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Abstract: Domino Michael-aldol annulation of cycloalkane-1,3-diones with enals affords a 

general route to 6-hydroxybicyclo[3.3.1]nonane-2,9-diones and 2-hydroxybicyclo[3.2.1]octane-

6,8-diones, notably in one-pot procedures under convenient conditions. The annulation is 

shown to be compatible with one or more substituents at six positions of the 

bicyclo[3.3.1]nonane-2,9-dione scaffold. In some cases, the relative configuration of the 

product can be controlled by the appropriate choice of solvent, base and temperature for the 

annulation. In contrast to the chair-chair conformations usually adopted, the bicyclo 

compounds derived from 2,4,4-trimethylcyclohexane-1,3-dione possessed boat-chair 

conformations. Oxidation of the annulation products gave the corresponding bicyclo triketones.  

 

Keywords: Annulation, domino Michael-aldol addition, bicyclo[3.3.1]nonane, 

stereocontrolled cyclisation, boat-chair conformers 

 

Introduction 

Alicyclic frameworks often have advantageous pharmaceutical properties compared with 

substituted aromatic rings, principally by conferring higher aqueous solubility, lower toxicity 

and greater structural diversity, including stereochemistry.[1,2] Polysubstituted bicyclo 

compounds (e.g. derivatives of bicyclo[3.3.1]nonane [3] and of bicyclo[3.2.1]octane)[4] have 

long presented challenges for organic synthesis (Figure 1a), especially in the placement of 

substituents with stereocontrol, and are become increasingly important in medicinal 

chemistry.[2,5] In particular, several bicyclo[3.3.1]nonanes of the polyprenylated 

acylphloroglucinol (PPAP) family (Figure 1b) possess multiple therapeutic effects including 

anti-bacterial, anti-depressant, anti-viral and anti-cancer properties.[6-8]  
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Figure 1. (a) Representative natural products featuring bicyclo[3.3.1] and [3.2.1] scaffolds.    

            (b) Representative polyprenylated acylphloroglucinols with biological activity. 
 

    Most synthetic methodology for the construction of bicyclo[3.3.1]nonane derivatives 

involves a sequential process rather than a domino annulation, an excellent recent example 

being the alkylation of a disubstituted 1,3-dimethoxybenzene with an enantiomerically pure 

epibromohydrin followed by Lewis-acid ring opening of the epoxide, effecting an 

enantioselective desymmetrisation.[9] Subsequent oxidation enabled the Shair group to 

complete the synthesis of a type A PPAP natural product, (+)-hyperforin.[9] This approach 

established the utility of derivatives of dihydroresorcinols as key precursors of 

bicyclo[3.3.1]octane derivatives, with the possibility of later oxidation should a 

phloroglucinol-derived bicyclo[3.3.1]octane be required. 

    Seeking to develop a domino annulation, we had regard to the putative biosynthesis of 

hyperforin [7,10] and related natural products involving the annulation of a substituted 

phloroglucinol (Scheme 1, eq. I) by alkylative dearomatisation with a prenyl unit, then a 

second electrophilic attack completing the annulation. Although to the best of our knowledge a 

biomimetic synthesis involving both steps is not known, a biomimetic cationic cyclisation (the 

second step) induced by formic acid afforded a bicyclo system that was converted into (-)-

clusianone.[11] Regarding domino alkylation-conjugate addition sequences, Porco and 

coworkers used annulating dielectrophiles comprising various allylic alcohol and 2-alkenal 

derivatives that contain a leaving group at the 2-position;[12] bicyclo[3.3.1]nonane derivatives 

of the PPAP type can be obtained, stereocontrol often being possible at the central carbon atom 
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of the annulating unit. Porco also achieved domino conjugate addition-alkylation sequences that 

proceed through a bicyclo[3.3.1]nonane scaffold but which result in adamantanone derivatives.[13] 

Additionally, the Porco group has developed powerful palladium-catalysed alkylative 

dearomatisation-annulation domino reactions of 2-acylphloroglucinol derivatives with bis-

Boc-protected methylenepropane-1,3-diol.[14] A related palladium-catalysed Tsuji-Trost 

approach had already been demonstrated, as in the reaction of a dihydroresorcinol derivative 

with the dicarbonate of methylenepropane-1,3-diol (Scheme 1, eq. II).[15] Lastly, a succinct 

domino approach to the synthesis of substituted bicyclo[3.3.1]nonanes involves annulation by 

diacylation of a substituted cyclohexanone using malonyl chloride,[16-18] the Effenberger 

cyclisation (Scheme 1, eq. III). However, the reaction usually proceeds in modest yield and is 

largely limited to 2-unsubstituted malonyl derivatives and to the annulation of a six-membered 

ring.   
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Scheme 1. Biosynthesis of PPAPs, and selected domino annulation strategies for bicyclo 

systems. 

     Given the emerging potential of bicyclo scaffolds in medicinal chemistry,[1,2,5] and the 

limitations of current domino annulations that afford bicyclo systems, a succinct synthetic 

method was sought for that could generate the maximum number of stereocentres with 

stereocontrol, with flexibility both in the incorporation of substituents and in the size of the 

ring undergoing annulation. Having regard to the above criteria of diversity, and inspired by 

the biosynthetic annulation of phloroglucinol derivatives, we examined the feasibility of 

domino Michael-aldol annulations of 2-substituted cyclohexane-1,3-diones with enals, a one-

pot process that can create stereocentres at any of the three carbon atoms in the annulating unit 
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(Scheme 1, eq. IV). Here we report the efficacy of this domino annulation, examine its scope, 

and show that it can afford highly substituted bicyclo[3.2.1]octanes or bicyclo[3.3.1]nonanes, 

depending on the size of the cycloalkanedione used. 

Results and Discussion 

Michael-Aldol annulations have furnished polysubstituted cyclohexanone derivatives, in some 

cases with high enantioselectivity.[19] However, with few exceptions,[20] a cyclohexanone 

ring lacking an electron-withdrawing group at the α-position has seldom been shown to react 

with an enone or enal to give a bicyclo ketol. Bicyclo formation has mainly been achieved by 

reacting α-alkoxycarbonyl- or α-acyl-cycloalkanones with either aldehydes[21-23] or 

ketones.[24] One example of an acid-catalysed annulation of a substituted  2-

acylcyclohexanone was described by Nicolaou,[21] and afforded a 2:1 mixture of 

diastereoisomers of ketol 1 (Scheme 2, eq. V). The relative configurations were not assigned 

but are presumably as in Scheme 2, given that oxidation afforded the corresponding trione in 

81% yield, the 3-methyl group being assigned as exo to the bridgehead carbonyl group. 

