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Abstract

In multiview applications, multiple cameras acquire the same scene from different viewpoints and

generally produce correlated video streams. This results in large amounts of highly redundant data. In

order to save resources, it is critical to handle properly this correlation during encoding and transmission

of the multiview data. In this work, we propose a correlation-aware packet scheduling algorithm for

multi-camera networks, where information from all cameras are transmitted over a bottleneck channel to

clients that reconstruct the multiview images. The scheduling algorithm relies on a new rate-distortion

model that captures the importance of each view in the scene reconstruction. We propose a problem

formulation for the optimization of the packet scheduling policies, which adapt to variations in the scene

content. Then, we design a low complexity scheduling algorithm based on a trellis search that selects

the subset of candidate packets to be transmitted towards effective multiview reconstruction at clients.

Extensive simulation results confirm the gain of our scheduling algorithm when inter-source correlation

information is used in the scheduler, compared to scheduling policies with no information about the

correlation or non-adaptive scheduling policies. We finally show that increasing the optimization horizon

in the packet scheduling algorithm improves the transmission performance, especially in scenarios where

the level of correlation rapidly varies with time.
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I. INTRODUCTION

Advances in interactive services and 3D television have paved the road to multiview video applications,

in which multiple sources acquire and transmit several correlated media streams [1]–[4]. Multimedia

wireless sensor networks and multi-camera video systems are typical examples of multiview setups.

The flexibility and the interactivity offered by such applications however come at the price of increased

storage/bandwidth requirements. To overcome these limitations, the coding and transmission schemes

need to properly exploit the correlation among sources, in order to provide effective image quality in

resources constrained environments.

In this context, we aim at providing insights on how resource allocation strategies can benefit from

correlation information in a multi-camera scenario, in which neighboring cameras acquire the same

scene but from different perspectives. This scenario results in spatial correlation between the information

streams, since cameras typically have overlapping fields of view, in addition to temporal correlation

between frames acquired consecutively by the same camera. This spatial-temporal correlation can be

exploited either at the source (e.g., by joint encoding of the different sources) or at the decoder side

(e.g., by joint reconstruction of the different images). In this work, we consider the latter case and we

show how the packet transmission scheme can be opportunistically adapted to satisfy network constraints,

when the source correlation is exploited at the decoder for image reconstruction.

In more details, the proposed framework targets the optimization of resource allocation schemes for

the transmission of correlated sources under delay and bandwidth constraints. Rather than focusing here

on source coding aspects, we are interested in a scenario where each camera independently acquires

part of a scene with no communication between cameras. The encoded views need to be gathered by a

gateway or a wireless access point (AP) (see Fig. 1), which then forwards packets to clients interested in

decoding (part of) the 3D scene. Assuming that network resources are constrained, only a subset of the

camera images can be transmitted to the clients. The encoded views are transmitted with a correlation-

aware packet scheduling algorithm driven by the gateway or the AP. This centrally coordinated scenario

is quite typical in practice, and in particular in IEEE 802.11 wireless networks. In these networks,

the Point Coordination Function (PCF) is one of the common solutions supported by Medium Access

Control (MAC) layer to organize data transmission [5], [6]. At higher layers, master routers or home

gateway devices are also used as central controllers for network services and devices [7], [8]. The packet

scheduling algorithm filters packets to reduce the transmission cost and satisfy the resource constraints

in the system under the assumption that the images are jointly reconstructed at decoder. In order to

DRAFT May 28, 2013



3

Figure 1. Multi-camera system, with bandwidth bottleneck at the access point.

optimize the reconstruction quality, one has however to properly select the packets to be transmitted,

along with their transmission schedule. For example, the frames that are highly correlated to packets

already available at the decoder can have a low priority in the scheduling algorithm. This is due to the

fact that they can be reconstructed from the correlated frames at the decoder side even if they are actually

not transmitted. On the other hand, frames that have only a low correlation with previously transmitted

data should be prioritized in the scheduling since they would be reconstructed at a poor quality if they

are not transmitted.

We propose a novel rate distortion (RD) model that estimates the distortion in scene reconstruction

from multiple correlated images. Based on this model, we build a scheduling technique that minimizes

the distortion in the scene reconstruction and adapts the transmission scheme to temporal variations of the

scene content and correlation level. The proposed scheduling algorithm optimizes the long-term utility

function with refinement at each transmission opportunity. For such an algorithm to reach optimality

though, a large time horizon has to be considered in the optimization, which leads to high computational

complexity. Thus, we propose a suboptimal trellis-based algorithm that is able to reduce the complexity

while still preserving most of the benefits of correlation-aware scheduling optimization. Simulation results

demonstrate that the proposed scheduling algorithm outperforms correlation-agnostic scheduling policies

or static camera selection algorithms. This shows the need of correlation-aware scheduling policies in

multiviews systems, which are able to efficiently share network resources among cameras, while rate

allocation (RA) techniques proposed in the literature cannot solve such a scheduling problem, since they

usually do not consider correlation between sources [9], [10].

The remainder of this paper is organized as follows. Related works on multiview data gathering are

described in Section II. In Section III, some technical preliminaries are given and our new RD model is

introduced. The packet scheduling problem is formulated in Section IV and the trellis-based optimization
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solution is provided in Section V. In Section VI, we discuss the simulation results, and we conclude in

Section VII.

II. RELATED WORKS

In this section, we first provide a general overview of the most relevant works from the literature that

focus on multi-camera streaming and we highlight the key differences with our work. Then, we describe

in more detail the research work in resource allocation and correlation-aware multiview streaming.

In multiview systems, prior studies usually addressed two main open problems: i) how to efficiently

encode distributed sources, ii) how to efficiently deliver information to users in different applications. To

answer the first question, distributed source coding (DSC) has gained attention as new coding paradigm

[11], [12] to exploit source correlation. When no communication is assumed between cameras during

the coding process, DSC allows the encoding to stay simple by shifting the computational complexity

to the decoder. Research on DSC, as well on distributed video coding (DVC), has been mainly focused

on optimizing the coding scheme, given an a priori knowledge on the correlation, i.e., given an a priori

side information (SI) [13]–[15]. Thus, the selection of sources that can be used for the generation of

SI is usually assumed to be known; the optimization of this selection is still an open problem. Even

if many works have studied DSC in multiview applications, an optimization framework that is able to

exploit in the most efficient way the source correlation level is still missing. In our paper, similarly to

the DSC framework, we consider that the cameras do not communicate with each other but rather exploit

the source correlation in the packet scheduling process. Even if this is not considered in this paper, our

framework also applies to cameras streams encoded by DSC. It represents a complementary solution to

DSC in the design of distributed camera systems.

In the second set of works that optimize the delivery of multiview data, some prior studies address the

problem of providing interactivity in selecting views, while saving on transmitted bandwidth and view-

switching delay [2], [16]–[20]. The work in [2] is mainly focused on coding views with a minimum level

of redundancy in order to simplify the view switching, and the works in [18], [21] optimize the selection

of views to be encoded and transmitted based on the user interest. The authors in [19], [22] investigate

the transmission of multiview video coded streams on P2P networks and IP multicast, respectively. These

works mainly focus on the coding aspects and DSC is often proposed as a solution to reduce encoding

complexity [23] or to provide interactive access to the different views [24].

