. In short,

each node n optimizes the optimal class distribution www⋆ (i.e.,

the number of packets that the node requests from its parent

nodes for each packet class) computed as the distribution that

minimizes the expected distortion (or that maximizes theQoE

in the navigation). Formally,

www⋆ = argmax
www

D(n) =

= argmax
www

{

D0 p0 +
C
∑

c=1

Dc pd(c)

}

s.t.

C
∑

c=1

wc = 1 and wc ≥ 0, ∀c ∈ [1, C] . (5)

The above distributed resource allocation problem is optimized

with the iterative method proposed in [12], [13].

IV. SIMULATION RESULTS

A. Simulation Setups

For our simulations, we consider V = 7 cameras equally

spaced between each others and K = 3, which means that

two views are virtually synthesized for every pair of cameras.

For each view u ∈ U , we evaluate the reconstructed distortion

from Eq. (1) and assume that a view is synthesized by DIBR

if either it corresponds to a virtual view, or it corresponds

to a camera view that is not available at the receiver. We

consider a uniform distribution of the views popularity, such

that each view has a probability of being selected by users of

1/|U|. In this case, the priority between cameras is assigned

based on their spatial distance, as shown in Fig. 3. The first

subset (the most important one) is the set of cameras which

guarantees the synthesis of all views in U , i.e., the set includes

the external views. Then, higher classes are constructed such

that the distance between camera views and synthesized views

is reduced.3 This leads to the following organization when

three subsets are considered: V ′
1 = {0, 6}, V ′

2 = {2, 4}
V ′
3 = {1, 3, 5}.

Results are carried out for a scenario in which each server

stores the streams from all cameras and multi-view video

coding (MVC) can then be performed. In particular, we

consider a MVC with an inter-view dependency scheme that

does not affect the switching cost. Interview dependencies are

built based on the subsets organization: views from a given

subset can depend from views of the same subset or lower

ones. In this way, since lower subsets are more likely to be

received than higher ones, every time a view has to be decoded,

most likely the reference view from which it depends has

been already received. In our scenario, we have three classes

encoded into 30, 30, and 23 packets per GOP, respectively,

when the packet size including the network coding header is

set to 1500 bytes. The values of the QoE experienced in the

3Note that in the case of non-uniform popularity, layers would be con-
structed in such a way that the interview distance is minimized among the
most requested views first.

Figure 3. Construction of prioritized subsets of camera.
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Figure 4. Comparison of the average PSNR (dB) curves for different values
of average upload capacity in the network.

navigation are here provided in terms of PSNR4. The QoE

achieved with the reception of the first c classes is 29.52 dB,

37.77 dB, and 38.16 dB, for c = 1, 2, and 3, respectively, for

the “Ballet” video sequence. The distortion of the virtually

synthesized views is given by Eq. (1). In the following, rather

than focusing on timing aspects (e.g. , switching delay), we

provide simulation results in terms of expected quality. The

reason is that, thanks to the DIBR, any user is constantly able

to responsively display the requested view (with negligible

switching delay). So rather than focusing on the delay after

which the desired viewpoint can be displayed by the user, we

look at quality at which the requested view is displayed.

Network coding operations are performed on F28 . The

sources transmit network coded packets according to the rate

distribution vector w
⋆ that their children nodes request. The

considered networks are overlay mesh networks where each

node i has upload capacity Ui that is equally distributed to

its children nodes. Furthermore, each node is connected with

Din parent and Dout children nodes.

B. Results

We first study the impact of network nodes upload capacity

Ui. Specifically, we uniformly change the average upload

capacity of all network nodes in the range [350, 1200] kbps.

4PSNR=10 log10(255
2/D), where D is derived from Eq. (4).
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Figure 5. Satisfaction comparison for different values of average upload
capacity in the network.

We compare the proposed approach UEP-NC that optimizes

the request allocation vectors according to Eq. (5) with three

basic network coding schemes called Class 1, Class 2 and

Class 3. In Class 1 scheme only packets that belong to most

important anchor views (i.e., V ′
1) are communicated to the

network. Similarly, in Class 2 and Class 3 the network nodes

transmit packets that are combinations of all the packets from

views subset V ′
1 ∪ V ′

2 and V ′
1 ∪ V ′

2 ∪ V3 respectively. The

examined networks consist of three servers and 18 peer nodes.

All the nodes have the same upload capacity that changes

homogeneously in the range [350, 1200] kbps. Without loss of

generality each network node has Din = Dout = 3. All the

network links experience the same average loss rate 5%. The

channels are modeled as Gilbert Elliot with burst length of

nine packets.