Michael-aldol annulation of β-keto esters has been achieved using N-heterocyclic carbene 

catalysts, but not usually with stereocontrol (e.g. ketol 2 in eq. VI, Scheme 2).[22] Initial 

formation of the enamine enables the reverse mode of annulation to be achieved, but again with 

little diastereoselection (e.g. ketol 3 in eq. VII, Scheme 2).[23] The corresponding reaction with 

methacrolein proceeded with significant stereocontrol (48% of the 6-endo-hydroxy-7-exo-

methyl bicyclo ketol) but was conducted over 9 days.[23]   
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Scheme 2. Michael-aldol annulations giving bicyclo ketols. 
 

    Given the limitations in scope and/or stereocontrol using α-alkoxycarbonyl- or α-acyl-

cycloalkanones in such annulation reactions, investigation of cycloalkane-1,3-diones appeared 

to be a potentially useful alternative to the construction of functionalised bicyclo[3.n.1]alkane 

scaffolds. However, to the best of our knowledge, the only such annulations involving a 

cyclohexane-1,3-dione derivative were reported by Dauben, in which enones were reacted at 

very high pressure to give ketols (Scheme 2, eq. VII).[24] Accordingly, a pilot study of the 
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reaction of 2-methylcyclohexane-1,3-dione (4) with acrolein was made (Table 1). Given the 

literature precedents for the use of secondary and tertiary organic bases (e.g. eq. VI and VII, 

Scheme 2), including piperidine,[25] a selection of bases was first studied (Table 1, entries 1-

9). No reaction was observed using NaOMe or pyrrolidine (entries 1 and 2) whereas 

triethylamine, DIPEA, imidazole or pyridine afforded exclusively the Michael adduct 5 in 62-

83% yield (Table 1, entries 3-6). In contrast to pyridine, DMAP provided the desired 6-

hydroxybicyclo[3.3.1]nonane-2,9-diones 6 in excellent yield and appreciable 

diastereoselectivity (entry 7). The strong base DBU provided a 1:1 mixture of the Michael 

adduct 5 and the bicyclo ketols 6 (1:1 carbinol epimers, entry 8), whereas the weaker base 1,4-

diazabicyclo[2.2.2]octane (DABCO) gave complete conversion into the bicyclo ketols 6 (1:1 

carbinol epimers, entry 9). Although 10 mol% DABCO afforded a mixture of products 5 and 6 

(entry 10), 20 mol% DABCO provided exclusively the bicyclo products 6 (100% conversion, 

65% isolated yield of 1:1 epimers, entry 11). Under the same conditions, other solvents, 

including more polar solvents, did not improve the yield of bicyclo compounds 6 (entries 12-

15). However, at 95 °C for 16 h DABCO (20 mol%) achieved complete conversion into ketols 

6 (66:34 epimeric ratio, entry 16). Under the same conditions but heating for longer (48 h) 

quantitative conversion into a 90:10 ratio of epimers was achieved (entry 17); optimisation of 

the d.r. (entries 16-18) showed that DABCO (1 equiv.) enabled full conversion solely to the 

exo-ketol 6 (entry 18). Given the literature precedent for bicyclo compound formation using 

acidic reagents,[18] the use of p-TsOH, TFA, and TfOH were examined but were found to be 

ineffective (entries 20, 21 and 23), except for 20% TFA in MeCN at 95 °C which afforded 36% 

of the ketol 6 (entry 22). Having demonstrated the benefit of heat to the selectivity of the 

reaction, neutral conditions were then examined; only the exo-ketol 6 was detected, with good 

to quantitative conversion (entries 24 and 25). 
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Table 1. Optimisation of bicycloketols from methylcyclohexane-1,3-dione (4) and acrolein.a,b 

Entry Base/Acid Solvent T (°C) Time (h) 5 (%)  Exo-6: Endo-6 (%) 

1         NaOMe MeOH 25 16         -              - 

2 Pyrrolidine (1 eq.) MeCN 25 16         -              - 

3 Et3N (1 eq.) MeCN 25 16       62              - 

4 (i-Pr)2NEt (1 eq.) MeCN 25 16       62              - 

5 Imidazole (1 eq.) MeCN 25 16       83              - 

6 Pyridine (1 eq.) MeCN 25 32       83              - 

7 DMAP (1 eq.) MeCN 25 16    traces 70:30 (95) 

8       DBU (1 eq.) MeCN 25 32       50 50:50 (50) 

9   DABCO (1 eq.) MeCN 25 16        -   50:50 (100) 
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10   DABCO (0.1 eq.)  MeCN 25 16       50          50:50 (50) 

11   DABCO (0.2 eq.)  MeCN 25 16        -          50:50 (100) 

12   DABCO (0.2 eq.)  EtOH 25 16       62           traces 

13   DABCO (0.2 eq.)  DMF 25 16       95             - 

14   DABCO (0.2 eq.)  DMSO 25 16       50 50:50 (50) 

15   DABCO (0.2 eq.)   THF 25 16         7 68:32 (93) 

16   DABCO (0.2 eq.)  MeCN 95 16        -   66:34 (100) 

17   DABCO (0.2 eq.)  MeCN 95 48        -   90:10 (100) 

18   DABCO (1 eq.)  MeCN 95 48        -        100:0 (100) 

19   DABCO (0.2 eq.)  PhMe      115 16         7          86:14 (93) 

20 p-TsOH CH2Cl2
 25 16       62             - 

21 TFA MeCN 25 16       80             - 

22 TFA MeCN 95 16        -        100:0 (36) 

23 TfOH CH2Cl2
 -78 to 25 16        -             - 

24 - MeCN 95 72        -        100:0 (70) 

25 - DMF      135 24        -        100:0 (100) 

a Percentage of conversion was determined from the 1H NMR spectra of the crude products.  
b Diastereoisomeric ratios (d.r.) were determined from integration values in the 1H NMR spectra of  
  the products after work-up.  
 

     Although DMF at 130 °C was optimal for ketols 6 and 13 (Table 2, entries 1 and 8) in 

terms of yield and 6-exo-diastereoselectivity, DMF was found to be unsatisfactory for enals 

other than acrolein. All reactions were initially run using 20 mol% of (DABCO) but under 

those conditions only bicyclo ketols 7 and 10 were obtained in satisfactory yields and 

diastereoselectivity (Table 2, entries 2 and 5). In all other cases, DABCO (1 equiv.) in MeCN 

gave the best yields and diastereoselectivities, and most reactions were complete within 16 h. 