The work proposed in this paper is rather defined as a rate allocation problem in multi-camera

systems. Multi-camera resource allocation solutions in the literature often ignore the dynamic correlation
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between sources and rather focus on optimizing the resources for each camera independently. In other

words, they usually optimize the scheduling policy in evaluating the cost, the distortion gain and the

time constraints of each camera separately and ignores the possible correlation among cameras. This

may result in suboptimal allocation of the network resources. Resource allocation techniques have for

example been considered in [10] for video surveillance systems, in which each of the camera captures

and transmits the video information in a multihop network. The optimization of the resource allocation

(i.e., the time sharing between sources) is based on both the network and source information, but ignores

the correlation between the sources. In a more general resource allocation framework, few works have

introduced the sources correlation in the optimization of transmission schemes. A multi-party 3D tele-

immersive system is considered in [25], where correlated views are rendered together to create a common

virtual environment among all participants. These participants are distributed over an overlay network and

can gather information from neighboring nodes. Source correlation is taken into account to dynamically

optimize the multicast topology for content delivery between nodes involved into the multi-party 3D

tele-immersive session. In [26], a three-step approach is proposed to optimize the resource allocation

between spatially correlated sources for multi-cell frequency-division multiple access (FDMA) networks.

However, multimedia transmission is not considered in the optimization.

In [27], the level of spatial correlation between sources has been considered at the MAC layer for

wireless sensor networks. The authors assume that the network needs to estimate an event S. Due to the

correlation between neighboring sensors, only part of them might be selected for sending information

to the sink, so that the transmission data rate is limited. The MAC protocol prioritizes the access

to representative nodes, i.e., nodes with reduced levels of correlation. The same intuition has been

considered in [28] and applied to multimedia streaming. A spatial correlation model for visual information

in wireless multimedia sensor networks (WMSNs) has been proposed, introducing an entropy-based

analytical framework to evaluate the visual information offered by multiple cameras. When the network

resources are insufficient the cameras that maximize the joint entropy in a camera set are selected for

transmission. The model however only solves a static correlation-based camera selection technique, while

we consider a dynamic correlation-based packet scheduling optimization in our work. In particular, the

framework in [28] can be seen as a particular case of our problem, where both cameras and scene

content are static. The correlation model proposed in [28] has been also used in [29], where the problem

of efficient gathering of visually correlated images from multiple sensors has been investigated. The

scheduling optimization is aimed at reducing the energy consumption during transmissions by exploiting

a correlation-aware differential encoding technique. However, the model is highly sensitive to transmission

May 28, 2013 DRAFT



6

failures. Moreover, the cameras grouping optimization is based on the assumption of a static correlation,

which does not hold in dynamic scenarios. Our work is substantially different from [29], since we propose

a packet scheduling optimization that i) is able to adapt to correlation variations in dynamic scenes, ii)

considers independent source coding (i.e., it preserves simplicity at the source side).

Finally, it is worth noting that the correlation between cameras might be exploited not only for DSC or

resource allocation techniques, but also for error resilience. For example, the correlation between views

is implicitly considered in [30]. The authors propose an optimized interactive multiview streaming over

wireless wide area networks (WWAN), where a cooperative peer-to-peer repair technique is considered

to alleviate packet losses.

There are important differences between the above works and the study proposed in this paper. First,

we focus our attention on the important problem of optimizing scheduling algorithms such that view

correlation can be exploited efficiently at the decoder. Second, even if some other works have investigated

resource allocation techniques for multiview scenarios, dynamic view correlation and dynamic packet

scheduling solutions are not studied in the literature related to multi-camera systems. This is exactly

what we propose to address in this paper.

III. FRAMEWORK

We now describe the framework considered in our work. First, we present the multi-camera system and

describe the multiview acquisition and transmission processes. Then, we introduce the scene reconstruction

method and show that the correlation between cameras plays a crucial role in the reconstruction of missing

frames at the decoder. Finally, we propose a new rate-distortion model for the representation of the 3D

scene information.

A. Multi-camera system

We consider M cameras that acquire images and depth information of a 3D scene from different

viewpoints. The images acquired by the M correlated cameras need to be collected by a common AP that

eventually transmits (part of) the 3D scene information to clients, which are all interested in receiving

all video streams. Due to bandwidth constraints in the communication system (e.g., on the wireless

channel, or on the path between AP and clients), it might not be possible to transmit all the frames

from all the cameras to the clients. Thus, at each transmission opportunity, it is important to accurately

select which images have to be scheduled and which ones can be sacrificed (i.e., not transmitted), such

that the average distortion is minimized. However, depending on the camera arrangement and the scene
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information, the frames acquired from the different cameras might be correlated in both time and space.

First, each camera acquires temporally consecutive frames, which are correlated, especially for static or

low-motion 3D scenes: this is the temporal correlation in image sequences. Then, neighbouring cameras

might acquire overlapping portions of the same scene; this leads to correlated frames due to the spatial

correlation between multiview cameras. Both the temporal and the spatial correlations might help in

reconstructing the overall scene information if some images are missing at the decoder.

We address the frame selection problem as a resource allocation problem that takes into account the

level of correlation among cameras in a novel packet scheduling algorithm. We assume a model in which

there is no communication among cameras in order to save bandwidth and power. The only minimal

information that is known a priori is the position of the cameras, which is possibly updated when cameras

change positions in dynamic settings. Along with depth information, each camera is able to estimate

its influence on its neighbors and in particular the contribution that it can offer in the reconstruction

of neighbor views. We propose below a novel correlation model where each camera can predict the

correlation level with neighboring cameras, without global depth information. This local correlation level,

which is a set of simple values representing the influence of the camera in the reconstruction of the

neighboring ones, is sent by each camera to the scheduling engine.

Then, we consider that each encoded image at a given time instant from a particular camera is

packetized into a data unit (DU) and stored in the camera buffer. Each data unit contains texture and depth

information about the 3D scene. All the camera DUs are possible candidates for scheduling. We further

assume that the transmission is based on a Time Division Multiple Access (TDMA) model where no

more than one DU might be scheduled in any TDMA slot. Once a DU is scheduled for transmission, the

channel stays busy for one or multiple time slots, until the current DU has been completely transmitted.1

Due to streaming delay constraints, the DU needs to be received before a playback deadline, denoted

by TD, in order to be useful for decoding. This means that a DU acquired at the time t stays useful till

time t+TD. Data units that have no chance to be received on time are not considered for scheduling and

simply dropped by the cameras. We also assume that the communication channel is lossless such that all

the transmitted DUs are correctly received by the access point and subsequently the clients. It follows that

packets that are not available at decoder have been skipped by the scheduler, and not lost due to unreliable

communication. In this framework, our goal is to propose a correlation-aware scheduling algorithm that

1From here onwards, we assume the time axis discretized in slots (or scheduling slots) of length equal to the TDMA slot

duration.
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selects DUs from different cameras in such a way that the overall distortion in the reconstruction of all

camera views is minimized under the bandwidth constraints.