The results of the evaluation are presented in Fig. 4, where

the average PSNR is depicted with respect to the average

upload capacity measured in kbps. From the evaluation, we

observe that when Ui is less than 700 kbps, UEP-NC and

Class 1 schemes perform equally well in terms of PSNR. In

this range of capacity values the resources are limited and

sufficient only for transmitting packets that are combinations

of packets from set of views V ′
1. As the upload bandwidth

increases, UEP-NC takes advantage of the additional resources

and transmits also packets from Class 2 and rapidly the

schemes achieves the PSNR that corresponds to the views in

the set V ′
1 ∪V ′

2. From this comparison is obvious that Class 2

scheme when bandwidth is larger than 700 kbps has non zero

probability to decode the set V ′
2. Thus, PSNR increases and

Class 2 performs equally well to UEP-NC. For this range of

bandwidth values, Class 1 scheme is not anymore competitive

to UEP-NC and Class 2 as it cannot benefit from the increased

bandwidth since only network coded packets from set V ′
1 are

transmitted. When the link capacity grows to values higher

than 1000 kbps, Class 3 scheme performs equally well to

UEP-NC, as there are is enough bandwidth for transmitting

packets from set set V ′
1 ∪ V ′

2 ∪ V ′
3. Class 2 and Class 3

cannot profit from this excess of bandwidth resources. A very
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Figure 6. Percentage of nodes unable to decode any packet for different
values of average upload capacity in the network.
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Figure 7. Comparison of the average PSNR (dB) curves for different values
of average upload capacity in the network.

interesting observations is that UEP-NC is able to achieve the

best performance in all the range of bandwidth changes, which

shows the adaptability of the proposed approach.

For the same network setting, in Fig. 5 we present compar-

isons regarding the users’ satisfaction. Satisfaction is measured

as rate of the set a node decodes, e.g. V ′
1, V ′

1 ∪ V ′
2 and

V ′
1∪V ′

2 ∪V ′
3 over the theoretical maximum that the node may

decode given its incoming capacity. A node when decodes

V ′
1 receives one credit, while when decodes the V ′

1 ∪ V ′
2 two

credits etc. From the results, we can see that UEP-NC achieves

always the best performance that is no lower than 50%. Class 1

achieves high satisfaction when the upload capacity is less than

700 kbps, however for higher capacity values the satisfaction

drops as it cannot exploit the additional bandwidth resources.

Results for Class 2 scheme show that when the resources

are enough for decoding subset V ′
1 ∪ V ′

2 the satisfaction is

high. Satisfaction level becomes lower for more than 1000
kbps while is very low for less than 700 kbps as only few

nodes close to the servers are able to decode the data. Note

that there is a drop in the satisfaction curve experienced by

UEP-NC for uploading capacities in the range [700, 800] kbps.



In this transition region, the available resources are larger

than the ones needed to decode V ′
1 but not always enough

to successfully decode the subset V ′
1 ∪V ′

2. Thus, users asking

for V ′
1 ∪ V ′

2 might not be able to decode the requested views.

This can be observed in Fig. 6, which depicts the percentage

of nodes that are unable to decode any class in different cases.

The results are carried out for the same network settings of

before.

For the sake of completeness, we illustrate in Fig. 7 PSNR

results for the same network setting as before. All nodes have

outgoing capacity equal to 770 kbps. We consider that the

loss rate in each link varies from 2% to 6%. We compare the

proposed UEP-NC with Class 2 as for the above setting Class

1 and Class 3 are not competitive in terms of PSNR. From the

results is obvious that as the average packet loss rate increases,

an increasing number of nodes is unable to decode the subset

V ′
1 ∪ V ′

2. However, we can see that UEP-NC scheme offers

the possibility to downgrade the decoded quality. This is not

possible for Class-2 scheme as it shows on-off performance,

i.e. either decode the quality that corresponds to subset V ′
1∪V

′
2

or decode nothing. Overall, we can conclude that UEP-NC is

more robust to the loss rate changes that Class-2 scheme.

C. Discussion

Results provided above demonstrate the benefit of com-

bining the concept of layered camera sets with client-based

network coding strategies with UEP built-in property. In this

way, a scalable delivery scheme of the MV packets is provided,

opportunistically adapting the subset of cameras included in

the network coding scheme to the local network conditions

and user’s request. The proposed scheme is able to exploit

the network resources, leading the rate allocated to highest

classes to either decrease in limited network conditions, or

increase when good channel conditions are experienced by the

peer. Compared to baseline algorithms, the proposed UEP-NC

scheme is able to achieve the largest QoE across different

bandwidth availability, Fig. 4, and different packet erasure

probabilities, Fig. 7. This leads the UEP-NC scheme to offer

the highest satisfaction of users in the interactive scenario

under investigation, Fig. 5.

It is worth noting that the UEP-NC scheme performs the rate

allocation optimization locally with limited a priori informa-

tion. In this way, the coding scheme is able to responsively

adapt to any variation in the system (e.g., clients’ requests,

channel capacity, cameras available at the source), Moreover,

the computational complexity of the optimization algorithm is

reduced, and network resources are used in an efficient manner.

V. CONCLUSION

We have proposed a network coding based camera schedul-

ing optimization problem, aimed at maximizing the user

QoE for interactive multiview streaming in overlay networks.

We have introduced the concept of layered QoE, which is

associated to the different levels at which any user can

navigate within the scene. Cameras are then organized into

prioritized layers, each one enhancing the QoE. A prioritized

network coding delivery strategy is optimized, by choosing the

best allocation rate between prioritized classes. By properly

handling different priorities, network conditions, and users’

requests, the proposed streaming strategy is able to offer most

important source packets to clients when network resources

are scarce, and the entire camera set for smoother navigation

to better connected clients. Future works will be conducted to

extend the optimization of both camera subsets and prioritized

NC strategy to overlay networks in which users are organized

into social groups, each one characterized by its own views

popularity distribution.
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