For bicyclo[3.3.1]nonane-6-hydroxy-2,9-diones lacking substitution at the 7- and 8-positions 

the exo-ketols were obtained, either predominantly (entries 2 and 4) or exclusively (entries 1 

and 3); that preference was also observed in the bicyclo[3.2.1]octane series (entry 8). In 

contrast, the 6-endo-ketols predominated in bicyclo compounds that contained an equatorial 

substituent on the carbon atom (in the bridging unit) adjacent to the alcohol (entry 5) or on the 

carbon atom remote from the alcohol (entries 9, 11 and 12). However, where a 2-prenyl group 

was present and also either a 7-or 8-substituent, the exo-ketols predominated (entries 6 and 7).  
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Table 2. Annulation of substituted cyclohexane-1,3-diones to give bicyclo ketols.a,b 
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    a Reactions performed in the presence of DABCO (0.2 equiv or 1.0 equiv.) at 95 °C. b Endo and exo 
  refer to the orientation of the hydroxy group. c Reaction with acrolein. d  Reaction performed in DMF 
  at 135 °C.  e Sequential: the unpurified Michael adduct was isolated and then cyclised. f  Reaction with 
  methacrolein. g  Reaction with crotonaldehyde. h 13% of an additional isomer was detected by 1H NMR 
  spectroscopy. i Reaction with cinnamaldehyde. j >95% conversion by 1H NMR spectroscopy; low 
  isolated yield attributed to partial decomposition of 16 and 17 during purification. 
 

     Assignment of the 6-exo-ketols 6 was indicated by the presence of small coupling constants 

(<5 Hz) for the 6-CH(OH) hydrogen atom, in contrast to that the 6-endo-ketols (e.g. trans-

diaxial J5,6 = 11.5 Hz for endo-6, and 10.5 Hz for endo-10). The isolation of endo-ketol 10, 

together with its different NMR data from the exo-ketol 10 (isolated in 6% yield from a 

reaction in DMF at 95 °C) confirmed the assignments in entry 5 to be a mixture of exo- and 

endo-diastereoisomers, and excluded the possibility of equilibrating conformers as an 

explanation of the results. The situation is similar for the various optimisation runs in Table 2  

which can only be explained by increasing predominance of exo-ketol 6 at higher temperatures 

and/or longer reaction times. The NMR data for all the bicyclo ketols comprise a pattern of 

chemical shifts and coupling constants consistent with the structural assignments given in Table 

2. Additional support for the structures assigned by NMR spectroscopy is found in the X-ray 

crystal structure of the 3,5-dinitrobenzoyl derivative of exo-ketol 6 which shows that the C-O 

bond in the 6-CH(OH) moiety is axial; the relatively small couplings of 5.2 Hz and 1.6 Hz for 
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the equatorial CH-OCOAr hydrogen atom in this ester parallel the small coupling constants 

observed for exo- versus endo-epimers. 

 
Figure 2. X-ray structure (ORTEP) of the 3,5-dinitrobenzoate ester of exo-ketol 6.[23] 

      The annulation methodology was also found to be effective using gem-dimethyl-substituted 

cyclohexane-1,3-diones (Table 2, entries 3 and 4). In the case of 2,4,4-trimethylcyclohexane-

1,3-dione, reaction with methacrolein and crotonaldehyde afforded the bicyclo ketols 18 (65%) 

and 19 (49%) respectively (Scheme 3); simplification of the mixtures of diastereoisomers 18 

and 19 was achieved by oxidation with pyridinium chlorochromate (PCC), giving the triketones 

20 and 21 respectively. Similarly, oxidation of ketols 6, 9, 10, with PCC afforded the respective 

triketones 22-24 (Scheme 3).  
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Scheme 3. Bicyclo[3.3.1]nonane-2,6,9-triones prepared by the oxidation of ketols with 
                  pyridinium chlorochromate.  
 

      Molecular models of the gem-dimethyl-substituted trione 20 indicated that the usual chair-

chair conformation adopted by most bicyclo[3.3.1]nonanes would suffer severe non-bonding 

interactions. That inference of an alternative conformation was confirmed by a single-crystal 

X-ray determination of the trione 20 which established the unusual boat-chair conformation 
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(Fig. 3a). Compared to an sp3 carbon atom, the bridgehead carbonyl group is more able to 

accommodate a boat structure, and without significant flagpole interactions, for the ring 

containing the gem-dimethyl group.  

a) b)

 
Figure 3. (a) X-ray structure of the trione 20 [26] and (b) lowest energy conformer obtained by 

OPLS3-GB/SA conformational search. 

 

     OPLS3-GB/SA conformational energy searches (Table 3)[27] and quantum mechanics 

calculations (Tables S1-S3, Supplementary Information) support a boat-chair conformation for 

the trione 20. In addition, conformational searches on the other bicyclo compounds 21, 22, exo-

9 and endo-9 that possess the same location of gem-dimethyl-substitution as in 20 all identified 

the boat-chair conformation as the lowest in energy (Table 3). Other less favourable chair-boat, 

twistboat-twistboat and boat-boat conformers could be detected but never the usual chair-chair 

conformation. The presence of a gem-dimethyl group excludes the chair-chair conformation 

from being adopted owing to the severe non-bonding interactions of the axial methyl group 

with the 7-methylene unit that would arise. In contrast, where such a non-bonding interaction is 

absent, as is the case for triones 23 and 24, the usual chair-chair conformation for saturated, 

substituted bicyclo[3.3.1]nonanes is preferred. 

 

Table 3. Relative conformational energies (kJmol-1)a of C3-gem-dimethyl-bicyclo 

compounds in water calculated using OPLS3-GB/SA.[27] 

Compound  7-exo-20  8-endo-21        22 exo-9 endo-9 

Boat-chair b        0         0  0  0         0  

Chair-boat      16.2        - c 10.0 28.4      35.6 

Twistboat-twistboat       23.9      27.7       19.2 33.1      34.2 

Boat-boat      27.4        - c 21.0         - c         - c 

Twistboat-twistboat 2        - c        - c - c         - c      41.3 
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Chair-chair        - c        - c - c         - c        - c 
 a Energies quoted are relative to the boat-chair conformation. b The first-named conformer refers  
  to the ring containing the gem-dimethyl group. c Not found during the conformational search.   
 

 

     Trends in the mode of cyclisation are apparent. For the bicyclo[3.3.1]nonane-2,9-diones, the 

exo-ketol 6 is generally preferred over the endo-ketol. However, the preference for the exo-

ketol can be overcome by substitution in some locations on the framework, especially for the 

bicyclo[3.2.1]octane-6,8-diones, as shown in Table 2. Regarding the effect of substitution on 

the aldehydic chain, an α-methyl group derived from methacrolein adopts the equatorial 

position prior to cyclisation, leading to a significant preference for the endo-alcohol, as seen by 

comparing entry 1 with entry 5 (Table 2), and entry 8 with entry 9. An α-substituent disfavours 

the formation of the exo-ketol because of three significant and adjacent developing synclinal 

interactions, compared with only two synclinal interactions for the endo-ketol (Scheme 4). 