B. Scene Reconstruction

We describe now the scene reconstruction process, which will help to better understand the benefits of

exploiting the spatial and temporal correlation of the images. At the receiver side, each frame is decoded

independently. The images that have not been transmitted are estimated based on time and/or view

interpolation algorithms using information from neighboring frames. More precisely, for the interpolation

of a missing view n, the receiver uses images from neighboring cameras with help of depth image based

rendering (DIBR) techniques (Fig. 2(a)). Typically, DIBR algorithms use depth information in order to

estimate by projection the position of pixels from view k in the missing view n. The projected pixels

are generally of good precision (depending on the accuracy of the depth map [31]) but do not cover the

whole estimated image, due to visual occlusions. As shown in Fig. 2(b), one can build a binary mask

that describes the occluded regions. Then, by merging the estimations obtained by the projections of

different neighboring views, we obtain different reconstructed regions in the interpolated image. This can

be summarized in a global occlusion map with different regions corresponding to the different occlusions.

In the example in Fig. 2(b), the reconstructed scene is subdivided into three regions, each of them is

characterized by the set of neighboring views that contribute to the scene reconstruction. In particular, the

blue region (which represents 7% of the total scene) is reconstructed based on the estimation from only

the view n + 1, while for the yellow one (which represents 9% of the total scene) the estimation from

view n − 1 is considered. The remaining 84% of the scene (i.e., the green region) is reconstructed by

merging estimations from both views. The principle for temporal extrapolation is the same. The decoder

uses the available past frames to reconstruct a missing frame. The past frames cannot be used to estimate

the whole missing image because of occlusions and object motion. The regions where the past frames

could give some useful information are computed similarly to the occlusion map in the view interpolation

case. The global map with the different prediction regions is used to decide on the best interpolation

method for the missing frames at the decoder.

An example of multiview video reconstruction is depicted in Fig. 3, for the case of 8 cameras that

acquire several temporally consecutive frames. The goal of the decoder is to reconstruct all the frames

in time and space, even if only part of them have been received (dark colored boxes in Fig. 3). In this

example, we consider that each frame is correlated with frames of the two neighboring views in space,

and with the two temporally successive frames (of the same view). If one or more of these correlated
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(a)

(b)

Figure 2. Example of DIBR image estimation at decoder. (a) the central view n is estimated from the two neighboring views

n− 1 and n+1. (b) the occlusion maps corresponding to the two estimations are merged in order to obtain a global occlusion

map with 3 regions. The percentage numbers in the masks indicate the portion of the frame dedicated to each region.

frames are missing, the received frames can contribute to the estimation of the missing data (light colored

boxes in Fig. 3). In order to avoid error propagation, we consider that only the received frames can be

used to reconstruct the missing ones (i.e., reconstructed frames are never used for estimation of other

missing frames). Note that we consider temporal estimation only in the forward direction for the sake of

simplicity. Our model can however be extended easily to include temporal interpolation in the backward

direction too (i.e., from future frames). Finally, a missing frame cannot be reconstructed (white boxes in

Fig. 3) when all its correlated frames are missing too.
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Figure 3. Example of frames reconstruction in multiview video setup, where each frame is correlated with the frames of

two neighboring views and with the two temporally consecutive frames (of the same view). Missing frames are reconstructed

from information in the correlated frames that are available at decoder. Received frames are represented in the figure by dark

colored boxes, the reconstructed ones by light colored boxes. White boxes represent frames that cannot be reconstructed from

the received frames.

C. Rate-Distortion Model

We now propose a novel rate-distortion model adapted to the scene reconstruction framework described

above. The m-th camera at time t, acquires the image Ft,m and compresses it at a rate of Rt,m bits per

pixel (m = 1, . . . ,M). A subset of the compressed images captured by all cameras is transmitted to the

decoder, which targets the reconstruction of the full scene. If the frame Ft,m is available at the decoder,

the distortion is directly dependent on the compression or the source rate. If Ft,m is missing at decoder,

it is reconstructed from the available neighboring frames (in time and space), as described in the previous

section.

The overall distortion of the scene at instant t is thus expressed as

Dt(RRRt) =

M∑
m=1

1

wm
Dt,m(RRRt) (1)

where wm represents the relative importance of a given camera view. It permits to give a different weight

to each camera view in the distortion evaluation (e.g., the central camera might be preferred to the

lateral ones) and it reflects the relative interest that clients have in each camera stream. In our problem

formulation, the weight parameter is assumed to be given as a priori information. The rate vector RRRt,

defined as

RRRt = [Rt,1 Rt,2 . . . Rt,M Rt−1,1 . . . Rt−1,M . . . Rt−ρT,1 . . . Rt−ρT,M ]T ,

represents the size (in bpp) of the frames received from the different cameras (m = 1, . . . ,M) in a

window of time of size ρT, which can be used for the reconstruction of Ft,m. The parameter ρT defines
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the maximum number of frames that can be considered in temporal interpolation at the decoder. The

distortion Dt,m(RRRt) is the distortion of the m-th view at instant t. For each view m acquired at the instant

t, we further decompose the frame into regions sj and we denote by St,m the set of such regions. For

each sj ∈ St,m, we denote by α(sj) the relative area of the frame dedicated to the region sj , such that∑
sj∈St,m α(sj) = 1. In Fig. 2, for example, the frame acquired from the central camera is subdivided in

three different regions: the blue, the yellow, and the green ones, with α(sj) corresponding to 0.07, 0.09,

and 0.84 respectively.

Then, a mapping function φφφj,m,t describes which of the neighboring frames can contribute to the

reconstruction of the region sj of the m-th view at time t. In the absence of temporal correlation,

the spatially neighboring views only are considered for frame reconstruction. This means that φφφj,m,t =

[φj,m,t(1) . . . φj,m,t(M)], where φj,m,t(k) = 1 if the k-th camera is correlated with the region sj of the

frame Ft,m and φj,m,t(k) = 0 otherwise. In this case, RRRt reduces to RRRt = [Rt,1 Rt,2 . . . Rt,M ]. When

both spatial and temporal correlations are used in the reconstruction, the matrix φφφj,m,t becomes

φφφj,m,t = [φj,m,t(1) . . . φj,m,t(M) φj,m,t−1(1) . . . φj,m,t−1(M) . . . φj,m,t−ρT(1) . . . φj,m,t−ρT(M)]

where ρT is the number of past frames that can be considered for the reconstruction of the current image.

Equipped with the above notation, the distortion Dt,m(RRRt) becomes the sum of the distortion in each

part stj of the frame at instant t:

Dt,m(RRRt) =


∑

sj∈St,m α(sj)d [φφφj,m,t ·RRRt] if the view is not received

d [Rt,m] otherwise.
(2)

Finally, the distortion functions d[R] in Eq. (2) can be evaluated from the general expression of the RD

function of an intra-coded frame with high-rate assumption [32]:

d[RI ] = µIσ
2
I 2−2RI (3)

where RI is the number of bits per pixels and is equal to the sum of the rates that contribute to the current

region, σ2I is the spatial variance of the frame and µI is a constant depending on the source distribution.

It is worth noting that the model of Eq. (3) has been chosen because it is quite simple and yet accurate.

However, our packet scheduling framework is general and other source rate-distortion functions could be

used in Eq. (2).