However, a β-methyl or β-phenyl group (entries 7 and 10-12) exerts a much weaker effect than 

an α-methyl substituent, although both diminish the strong preference for the exo-isomer that is 

observed in cases where no α- or β-substituent is present (Table 2, entries 1, 2 and 8).  
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Scheme 4. Modes of cyclisation in the domino Michael-aldol annulation. 

      Substituents both on the cycloalkane-1,3-dione ring and on the enal can have a profound 

effect on the conformation on the Michael adduct, and hence on its mode of cyclisation. Thus, 

only exo-ketol 8 (Table 2, entry 3) was detected, the developing 1,3-diaxial interaction of the 

C=O group with the equatorial methyl group preventing the endo-mode of cyclisation (Scheme 

4). In contrast, the location of the gem-dimethyl substituents in entry 4 excludes a chair-chair 

conformation; consequently, the dione ring adopts a boat conformation, which having smaller 

non-bonding interactions with the aldehydic carbonyl group leads to a significant amount of the 

endo-isomer, the preference for the exo-isomer (as shown for 6 and 8) being eroded. The 

generally lower selectivities for the cyclopentane-1,3-dione series compared to the 

cyclohexane-1,3-dione series are also consistent with the flatter and less encumbering 

cyclopentane-1.3-dione ring that leads to the development of smaller non-bonding interactions 

during cyclisation.  

     The formation and conformations of the bicyclo ketols herein studied have implications for 

the potential of bicyclo compounds in medicinal chemistry. The domino Michael-aldol 
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annulation has been shown to be effective with substituents at many locations of the bicyclo 

framework. Varying degrees of control of the configuration of the hydroxy group in the ketols 

have been achieved through optimisation of reaction conditions or through the conformational 

effects exerted by substituents. The bicyclo compounds derived from cycloalkane-1,3-diones 

often possess well-defined configurations and conformations that can contain multiple 

substituents with specific directionality that overall achieves a wide coverage of chemical space 

for a relatively compact structure. Additionally, these non-aromatic alicyclic scaffolds satisfy 

two important criteria for drug-likeness: high levels of saturation and suitable logP values.[5] 

 

Conclusions 

The present study has demonstrated the considerable scope of the domino Michael-aldol 

annulation in obtaining access to 6-hydroxybicyclo[3.3.1]nonane-2,9-diones and 2-

hydroxybicyclo[3.2.1]octane-6,8-diones from cycloalkane-1,3-diones and enals, notably in one-

pot procedures under convenient conditions. In some cases, the relative configuration of the 

annulation product can be controlled by the appropriate choice of solvent, base and 

temperature. This study has shown that the annulation is compatible with one or more 

substituents at six positions of the bicyclo[3.3.1]nonane-2,9-dione scaffold. The bicyclo 

compounds provide structural diversity suitable for use in medicinal chemistry programmes 

and with potential for use as precursors in natural product synthesis. Oxidation of the 

annulation products was achieved to give a variety of stable bicyclo triones. 

 

Experimental Section 

General. All moisture-sensitive reactions were performed under an atmosphere of argon and 

using glassware pre-dried in an oven (100 °C). Thin-layer chromatography was performed on 

Merck 0.2 mm aluminium-backed silica gel 60 F254 plates and visualised by UV (254 nm) or by 

staining with potassium permanganate with subsequent heating. Flash column chromatography 

was performed using Merck 0.040-0.063 mm, 230-400 mesh silica gel. Evaporation refers to 

the removal of solvent under reduced pressure. Melting points were determined using a Büchi 

B-540 apparatus. Infrared (IR) spectra were recorded on a Perkin−Elmer Spectrum One FT-IR 

spectrometer; absorptions are quoted in wavenumbers. 1H and 13C NMR spectra were recorded 

on a Bruker DRX-400 (400 MHz) spectrometer and calibrated using residual undeuterated 

solvent as an internal reference; chemical shifts are in parts per million (δ) and coupling 

constants (J) are given in Hertz (Hz). The following abbreviations were used in signal 

assignments: singlet (s), broad singlet (br s), doublet (d), triplet (t), quartet (q), and multiplet 

(m). Equivocal assignments are denoted by an asterisk. High-resolution mass spectra (HRMS) 

were obtained using either an Agilent ESI TOF (time of flight) mass spectrometer at 3500 V 

emitter voltage, or using a VG7070H mass spectrometer with Finigan Incos II data system at 

University College London.  
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The following compounds were prepared according to the literature: 2-(3-methylbut-2-en-1-

yl)cyclohexane-1,3-dione;28 2,5,5-trimethyl-1,3-cyclohexanedione.29 

2,4,4-Trimethylcyclohexane-1,3-dione. To a solution of 4,4-dimethyl-1,3-cyclohexanedione 

(5.0 g, 35.6 mmol) in aqueous sodium hydroxide (3M, 12.5 mL) at 0 °C was added 

iodomethane (4.43 mL, 71.3 mmol), dropwise over 30 min. The ice-bath was then removed 

and the mixture heated at 100 °C for 24 h. After cooling, the mixture was extracted with 

dichloromethane (3 x 30 mL), and the combined organic layers washed with water (2 x 20 

mL) dried over MgSO4, filtered and evaporated. Flash column chromatography (silica gel, 

3:7, ethyl acetate; petroleum ether) of the residue gave 2,4,4-trimethylcyclohexane-1,3-dione 

(2.84 g, 52%) as a white solid, stable for several weeks when stored at -20 °C; IR (film): 

3005, 2988, 1711, 1458 cm-1; 1H NMR (400 MHz, CD3OD) δ 2.48 (2H, t, J = 6.5 Hz, 

COCH2), 1.79 (2H, t, J = 6.5 Hz, C(CH3)2CH2), 1.63 (3H, s, 2-CH3), 1.08 (6H, s, C(CH3)2); 
13C NMR (100 MHz, CD3OD) δ 110.0, 40.1, 35.8, 28.0, 25.4, 7.7; HRMS (ESI-TOF) [M+H]+ 

C9H15O2 calcd. 155.1067, found 155.1065. 

6-exo-Hydroxy-1-methylbicyclo[3.3.1]nonane-2,9-dione (6). To a stirred solution of 2-

methyl-1,3-cyclohexanedione (100 mg, 0.79 mmol) in dimethylformamide (4 mL) was added 

acrolein (67 mg, 81 μL, 1.18 mmol) at 25 °C. The solution was then heated at 130 °C for 24 

h. After allowing the mixture to cool the solvent was evaporated. The residue was washed 

with chloroform (2 x 3 mL) to give exo-ketol 6 (142 mg, 97%) as an oil; IR (film): 3405, 

2936, 1727, 1697, 1454 cm-1; 1H NMR (400 MHz, CDCl3) δ 4.35 (1H, dt, J = 3.1, 2.6 Hz, 6-

CH), 2.93 (1H, dm, J = 9.7 Hz, 5-CH), 2.60 (1H, m, 3-CHeq), 2.32 (1H, dt, J = 16.5, 9.5 Hz, 

3-CHax), 2.22-2.14 (1H, m, 4-CHeq), 2.14-2.06 (2H, m, 8-CH2), 1.84 (1H, m, 7-CHeq), 1.74-

1.67 (2H, m, 4-CHax and 7-CHax), 1.15 (3H, s, CH3); 13C NMR (100 MHz, CDCl3) δ 211.9 

(9-CO), 211.5 (2-CO), 77.0 (6-CH), 63.2 (1-C), 52.2 (5-CH), 38.2 (3-CH2), 37.4 (8-CH2), 

26.4 (7-CH2), 18.9 (4-CH2), 16.7 (CH3); HRMS (ESI-TOF) [M+H]+ C10H15O3 calcd. 183.1016, 

found 183.1018. 

6-endo-Hydroxy-1-methylbicyclo[3.3.1]nonane-2,9-dione (6). From the above reaction 

conducted in the presence of DABCO (0.2 equiv) in acetonitrile at 20 °C was obtained a 1:1 

mixture of epimers at position-6. For endo-ketol 6: 1H NMR (400 MHz, CDCl3) δ 4.10 (1H, 

dt, J = 11.5, 5.0 Hz, 6-CH), 3.10 (1H, m, 5-CH), 2.50-2.45 (2H, m, 3-CH2), 2.29-2.14 (4H, m, 

4-CHeq, 7-CHeq and 8-CH2), 1.65-1.56 (1H, m, 4-CHax), 1.47-1.38 (1H, m, 7-CHax), 1.14 

(3H, s, CH3); 13C NMR (100 MHz, CDCl3) δ 210.2 (9-CO), 209.3 (2-CO), 73.2 (6-CH), 61.8 

(1-C), 52.5 (5-CH), 38.8 (3-CH2), 35.6 (8-CH2), 27.8 (7-CH2), 16.3 (4-CH2), 15.0 (CH3). 

exo-5-Methyl-6,9-dioxobicyclo[3.3.1]nonan-2-yl 3,5-dinitrobenzoate. To a solution of 6-

hydroxy-1-methylbicyclo[3.3.1]nonane-2,9-dione (6) (170 mg, 0.93 mmol) in dry 
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dichloromethane were added triethylamine (2.79 mmol, 282 mg, 400 μL) and 3,5-

dinitrobenzoyl chloride (1.02 mmol, 235 mg) at 25 °C. The mixture was then stirred at 25 °C 

for 16 h. Water (20 mL) was then added, and the mixture extracted with dichloromethane (4 x 

20 mL). The combined organic layers were washed with water (3 x 10 mL), dried over 

MgSO4, filtered and evaporated. Flash column chromatography (silica gel, 8:2 

dichloromethane: ethyl acetate) of the residue gave exo-5-methyl-6,9-

dioxobicyclo[3.3.1]nonan-2-yl 3,5-dinitrobenzoate (30 mg, 8%) IR (film): 2936, 1731, 

1704, 1629, 1545, 1050 cm-1; 1H NMR (400 MHz, CDCl3) δ 9.24 (1H, t, J = 2.1 Hz, 4-aryl), 

9.05 (2H, d, J = 2.1 Hz, 2,6-aryl), 5.62 (1H, m, 2-CH), 3.21 (1H, m, 1-CH), 2.69 (1H, ddd, J 

= 16.5, 7.5, 4.5 Hz, 7-CHeq), 2.47 (1H, dt, J = 16.5, 9.5 Hz, 7-CHax), 2.39-2.27 (2H, m, 3-

CHeq and 8-CHeq), 2.15-2.02 (3H, m, 3-CHax and 4-CH2), 1.86 (1H, m, 8-CHax), 1.26 (3H, 

s, CH3); 13C NMR (100 MHz, CDCl3) δ 210.8 (9-CO), 209.4 (6-CO), 161.6 (COOAr), 148.9 

(3,5-aryl), 133.6 (1-aryl), 129.5 (2-aryl), 122.9 (4-aryl), 81.1 (2-CH), 63.2 (5-C), 48.4 (1-CH), 

38.1 (7-CH2),* 37.7 (4-CH2),* 24.4 (3-CH2), 18.9 (8-CH2), 16.8 (5-CCH3); m/z (EI+, %) 395 

(20), 394 (M+, 100), 364 (17); HRMS [M+H]+ C17H17N2O8 calcd. 377.0979, found 377.0981. 

6-Hydroxy-1-(3-methylbut-2-en-1-yl)bicyclo[3.3.1]nonane-2,9-dione (7). To a solution of 

2-(3-methylbut-2-en-1-yl)cyclohexane-1,3-dione (200 mg, 1.1 mmol) in dry acetonitrile (12 

mL) were added acrolein (92 mg, 111 μL, 1.65 mmol) and DABCO (0.22 mmol, 24 mg) at 25 

°C. The solution was then heated at 95 °C for 48 h. After allowing to cool, water (20 mL) was 

added, and the mixture extracted with dichloromethane (4 x 20 mL). The combined organic 

layers were dried over MgSO4, filtered and evaporated to give 7 (200 mg, 80%) as a 90:10 

mixture of exo-7: endo-7. IR (film): 3416, 2917, 1701, 1450 cm-1; exo-7: 1H NMR (600 MHz, 

CDCl3) δ 5.05 (1H, tsept., J = 5.0, 1.0 Hz, 1-CCH2CH=), 4.34 (1H, m, 6-CH), 2.92 (1H, dm, 

J = 6.8 Hz, 5-CH), 2.57 (1H, m, 3-CHeq), 2.40-2.30 (2H, m, 1-CCH2), 2.25-2.05 (5H, m, 3-