IV. PACKET SCHEDULING ALGORITHM

We discuss in this section a novel packet scheduling framework for wireless multiview camera system

that uses the rate-distortion model proposed in the previous section. Then, we propose a novel problem

May 28, 2013 DRAFT



12

formulation for rate-distortion optimal packet scheduling.

A. Transmission policy

We consider a channel with successive time slots for packet transmission. Each time slot represents

a transmission opportunity. The objective is to select which DU should be transmitted at each available

time slot, in order to maximize the quality at the decoder under the playback delay constraint given by

TD. A greedy hence myopic strategy can choose the scheduling policy by selecting to transmit at each

time slot the frame that minimizes the overall distortion at decoder. However, such a scheduling solution

does not necessarily optimize the overall distortion since it does not consider a long term optimization

objective. A less myopic scheduling leads the scheduler to allocate more fairly all the views of the camera

set with a more global distortion objective. Thus, in the following we optimize the packet scheduling

strategy over a finite time horizon that is generally larger than one transmission time slot.

The delay TD as well as any temporal parameter introduced in the following is expressed in terms of

time slots for the sake of clarity. We denote by t the time slot at which we optimize the scheduling policy

for a time horizon of K time slots. We consider an online optimization with no a priori information about

the video sequence. However, we allow a latency of K slots between the acquisition and the scheduling

process, in such a way that, at time t, the characteristics of frames acquired up to the time slot (t+K−1)

are available to the scheduler. In more details, at the time instant t, all the frames from all the views

acquired in the interval [t − TD + 1, t + K − 1] are possible candidates for transmission except those

that have been scheduled already. They form a set of cardinality L. Let the l-th DU be characterized

by its size Bl in bits2, its acquisition time slot TA,l (i.e., the instant at which the frame is acquired), its

expiration deadline TTS,l = TA,l + TD, and its transmission policy πl : {al(1) . . . al(K)} in the next K

time slots. A transmission policy πl at time t is a binary vector according to which the DU l is allocated

for transmission over the time horizon [t, t+K − 1]. Let A = {0, 1} be the action space and al(k) ∈ A

the scheduling action taken for the DU l at the k-th slot of the optimization. In particular, al(k) = 1

means that the data unit l has to be sent at time (t + k − 1). As the channel is lossless, we assume

that each DU is scheduled at most once during its lifetime and that each transmitted DU is sent entirely.

In order to avoid transmitted DUs whose deadline has expired, we impose that at the k-th slot (with

k = 1, . . . ,K) only DUs acquired in the time interval [t − TD + k + 1, t + K − 1] are candidates for

being transmitted at time (t+ k). Finally, we denote by πππ = [π1 . . . πL]T the scheduling policy for the L

2The size of a DU includes the size of both texture and depth data.
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candidate DUs at time t. Each policy πππ leads to a particular distortion on the client side. In this work,

we seek the best policy πππ? that is able to minimize the expected distortion while satisfying the channel

constraints.

The scheduling policy is refined at next transmission opportunity based on the newly acquired frames.

This means that a scheduling policy can change over time. In particular, among the best set of DUs

selected for transmission, the DU scheduled in the first time slot is sent, while the scheduling is not

guaranteed for the other DUs. For example, a DU planned for transmission by the scheduling policy

computed at time t might actually never be transmitted if a future frame with higher importance takes

its transmission slot. In this way, the refinement of the scheduling policy compensates for the limited

knowledge of the video sequence that is imposed by the online nature of the algorithm. We formally

define below the packet scheduling problem in our new framework.

B. Problem Formulation

We first consider the scheduling problem for a single DU. In this case, the transmission rate is denoted

by

R (πl) = Bl

[
K∑
k=1

al(k)

]

where
∑K

k=1 al(k) is equal to 1 is the DU l is scheduled for transmission in the k-th slot, and equal to

0 otherwise. The overall distortion is evaluated as

D (πl,H) =

 Dl (Ψ {H}) if
∑K

k=1 al(k) = 0

Dl (Ψ {H ∪ l}) otherwise
(4)

where H is the set of the DUs already transmitted in the time slots before t (i.e., H represents the

scheduling history), and Dl is the overall distortion level derived from Eq. (2), where the subscripts

{t,m} have been replaced by the subscript l to describe the data unit l. The function Ψ {H} evaluates

the received rate vector RRR of the M views acquired in the last ρT instants given the set of transmitted

DUs H. In particular, each element j of the vector RRR is set to Bj if the j ∈ H, and to 0 otherwise. The

evaluation of Dl obviously involves the size and the prediction maps of the data unit, namely Bl and

{φj,l}. For the sake of clarity, we omit this dependency in our equations.

We now consider the rate and distortion for multiple DUs. In the joint scheduling of multiple DUs, we

evaluate the average distortion and rate for a set of scheduling policies πππ = [π1 . . . πL]T . This outlines

the dependency between DUs in the packet scheduling optimization. The average rate for a set of L DUs
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with a transmission policy πππ is thus given by

R(πππ) =
∑
l

R (πl) =
∑
l

Bl

[
K∑
k=1

al(k)

]
. (5)

The derivation of the average distortion is not as straightforward as the one of the average rate. In

particular, the rate of a given DU only depends on the scheduling policy for that DU, while the distortion

for a given DU depends on the scheduling policy of the correlated DUs

D (πππ,H) =

L∑
l=1

1

wl
Dl (Ψ {H ∪ Pπππ}) (6)

where Dl is the distortion for the reconstructed DU l, given the scheduling policy πππ, and Pπππ is the set

of DUs scheduled in the time slots [t, t + K − 1] based on the scheduling policy πππ. Note that, among

the DUs in Pπππ, the frames correlated with the DU l have an impact in the reconstruction of the l-th DU

in the case where it cannot be transmitted (i.e., in the case l /∈ Pπππ).

Equipped with the above definitions of rate and distortion for each policy, we want now to find the best

scheduling policy πππ? that minimizes the average distortion while satisfying the bandwidth constraints. In

particular, we seek for

πππ?(H) = arg min
πππ
D(πππ,H) s.t. R(πππ) ≤ C?BW (7)

where C?BW is the bandwidth constraint given by C ·K · TTDMA, where C is the channel capacity and

TTDMA is the TDMA slot duration in terms of seconds. In the following, we assume C?BW to be constant

over time. However, since our scheduling optimization is refined at every scheduling opportunity, the

model can be extended to any system where the bandwidth constraint evolves in time simply by changing

the constraint in Eq. (7).

Due to the dependency among DUs in Eq. (6), the optimization problem can unfortunately not be

decomposed easily into mutually independent subproblems. The optimization problem can be solved

with exhaustive search methods, which however rapidly become computationally intractable for a large

time horizon K and a large number of cameras M . An alternative solution consists in solving the

optimization problem with iterative algorithms, where policies are optimized sequentially. The authors

in [33], for example, propose an iterative sensitivity adjustment (ISA) method where, at each iteration, the

transmission policy of a single DU is optimized, keeping the other policies fixed. The overall process is

then repeated till convergence. Unfortunately, due to multiple dependencies between DUs in our problem,

the iterative method does not necessarily reduce the computational complexity compared to an exhaustive

search strategy. In the following section, we describe our approximate yet effective solution to determine

the best packet scheduling over the time horizon of size K.
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V. TRELLIS-BASED OPTIMIZATION SOLUTION

We propose in this section a new trellis-based method for determining the packet scheduling policies.