CHax, 4-CH2, 8-CH2), 1.80 (1H, m, 7-CHeq), 1.70 (1H, m, 7-CHax), 1.61 (3H, s, 

=C(CH3)CH3), 1.59 (3H, s, =C(CH3)CH3); 13C NMR (100 MHz, CDCl3) δ 212.0 (9-CO), 

212.3 (2-CO), 134.7 (1-CCH2CH=C), 118.7 (1-CCH2CH=), 77.2 (6-CH), 66.5 (1-C), 52.5 (5-

CH), 40.4 (3-CH2), 36.3 (8-CH2), 31.0 (1-CCH2), 26.1 (7-CH2), 25.8 (1-C-cis-CH3), 18.8 (4-

CH2), 17.9 1-C-trans-CH3); endo-7: 1H NMR (400 MHz, CDCl3) δ 5.05 (1H, m, 1-

CCH2CH=), 4.06 (1H, dt, J = 11.5, 4.9 Hz, 6-CH), 3.11 (1H, m, 5-CH), 2.55 (1H, m, 3-

CHeq), 2.40-2.30 (2H, m, 1-CCH2), 2.26-2.15 (3H, m, 3-CHax,  4-CH2), 2.11-2.05 (2H, m, 8-

CH2), 1.80 (1H, m, 7-CHeq), 1.70 (1H, m, 7-CHax), 1.58 (6H, m, =C(CH3)CH3); 13C NMR 

(150 MHz, CDCl3) δ 212.3 (9-CO), 210.3 (2-CO), 135.0 (1-CCH2CH=C), 118.6 (1-

CCH2CH=), 73.7 (6-CH), 65.2 (1-C), 52.8 (5-CH), 40.6 (3-CH2), 34.2 (8-CH2), 30.6 (1-

CCH2), 27.2 (7-CH2), 26.1 (1-C-cis-CH3), 18.8 (4-CH2), 14.6 (1-C-trans-CH3). HRMS (ESI-

TOF) [M+H]+ C14H21O3 calcd. 237.1485, found 237.1481. 
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6-exo-Hydroxy-1,4,4-trimethylbicyclo[3.3.1]nonane-2,9-dione (8). To a stirred solution of 

2,5,5-trimethyl-1,3-cyclohexanedione (1.0 g, 6.5 mmol) in dry acetonitrile (25 mL) were 

added acrolein (0.65 mL, 9.72 mmol) and DABCO (145 mg, 1.3 mmol) at 25 °C. The mixture 

was heated at 95 °C for 4 h. After allowing to cool, the residue was dissolved in dry DMF (20 

mL) and the mixture heated at 135 °C for 24 h. After allowing to cool, the solvent was 

evaporated and the residue was washed with chloroform (2 x 5 mL) to give ketol 8 (0.90 g, 

66% over 2 steps, single diastereoisomer) as an oil: IR (film): 3455, 2958, 1728, 1694 cm-1; 
1H NMR (400 MHz, CDCl3) δ 4.65 (1H, m, 6-CH), 2.72 (1H, d, J = 18.0 Hz, 3-CHeq), 2.49 

(1H, m, 5-CH), 2.45 (1H, dd, J = 18.0 Hz, 3-CHax), 2.26-2.09 (2H, m, 7-CHeq and 8-CHeq), 

2.00-1.82 (2H, m, 7-CHeq and 8-CHeq), 1.22 (3H, s, 4-C(CH3)CH3), 1.17 (3H, s, 1-CCH3), 

0.91 (3H, s, 4-C(CH3)CH3); 13C NMR (100 MHz, CDCl3) δ 210.5 (9-CO) 209.2 (2-CO), 73.4 

(6-CH), 65.3 (5-CH), 64.3 (1-C), 52.6 (3-CH2), 37.5 (8-CH2), 31.6 (4-C), 31.1 (4-CCH3eq), 

28.1 (7-CH2), 27.4 (4-CCH3ax), 16.2 (1-CCH3). HRMS (ESI-TOF) [M+H]+ C12H19O3 calcd. 

211.1329, found 211.1338. 

6-Hydroxy-1,3,3-trimethylbicyclo[3.3.1]nonane-2,9-dione (9). To a solution of 2,4,4-

trimethylcyclohexane-1,3-dione (200 mg, 1.28 mmol) in dry acetonitrile (12 mL) were added 

acrolein (106 mg, 128 μL, 1.98 mmol) and DABCO (144 mg, 1.28 mmol) at 25 °C. The 

solution was heated at 95 °C for 16 h. After allowing to cool, water (20 mL) was added. The 

mixture was extracted with dichloromethane (3 x 20 mL) and the combined organic layers 

washed three times with water, dried over MgSO4, filtered and evaporated to give ketol 9 

(264 mg, 98%), as a 65:35 mixture of exo-9: endo-9, IR (film): 3417, 2936, 1729, 1697, 1469 

cm-1. Column chromatography (silica gel, 4:6 ethyl acetate: dichloromethane) afforded exo-9: 
1H NMR (400 MHz, CDCl3) δ 4.26 (1H, dq, J = 4.5, 2.4 Hz, 6-CH), 2.95 (1H, m, 5-CH), 2.20 

(1H, m, 8-CHeq), 2.12-2.00 (2H, m, 4-CHeq and 8-CHax), 1.70-1.65 (2H, m, 7-CH2), 1.48 

(1H, dm, J = 14.4 Hz, 4-CHax), 1.19 (3H, s, 1-CCH3),* 1.15 (3H, s, 3-C(CH3)CH3),* 0.97 

(3H, s, 3-C(CH3)CH3); 13C NMR (100 MHz, CDCl3) δ 216.2 (2-CO), 213.7 (9-CO), 78.1 (6-

CH), 60.4 (1-C), 51.9 (5-CH), 45.8 (3-C), 39.4 (8-CH2), 35.5 (4-CH2), 26.1 (3-CCH3eq), 25.6 

(7-CH2), 24.6 (3-CCH3ax), 18.7 (1-CCH3) and endo-9: 1H NMR (400 MHz, CDCl3) δ 4.02 

(1H, dt, J = 11.0, 4.5 Hz, 6-CH), 3.15 (1H, m, 5-CH), 2.17 (1H, dm, 8-CHeq), 2.05 (1H, dd = 

J 14.7, 2.0 Hz, 4-CHeq), 1.80–1.70 (2H, m, 4-CHax and 7-CHeq), 1.41–1.26 (2H, m, 7-CHax 

and 8-CHax), 1.22 (3H, 1-CCH3),* 1.20 (3H, 3-C(CH3)CH3),* 0.97 (3H, s, 3-C(CH3)CH3); 
13C NMR (100 MHz, CDCl3) δ 216.1 (2-CO), 211.9 (9-CO), 74.3 (6-CH), 58.9 (1-C), 52.5 (5-

CH), 45.7 (3-C), 37.0 (8-CH2), 30.9 (4-CH2), 27.1 (7-CH2), 26.0 (3-CCH3eq), 24.1 (3-

CCH3ax), 18.3 (1-CCH3). HRMS (ESI-TOF) [M+H]+ C12H19O3 calcd. 211.1329, found 

211.1333. 

6-Hydroxy-1,7-dimethylbicyclo[3.3.1]nonane-2,9-dione (10). To a solution of 2-methyl-

1,3-cyclohexanedione (100 mg, 0.79 mmol) in acetonitrile (6 mL) were added methacrolein 
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(84 mg, 98 μL, 1.19 mmol) and DABCO (18 mg, 0.16 mmol) at 25 °C. The solution was 

heated at 95 °C for 16 h. After allowing to cool, water (5 mL) was added and the mixture 

extracted with dichloromethane (3 x 10 mL). The combined organic layers were dried over 

MgSO4, filtered and evaporated to give ketol 10 (150 mg, 96%) as an 80:20 mixture of endo-

10: exo-10: IR (film): 3455, 2936, 1728, 1697 cm-1. Column chromatography (silica gel, 

40:60 ethyl acetate:dichloromethane) gave endo-10: 1H NMR (400 MHz,  CDCl3) δ 3.62 (1H, 

dd, J = 10.5, 4.8 Hz, 6-CH), 3.08 (1H, ddd, J = 8.9, 4.8, 2.1 Hz, 5-CH), 2.64 (1H, m, 3-

CHeq), 2.37 (1H, m, 3-CHax), 2.24 (1H, m, 4-CHeq), 2.12-2.00 (2H, m, 7-CH and 8-CHeq), 

1.92 (1H, m, 8-CHax), 1.77 (1H, m, 4-CHax), 1.13 (3H, s, 1-CCH3), 1.02 (3H, d, J = 6.3 Hz, 

7-CHCH3); 13C NMR (100 MHz, CDCl3) 212.0 (9-CO), 209.9 (2-CO), 78.4 (6-CH), 62.9 (1-

C), 52.0 (5-CH), 44.4 (8-CH2), 38.4 (3-CH2), 32.7 (7-CH), 17.7 (4-CH2), 16.2 (1-CCH3),* 

15.5 (7-CCH3)*; exo-10: 1H NMR (400 MHz, CDCl3) δ 3.96 (1H, m, 6-CH), 2.96 (1H, ddd, J 

= 10.2, 4.2, 2 Hz, 5-CH), 2.62 (1H, ddd, J = 16.2, 7.4, 3.4 Hz, 3-CHeq), 2.34 (1H, m, 3-

CHax), 2.20 (1H, m, 4-CHeq), 2.10 (1H, m, 7-CH), 2.01 (1H, m, 8-CHeq), 1.82 (1H, dd, J = 

12.9, 4.5 Hz, 8-CHax), 1.70 (1H, m, 4-CHax), 1.14 (3H, s, 1-CCH3), 1.00 (3H, d, J = 6.6 Hz, 

7-CHCH3); 13C NMR (100 MHz, CDCl3) δ 212.5 (9-CO), 211.8 (2-CO), 80.4 (6-CH), 62.5 

(1-C), 52.1 (5-CH), 44.5 (8-CH2), 38.4 (3-CH2), 29.9 (7-CH), 18.6 (4-CH2), 16.8 (1-CHCH3), 

16.7 (7-CCH3). HRMS (ESI-TOF) [M+H]+ C11H17O3 calcd. 197.1172, found 197.1170. 

6-Hydroxy-7-methyl-1-(3-methylbut-2-en-1-yl)bicyclo[3.3.1]nonane-2,9-dione (11). To a 

solution of 2-(3-methylbut-2-en-1-yl)cyclohexane-1,3-dione (100 mg, 0.55 mmol.) in dry 

acetonitrile (6 mL) were added methacrolein (57.8 mg, 68 μL, 0.82 mmol) and DABCO (0.55 

mmol, 62 mg) at 25 °C. The solution was heated at 95 °C for 16 h. After allowing to cool, 

water (10 mL) was added and the mixture was extracted with dichloromethane (4 x 10 mL). 

The combined organic layers were dried over MgSO4, filtered and evaporated to give ketol 11 

(118 mg, 86%) as a 70:30 mixture of exo-11: endo-11; IR (film): 3416, 2918, 1700, 1456 cm-

1; exo-11: 1H NMR (600 MHz, CDCl3) δ 5.05 (1H, m, 1-CCH2CH=), 3.98 (1H, m, 6-CH), 

2.92 (1H, m, 5-CH), 2.62-2.51 (1H, m, 3-CH eq), 2.39-2.27 (3H, m, 1-C-CH2 and 3-CHax), 

2.24-2.13 (m, 2H, 4-CH2), 1.98 (1H, m, 7-CH), 1.97-1.74 (2H, m, 8-CH2), 1.61 (3H, s, 1-C-

cis-CH3), 1.58 (3H, s, 1-C-trans-CH3), 0.97 (3H, d, J = 7.0 Hz, 7-CHCH3); 13C NMR (150 

MHz, CDCl3) 212.4 (9-CO), 210.3 (2-CO), 134.8 (1-CCH2CH=C), 118.6 (1-CCH2CH=), 80.6 

(6-CH), 65.8 (1-C), 52.2 (5-CH), 43.3 (8-CH2), 40.5 (3-CH2), 31.0 (1-C-CH2), 29.4 (7-CH), 

26.0 (1-C-cis-CH3), 18.5 (4-CH2), 17.9 (1-C-trans-CH3), 16.6 (7-CHCH3); endo-11: 1H NMR 

(600 MHz, CDCl3) δ 5.05 (1H, m, 1-CCH2CH=), 3.55 (1H, dd, J = 7.0, 4.8 Hz, 6-CH), 3.07 

(1H, ddd, J = 6.52, 3.2, 1.4 Hz, 5-CH), 2.62–2.51 (2H, m, 3-CH2), 2.39-2.27 (2H, m, 1-

CCH2), 2.13–2.06 (2H, m, 4-CH2), 1.98 (1H, m, 7-CH), 1.87-1.74 (2H, m, 8-CH2), 1.65 (3H, 

s, 1-C-cis-CH3), 1.60 (3H, s, 1-C-trans-CH3), 1.00 (3H, d, J = 7.0 Hz, 7-CHCH3); 13C NMR 

(150 MHz, CDCl3) δ 212.7 (9-CO), 212.5 (2-CO), 135.0 (1-CCH2CH=C), 118.5 (1-

CCH2CH=), 78.8 (6-CH), 66.1 (1-C), 52.2 (5-CH), 43.0 (8-CH2), 40.3 (3-CH2), 32.1 (7-CH), 
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30.6 (1-CCH2), 26.0 (1-C-cis-CH3), 17.6 (1-C-trans-CH3), 16.6 (7-CHCH3), 15.1 (4-CH2); 

HRMS (ESI-TOF) [M+H]+ C15H23O3 calcd. 251.1642, found 251.1639. 