The key idea to limit the computational complexity relies on an effective pruning strategy based on

correlation information. We build a trellis in the solution space as follows. We consider the scheduling

optimization problem over the time horizon [t, t+K−1]. In the following, we refer to the time instant (t+

k−1) as the k-th scheduling opportunity (or time slot), with k ∈ [1,K]. At the k-th scheduling opportunity,

the L DUs that are candidates for scheduling are represented by the states (or nodes) {Sk,1, . . . , Sk,L}.

Then, a direct edge (or branch) from state Sk,j to the state Sk+1,i represents the decision of scheduling

the i-th DU at the (k+1)-th transmission opportunity, given that the j-th DU has been transmitted during

the k-th slot3. A cost Bi is associated to such an edge, which corresponds to the size of the i-th DU. For

the sake of completeness, we also consider, for each time slot, the null state Sk,0. A branch heading to

the null state means that no frame is scheduled, and a zero transmitting rate is associated to this edge. A

sequence of branches forms a path and all possible paths form a trellis. A full path is a path connecting

a node at the time slot k = 1 to a node at the time slot k = K. It represents a feasible scheduling policy

optimized over a time horizon K as long as the bandwidth constraints are satisfied (i.e., the sum of the

sizes of all transmitted DUs is smaller than the channel capacity). The feasible policy with the minimum

distortion is the one leading to the best scheduling policy. Note that, since we do not consider packet

retransmissions in our system, the transmission state can only appear once on a path for a given packet.

An example of the trellis-based representation is depicted in Fig. 4, where the scheduling policy

considers a time horizon of K = 3 in a scenario with four cameras. Before starting the frame transmission

(i.e., at the time slot 0) no DUs have been acquired and only the null state is available. In the general

case, a scheduling policy at the first time slot (i.e., k = 1) is represented by a branch going from a specific

state S0,i to any possible state S1,j , where S0,i is the state associated to the DU previously scheduled at

the time slot (t− 1). The selected scheduling policy is the one that allocates F1,3, then F2,1, and finally

F3,4.

As already mentioned above, while the transmitted rate associated to each branch does not depend

on the other branches, the average distortion D(πππ?) cannot be evaluated separately for each data unit.

Because of the correlation between DUs, the distortion of a given full path is not equal to the summation

of the distortion gain for each branch on the path. From an algorithmic point of view, this means that all

the branches have to be considered for computing the optimal scheduling solution. Ideally, an exhaustive

3From here onwards, “branch” or “DU” will be used interchangeably, assuming that each branch represents a scheduled DU.
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(a)

(b)

Figure 4. Example of scheduling policy in a scenario of 4 cameras and K = 3 transmission time slots (a) and its associated

path in the trellis (b).

search should evaluate distortion on all full paths to select the policy with minimum distortion. However,

the number of states and full paths are prohibitively large. For example, in a scenario in which L DUs

can be scheduled over K time slots, the number of possible full paths is at least L!/(L−K−1)!. Rather

than an exhaustive search, we propose a suboptimal algorithm that reduces the visited states per time

slot and thus substantially reduces the number of full paths to be tested. The key concept is that the

best scheduling policy is likely to be the policy that permits the reconstruction of most of the scene.

Hence the scheduler shall try to send as much “innovation” as possible, or as little redundancy as possible.

Intuitively, once a DU is transmitted, the other DUs that carry correlated information should get a smaller

priority. The corresponding branches in the trellis are thus unlikely to be part of the optimal path. Thus,

we propose to prune branches depending on the level of correlation that exists between a DU that is
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candidate for transmission and the set of previously scheduled DUs, denoted by Pπππk where πππk is the

scheduling choices (or path) from 1 to k.

In more details, we introduce a branch reward parameter for each branch in the trellis. It is an estimate

of the contribution that the DU associated to a given branch can provide to the overall scene reconstruction

process, conditioned on the data that have already been scheduled. Consider a given path πππk as the set of

DUs scheduled at the first k scheduling opportunities. We evaluate the gain of adding an edge reaching

the node Sk+1,q to the path πππk: we are interested in the reward of scheduling the DU q at the time slot

k+ 1, given that the DUs in the set Pπππk have been previously scheduled. This branch reward is formally

given by

ρ(Sk+1,q|Pπππk) =
1

L

L∑
l=1

∑
sj∈Fl

α(sj) max {0, [φφφj,l ·Ψ {Pπππk ∪ q} −φφφj,l ·Ψ {Pπππk}]}

 (8)

In other words, the reward ρ(Sk+1,q|Pπππk) is the “innovative” contribution that the DU q can offer to the

reconstructed scene. In particular, for the decoding of the l-th DU among the L DUs under consideration,

max {0, [φφφj,l ·Ψ {Pπππk ∪ q} −φφφj,l ·Ψ {Pπππk}]} is equal to 0 if the region sj ∈ Fl can be reconstructed

from the previously scheduled DUs (i.e., the DUs in Pπππk), while it is equal to 1 if the region cannot be

reconstructed from the DUs in Pπππk . In the latter case, the DU q is innovative for the region sj .

We now describe our solution to optimize the scheduling policy at time t and over a time-horizon of

K; the key concept is that, at each scheduling opportunity, we select a subset of all branches defined in

the trellis and we consider the subset as the search space for our packet scheduling policy. The branches

in the subset are selected as the ones with the highest branch reward in Eq. (8). We assume that, at time

t (i.e., k = 1), all branches represent possible candidates for being the first part of the best scheduling

solution (i.e., no pruning is done on the first branch of the paths). Thus, we initially determine {πππ1} as

the set of branches going from the time slot k = 0 (i.e., the node representing the scheduling history) to

the time slot k = 1. In general, we denote by {πππk} the set of all paths from 1 to k (i.e., the set of possible

scheduling policies in the first k time slots), and by πππk a generic element of the set. For each path πππk,

the search space of possible branches in which the current path can be extended is denoted by Bπππk .

From Bπππk , a subset of at most Ns survivor branches are selected as the ones satisfying the bandwidth

constraints and maximizing the branch profit ρ(Sk+1,q|Pπππk), with q ∈ Bπππk . This means that Ns branches

will be considered for constructing the candidate paths πππk+1 starting from πππk. This subset selection

is evaluated for each element in {πππk} and successively for all the k > 1. This leads to at most NK−1
s

possible paths for each πππ1. Once the full paths are evaluated, we identify the best scheduling policy as the

one that corresponds to the full path minimizing the overall distortion. The overall scheduling algorithm

May 28, 2013 DRAFT



18

Algorithm 1 Scheduling Optimization Algorithm

Init: Set k = 0. Select all possible branches from the single state in k = 0 to all defined states in k = 1. Denote

by {πππ1} the set of all branches from k = 0 to k = 1, and by πππ1 a generic element of the set.

1: for k = 1 to K − 1 do

2: for each path πππk ∈ {πππk} do

3: step a): for the considered path from 0 to k, individuate all branches going from the scheduling opportunity

k to the scheduling opportunity k + 1. Denote by Bπππk the set of these branches.

4: step b): among branches in Bπππk that satisfy the bandwidth constraints identify the subset of the Ns

branches with the highest profit ρ(Sk+1,q|Pπππk), with q ∈ Bπππk and discard the remaining branches.

5: step c): include the Ns selected paths (i.e., the considered path πππk plus the Ns selected branches) in

{πππk+1}.

6: end for

7: k ← k + 1.

8: end for

9: evaluate the best scheduling policy πππ? as πππ? = arg minπππ∈{πππK}D(πππ) s.t. R(πππ) ≤ C?BW .

is presented in Algorithm 1. The branch pruning strategy allows us to explore only
(
|{πππ1}|NK−1

s

)
paths

at most.

An example of our algorithm is depicted in Fig. 4(b) for a scenario of 4 cameras. In this example, for

the sake of simplicity, we assume that the decoding deadline is TD = 1 such that each frame acquired

at the time slot k expires at the time slot k + 1. We consider the first frame of the sequence and S0,0

is the initial state of the scheduler (t = 1). No branch is pruned in the first time slot. This means that

{πππ1} = {(S0,0−S1,0), (S0,0−S1,1), (S0,0−S1,2), (S0,0−S1,3), (S0,0−S1,4)}, where (Sq−Sq′) represents

the branch going from state Sq to state Sq′ . For each of these branches, we evaluate the full paths as

follows. Considering πππ1 = (S0,0 − S1,1) and Ns = 2, the subset of survivor branches for k = 2 is

{(S1,1 − S2,4), (S1,1 − S2,0)}. These two survivor branches are included in {πππ2}, and the operation is

repeated for every branch in {πππ1}. The branch pruning strategy is considered also for k = 3, obtaining

then the set {πππ3}, which is the set of all the survivor full paths going from k = 0 to k = 3. In our

illustrative example, these paths are represented by solid black lines. Among the candidates full paths,

we finally select the best scheduling solution as the one minimizing the distortion as evaluated in Eq. (7).
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VI. SIMULATION RESULTS

A. Simulation Setup

We provide now simulation results for a multi-camera scenario where data have to be transmitted over

a bottleneck channel of rate CBW . We start the scheduling optimization at t = 1. Once the best set of

DUs for transmission has been selected, the DU scheduled at time t is sent. Since each scheduled DU is

entirely transmitted, we consider the next transmission opportunity as t+Tu, where Tu is the number of

time slots required to transmit the selected DU. At this new scheduling opportunity, a new optimization

is performed over the successive K time slots. We proceed similarly till the end of the simulation, which

in our case corresponds to the expiration time of the last frame of the video sequence.

We consider image sequences where all the DUs from all the cameras have the same size R for the

sake of simplicity, and assume that all the views have the same importance, i.e., wm = w in Eq. (1). Our

simulations are carried out with the “Ballet” and “Breakdancer” video sequences [34], which consist of

Nf = 100 frames, at a resolution of SR = 768 × 1024 pixel/frame and FR = 15 frames per second.

The total number of camera views ranges from 4 to 8. We study the performance of our algorithms in

different configurations, for different camera setups, different values of the DU size R and for different

constraints on the bottleneck bandwidth CBW . Note that, since the “Ballet” and “Breakdancer” video

sequences have very similar results, we provide here performance results only for the “Ballet” sequence,

and we refer the reader to [35] for further results on the “Breakdancer” video sequence.

We denote by ρS the number of spatially correlated cameras and we assume that each view is correlated

to ρS/2 neighbor views, if available, on both the left and the right sides. As already mentioned in Sec.

III-B, the correlation in time, denoted by ρT, is related to the number of frames considered in temporal

interpolation at the decoder. Both ρT and ρS represent the maximum number of correlated frames in the

time and space domain, respectively. The actual level of correlation experienced in each single frame de-

pends also on the video content. The control parameters ρT and ρS take different values in our simulations

in order to study the behavior of the scheduler for different correlation image reconstruction scenarios.

We experimentally build the φφφ matrix as explained in Sec. III. More details about the construction of φφφ

are provided in [35]. We briefly recall that the number of regions, in which each frame is subdivided,

depends on both the video content and the correlation level. Thus, frames can be decomposed into

different regions. In particular, each region is designed by a unique combination of correlated frames that

are involved in the reconstruction at the decoder. In the temporal domain, the contribution of neighboring

frames to each region is evaluated by comparing images from the same camera. More precisely, each
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frame is subdivided into regions, each of them can be reconstructed from previously acquired frames only

if no motion occurs in these regions. As no motion estimation is employed at the source coding nor at

the receiver in our system, only the fixed background contributes to the temporal extrapolation of missing

frames. In the spatial domain, to evaluate the influence of each camera on the neighboring ones, we use

DIBR techniques and calculate the number of pixels that can be estimated from neighboring views. This

can be achieved by each camera with the information about its own depth map, and about the positions

of the neighbor cameras. The overhead information required for this estimation thus corresponds to the

information about the camera positions, which is generally of small size. As observed in [36], the exact

value of the correlation level is however not a critical parameter in the scheduling optimization. Errors

in the correlation evaluation, caused by a coarser estimation with a smaller overhead, does not have a

significant impact on the scheduling policies. Thus, in the following, we assume a precise knowledge of

the correlation information and we neglect the small overhead required to estimate the correlation level.

Since we are interested in reconstructing all the views (at the clients), simulation results are provided in

terms of mean PSNR, which is the PSNR averaged over all the frames of all views. This means that, even

if some frames are decoded at high PSNR values, the average PSNR of the reconstructed scene might

be in the low PSNR range in challenging transmission conditions. First, the PSNR of the reconstructed

scene is evaluated from the rate-distortion model described in Sec. III-C. Then we validate our findings

by experiments with actual reconstruction of the video frames at the decoder.

The proposed algorithm has been compared to two baseline algorithms: a random allocation of the DUs

(“Baseline - RNDM”), whose distortion performance has been averaged over 1000 runs, and a scheduling

solution where cameras priorities are defined a priori based on the joint entropy of the camera dataset

as defined in [28] (“Baseline - Akyildiz”). In particular, the camera selection for the latter method is

based on the spatial correlation that exists between views, while time correlation information is neglected.

The camera priority is established as follows: the camera minimizing the overall distortion becomes the

highest priority camera. Then, other cameras are included if they maximize the diversity (i.e., if they

minimize the spatial correlation) with respect to the cameras that have been previously selected. We

first provide results for a greedy optimization scenario (i.e., K = 1) and demonstrate the benefit of

a correlation-aware scheduling optimization w.r.t. baseline algorithms. Then we depict the performance

of foresighted optimization solutions, showing that low-complexity solutions lead to good performance

when the optimization horizon is enlarged.

DRAFT May 28, 2013



21

0 1 2 3 4 5 6 7 8
19

20

21

22

23

24

25

ρ
s

P
S

N
R

 

 

Correlation known

No correlation known

Baseline − RNDM

Baseline − Akyildiz

Figure 5. PSNR vs spatial correlation level ρS for systems with 8 cameras (C = 23.5Mbps, r = 11.7Mbps, TD = 5, and

ρT = 0, Ballet sequence model).

B. Greedy Optimization

We first analyze the performance of our algorithm in the case where the optimization horizon is limited

to the next transmission time slot. We first study the importance of the knowledge of the correlation

information in the optimization. Our optimization algorithm is evaluated in different conditions that

depend on the type of correlation information considered in the scheduling decisions: i) “Correlation

Known”, when the full correlation information is considered in the optimization; ii) “Space Corr Known”,

when only the spatial correlation is considered; iii) “Time Corr Known”, when only the temporal

correlation is used; iv) “No corr known”, when the scheduler completely ignores the correlation between

frames.

We first study the gain that can be achieved when the correlation model is known by the scheduler. In

the following figures, the PSNR of the reconstructed scene is evaluated from the rate-distortion model

described in Sec. III-C. In the first experiments reported in Fig. 5, the temporal correlation between

cameras is neglected both at the scheduler and at the decoder and we focus on the influence of the

spatial correlation, which means that missing frames are reconstructed from neighboring views but not

from previous frames. The performance of the scheduling algorithm is given as a function of the spatial

correlation ρS (i.e., a function of the number of views that are considered to be spatially correlated) for

systems with 8 cameras, a playback delay TD = 5, a constant encoding rate per camera of r = 11.7Mbps
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Table I

AVERAGE PSNR OF THE RECONSTRUCTED IMAGES FOR EACH CAMERA FOR SYSTEMS WITH 8 CAMERAS (ρS = 8, ρT = 3,

C = 23.5Mbps, r = 11.7Mbps, AND TD = 5), FOR THE BALLET SEQUENCE MODEL.

Optimization Method
Camera view

1 2 3 4 5 6 7 8

No Correlation known 24.95 25.32 26.97 27.44 26.88 26.69 25.80 25.26

Correlation known 26.19 26.26 24.13 28.08 26.23 25.18 26.87 26.18

Baseline - Akyildiz 22.28 23.07 24.87 24.52 24.64 25.84 23.84 22.55

and a channel capacity C = 23.5Mbps4. This bandwidth constraint means that 2 only frames out of 8 can

be allocated on the channel between each frame acquisition. First, we observe that the gain experienced

by the algorithm using the spatial correlation information in the scheduling compared to the case in which

all the correlation levels are ignored is substantial and this gain increases with the number of correlated

frames (i.e., with ρS). Thus, the knowledge of the spatial correlation is able to considerably improve

the efficiency of the scheduling decisions. Moreover, the proposed algorithm outperforms both baseline

algorithms. This means that the packet scheduling optimization leads to a better level of adaptation than

the a priori camera selection technique in [28]. It is interesting to note that, by neglecting the correlation

model (“No Correlation Known”) the performance becomes very bad and even worse than a random

allocation solution. This means that, rather than choosing the scheduling based on wrong correlation

information, it is better to completely ignore it.

In the next experiment, temporal correlation is considered in the scheduling decisions. The PSNR

quality is provided in Fig. 6 as a function of the number of spatially correlated cameras ρS for systems

with 8 cameras, C = 23.5Mbps, r = 11.7Mbps and a temporal correlation ρT = 3 (i.e., each frame is

considered to be correlated with the three previous frames of the same camera view). It can be observed

that the algorithm using temporal correlation (“Time Corr Known”) is the closest one to the algorithm

using all the correlation information (“Corr Known”). It has to be noted that all the results provided in

the Fig. 6 have been evaluated considering temporal interpolation at the decoder. However, not all the

algorithms include this information in the scheduling optimization. For example, the algorithm that only

takes into account the spatial correlation information (“Space Corr Known”) is not able to outperform

the baseline algorithm with random allocation. This means that, when views are highly correlated in

4Note that r = R[bpp] · SR[pixel per frame] · FR[fps].
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Figure 6. PSNR vs spatial correlation level ρS for systems with 8 cameras (C = 23.5Mbps, r = 11.7Mbps, ρT = 3, and

TD = 5, Ballet sequence model).
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(b) ρT = 2, ρS = 4.

Figure 7. PSNR vs encoding rate for systems with 4 cameras (C = 23.5Mbps, and TD = 5, Ballet sequence model).

both temporal and spatial domains, a partial information on the correlation does not always lead to

a considerable gain in the scheduling optimization. In Table I, the average PSNR for the sequences

reconstructed in the different camera views is provided for the same experiment. It can be observed that

most of the reconstructed camera views achieve the highest PSNR with the correlation-aware scheduling

algorithm.

We now repeat similar experiments in a different camera configuration with only 4 views. In Fig. 7,

the PSNR quality is measured as a function of the encoding rate (C = 23.5 Mbps, TD = 5). It can
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Figure 8. Reconstructed PSNR for systems with 4 and 8 cameras for different encoding rates and levels of correlation (Ballet

sequence).

be observed that there is a tradeoff in the choice of the encoding rate, which varies with the level of

correlation information used in the scheduling decisions. This tradeoff is the result of a source quality

that increases with encoding rate, while the penalty due to the channel also increases with encoding rate,

since more DUs are dropped at high rate for the same channel bandwidth constraint. If there is no known

correlation neither in time nor space (i.e., ρS = 0, ρT = 0 in Fig. 7(a)), it is better to reduce the encoding

rate, so that there is a chance of increasing the number of DUs allocated for transmission, hence the

diversity of the information. On the contrary, when the correlation can be exploited both in time and

space for frame interpolation (i.e., ρS = 4, ρT = 2 in Fig. 7(b)), the best encoding rate appears to be a

medium rate (17Mbps). This means that, in this case, rather than scheduling all the frames at low rate

(i.e., r = 5.8Mbps), it is better to transmit less frames but at higher rate and to exploit the correlation

for the reconstruction of the missing ones.

Finally, we confirm the above observations on experiments with a system that performs actual recon-

struction of the video frames at the decoder. These results are provided in Fig. 8. The “Baseline-Akyildiz”

performs better than a random scheduling most of the time, but it is in general outperformed by the

proposed scheduling optimization, for almost all the values ρS of spatial correlation. These observations

are in line with our previous results where the quality is measured with the R-D model of Sec. III. They
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Table II

AVERAGE PSNR OF THE RECONSTRUCTED SEQUENCE FOR EACH CAMERA FOR SYSTEMS WITH 4 CAMERAS (C = 47Mbps,

r = 23.5Mbps, AND TD = 5), FOR THE BALLET SEQUENCE MODEL.

Static Cameras Moving Cameras

Optimization Method ρS = 0, ρT = 2 ρS = 2, ρT = 2 ρS = 0, ρT = 2 ρS = 2, ρT = 2

K = 3 K = 5 K = 3 K = 5 K = 3 K = 5 K = 3 K = 5

Exhaustive search algorithm 24.39 24.54 26.50 26.65 23.13 23.19 25.07 25.20

Branch pruning strategy 24.39 24.52 26.47 26.63 23.11 23.16 25.05 25.18

confirm the benefits of including correlation information in the scheduling algorithm, even in a greedy

scenario (K = 1).

C. Large Optimization Horizon

We now provide results for a framework with foresighted optimization where scheduling policies are

computed for several future time slots (K > 1). We have already shown above the gain of the proposed

algorithm over the baseline ones from K = 1, so that we now limit the study to the proposed scheduling

algorithm, and look at the gain of a foresighted scheduling policy with respect to a greedy optimization.

First, we provide results where the quality is measured with the R-D model of Sec. III (no actual

reconstruction of the video frames at the decoder). Then we validate our findings by experiments with

actual reconstruction of the video frames at the decoder. For the branch pruning strategy in the trellis-based

scheduling solution, we consider the number of survivor branches per time slot to be Ns = 2. The results

are provided for both a static scenario, where cameras are fixed and the correlation level variations are

due to video content, and a dynamic scenario, where cameras are allowed to move in time with a dynamic

level of spatial correlation.The random movement of the cameras is simulated as follows. We assume a set

of 2M possible positions that each camera can take. We start the simulation by randomly allocating each

camera in one of the available positions. At each time slot, a camera is randomly selected for changing

its position (it can randomly move to the neighboring position). The camera moves only if the chosen

position is not already occupied by another camera; otherwise no movement is performed by the camera

set at this time slot. Based on the position of the cameras, the correlation level is evaluated. This means

that the correlation between two neighboring cameras can dynamically vary in time, accordingly with the

camera movement. In particular, each view can always be reconstructed from the two neighboring ones,

but if these two are far apart the portion of frame that can be reconstructed will be small. Moreover,
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Figure 9. PSNR vs optimization horizon K for systems with 4 dynamic cameras (r = 23.5Mbps, TD = 5, ρS = 2, and

Ns = 2, Ballet model sequence).

we also assume that the correlation with the frame previously acquired in time is zero when there is a

camera motion. Each result provided in the following solution has been averaged over 1000 simulations

runs.

We first compare the proposed sub-optimal scheduling algorithm with an optimal one. In particular,

we randomly select a time instant t ∈ [1, 100] and assume that the scheduling history till the time instant

t− 1 is known 5. We are interested in optimizing the scheduling policy over a time horizon of K time

slots with our trellis-based search technique and with an optimal solution, which exhaustively search for

the best scheduling policy. Decoding quality results for the DUs acquired during the time interval under

consideration. Results of the reconstructed distortion of the DUs acquired during the time instants [1, t]

are provided in Table II, where each value is averaged over 1000 random simulations for both static

and dynamic scenarios with C = 23.5Mbps, r = 11.7Mbps, and TD = 5. It can be observed that

the difference between the branch pruning strategy and the exhaustive search method is negligible. This

means that the pruning of the branches in the trellis-based optimization does not penalize significantly

the performance, while it drastically reduces the computational complexity.

We now provide results for the proposed foresighted scheduling optimization in dynamic scenarios. In

Fig. 9, the model-based reconstructed PSNR is given as a function of the number of optimization time

5The scheduling history is randomly selected.
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(a) Model-based reconstruction PSNR.
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Figure 10. PSNR for systems with 8 dynamic cameras (C = 47Mbps, r = 23.5Mbps, TD = 5, ρS = 4, and Ns = 2, Ballet

sequence).

slots K for systems with 4 cameras for several temporal correlation levels (r = 23.5Mbps, ρS = 2,

C = r and C = 2r). For all the temporal correlation values ρT, we provide results for large K and we

observe performance gains with K. Note that the distortion gain due to large K is sometimes marginal for

two main reasons: i) the channel capacity is very limited and only few DUs can be scheduled compared

to the total number of acquired DUs (Fig. 9(a) where the channel capacity is equal to the source rate of

one camera only); ii) there are large levels of correlation so that the system performance is less sensitive

to non-optimal scheduling decisions since most of the views will be reconstructed at a fair level anyway

(see Fig. 9(b) when ρT = 3).

In Fig. 10, the PSNR quality is provided as a function of the optimization horizon K for systems with

8 dynamic cameras (C = 47Mbps, r = 23.5Mbps, TD = 5, and ρS = 4) for both the model-based

reconstruction and the reconstructed PSNR. In the former case, depicted in Fig. 10(a), we observe that by

increasing the number of cameras from 4 to 8 but keeping the ratio between the channel constraint C and

source rate r constant, the number of DUs that cannot be scheduled increases; this makes the selection of

the best scheduling policy even more crucial. As expected, the quality gain for large optimization horizons

gets more important in this case. Experimental results for the same scenario are provided in Fig. 10(b). The

experiment is the same of Fig. 10(a) but the actual reconstruction of the scene is performed at the decoder.

As already demonstrated for the greedy optimization results, the qualitative behavior of the experimental

and model-based results is similar. In general we observe that, the larger the temporal correlation, the

May 28, 2013 DRAFT



28

better the quality in the reconstruction since more past frames can be used in the reconstruction of a given

frame. Furthermore, the experimental results confirm that increasing the optimization horizon improves

the performance, as already observed in the results derived from the model-based results.

From the simulation results, we can draw the following learnings. First, we have demonstrated that the

temporal and spatial correlations that exist among acquired frames in a multiview scenario is a crucial

piece of information in the optimization of the streaming strategy. When packet filtering is imposed by

bottleneck channels, the packet scheduling strategy can drastically benefit from the knowledge of the

correlation that exists between data units. We have also shown that a foresighted optimization strategy

outperforms greedy optimizations in most cases. Moreover, the benefit of considering the correlation

level in the packet scheduling algorithm increases in dynamic scenarios compared to static ones. The

proposed algorithm is optimized in real time and refined at each transmission opportunity, allowing to

consider dynamic scenarios, in which both cameras positions and the level of correlation can vary in

time. In addition, it is worth noting that i) when the level of correlation exists in both the time and space

domains, knowing at least one of the two correlation levels leads to an improvement in the scheduling

algorithm compared to the case where no correlation information is known; ii) the knowledge of the

correlation level might help in selecting the best rate at which each camera should encode the images. In

particular, the greater the level of correlation, the lower then number of views that needs to be allocated

per acquisition time for optimal performance.

Based on the above learnings, several possible research directions can be studied. The packet scheduling

algorithm can be extended to source coding optimization problems, where the rate of each view could be

adapted over time. It could also be extended to scenarios with unreliable channels. At large, the proposed

framework can be used in different systems in emerging multiview video streaming applications, in

which both spatial and temporal correlations represent crucial information for adapting the video delivery

solution.

VII. CONCLUSIONS

We have investigated the impact of frame correlation for the scheduling of packets in a multi-camera

system. In particular, we have proposed both a novel RD model able to take into account the correlation

level among cameras and a method to estimate the contribution that each camera can offer in the

reconstruction of correlated views. Based on this model, we have proposed an optimization algorithm,

which determines the packet scheduling policy by taking into account the channel capacity and both

the temporal and spatial correlations among encoded frames. The proposed algorithm is able to adapt
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the transmission strategy to the level of correlation experienced by each camera. We have formalized

a trellis-based optimization and we have proposed a suboptimal yet effective solution with a tractable

complexity, based on effective pruning in a trellis representation. Simulation results have demonstrated

the gain of the proposed method compared to classical resource allocation techniques. Finally, we have

also demonstrated the robustness of foresighted optimization strategies.
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