 

6-Hydroxy-8-methyl-1-(3-methylbut-2-en-1-yl)bicyclo[3.3.1]nonane-2,9-dione (12). To a 

solution of 2-(3-methylbut-2-en-1-yl)cyclohexane-1,3-dione (100 mg, 0.55 mmol) in dry 

acetonitrile (6 mL) were added crotonaldehyde (57 mg, 68 μL, 0.82 mmol) and DABCO (62 

mg, 0.55 mmol) at 25 °C. The solution was heated at 95 °C for 60 h. After allowing to cool, 

water (10 mL) was added, and the mixture was extracted with dichloromethane (4 x 10 mL). 

The combined organic layers were dried over MgSO4, filtered and evaporated. Column 

chromatography (silica gel, 2:8 ethyl acetate:dichloromethane) of the residue gave ketol 12 

(61 mg, 44%) as 60:40 mixture of exo-12: endo-12; IR (film): 3432, 2971, 2992, 1728, 1697 

cm-1. Repeated column chromatography of a small fraction enabled the exo-isomer to be 

isolated, and hence NMR data for the endo-isomer to be deduced: exo-12; 1H NMR (400 

MHz, CDCl3) δ 5.06 (1H, tsept., J = 7.1, 1.4 Hz, 1-CCH2CH=), 4.27 (1H, dt, J = 3.0, 2.5 Hz, 

6-CH), 2.87 (1H, dm, J = 8.7 Hz, 5-CH), 2.60-2.33 (5H, m, 1-CCH2 , 8-CH and, 3-CH2), 

2.15-2.03 (2H, m, 4-CH2), 1.89-1.74 (2H, m, 7-CH2), 1.64 (6H, s, 1-C-cis-CH3 and 1-C-trans-

CH3), 0.99 (3H, d, J = 6.8 Hz, 8-CHCH3); 13C NMR (100 MHz, CDCl3) δ 210.6 (9-CO), 

209.5 (2-CO), 134.2 (1-CCH2CH=C), 119.4 (1-CCH2CH=), 75.5 (6-CH), 71.7 (1-C), 52.6 (5-

CH), 39.6 (3-CH2), 38.3 (8-CH), 36.3 (7-CH2), 27.1 (1-CCH2), 26.1 (1-C-cis-CH3), 19.7 (4-

CH2), 18.0 (1-C-trans-CH3), 15.8 (8-CHCH3); endo-12: 1H NMR (400 MHz, CDCl3) δ 4.98 

(1H, m, 1-CCH2CH=), 4.10 (1H, dt, J = 11.1, 5.4 Hz, 6-CH), 2.99 (1H, app. t, J = 6.0 Hz, 5-

CH), 2.58-2.43 (5H, m, 1-CCH2, 8-CH and 3-CH2), 2.15-2.03 (2H, m, 4-CH2), 1.83-1.71 

(2H, m, 7-CH2), 1.64 (6H, s, 1-C-cis-CH3 and 1-C-trans-CH3), 0.96 (3H, d, J = 6.8 Hz, 

CHCH3); 13C NMR (100 MHz, CDCl3) 212.6 (9-CO), 211.6 (2-CO), 135.0 (1-CCH2CH=C), 

118.5 (1-CCH2CH=), 71.3 (6-CH), 70.2 (1-C), 52.4 (5-CH), 40.2 (3-CH2), 37.5 (8-CH), 37.4 

(7-CH2), 29.8 (1-CCH2), 26.0 (1-C-cis-CH3), 18.0 (4-CH2), 17.8 (1-C-trans-CH3), 15.7 (8-

CHCH3). Traces of a third diastereoisomer were detected by 13C NMR spectroscopy. HRMS 

(ESI-TOF) [M+H]+ C15H23O3 calcd. 251.1642, found 251.1640. 

 

2-Hydroxy-5-methylbicyclo[3.2.1]octane-6,8-dione (13). To a solution of 2-methyl-1,3-

cyclopentanedione (100 mg, 0.89 mmol) in dry DMF (4 mL) was added acrolein (72 mg, 90 

μL, 1.3 mmol) at 25 °C. The solution was heated at reflux at 130 °C for 16 h. After allowing 

to cool, water (15 mL) was added and the mixture was extracted with dichloromethane (4 x 

15 mL). The combined organic layers were washed with water (3 x 15 mL), dried over 

MgSO4, filtered and evaporated to give ketol 13 (90 mg, 60%) as an 80:20 mixture of exo-13: 

endo-13: IR (film): 3450, 2933, 1765, 1723, 1453 cm-1; exo-13: 1H NMR (400 MHz, CDCl3) 

δ 4.57 (1H, m, 2-CH), 3.03 (1H, app. t, J = 5.4 Hz, 1-CH), 2.70-2.52 (2H, m, 7-CH2), 2.25 

(1H, m, 4-CHeq), 1.95-1.87 (2H, m, 3-CH2), 1.81-1.77 (1H, m, 4-CHax), 1.07 (3H, s, 5-
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CCH3); 13C NMR (100 MHz, CDCl3) δ 214.5 (8-CO), 211.1 (6-CO), 77.5 (2-CH), 59.3 (5-

CCH3), 52.7 (1-CH), 42.1 (7-CH2), 40.1 (4-CH2), 26.6 (3-CH2), 12.2 (5-CCH3); endo-13: 1H 

NMR (400 MHz, CDCl3) δ 4.25 (1H, m, 2-CH), 3.08 (1H, dd, J = 7.5, 3.3 Hz, 1-CH), 2.50-

2.43 (2H, m, 7-CH2), 2.25 (1H, m, 4-CHeq), 1.95-1.75 (3H, m, 3-CH2 and 4-CHax), 1.06 (3H, 

s, 5-CCH3); 13C NMR (100 MHz, CDCl3) δ 213.5 (8-CO), 211.6 (6-CO), 73.6 (2-CH), 58.3 

(5-CCH3), 54.4 (1-CH), 38.7 (7-CH2), 35.9 (4-CH2), 27.1 (3-CH2), 11.6 (5-CCH3). HRMS 

(ESI-TOF) [M+H]+ C9H13O3 calcd. 169.0859, found 169.0861. 

 

 2-Hydroxy-3,5-dimethylbicyclo[3.2.1]octane-6,8-dione (14). To a solution of 2-methyl-1,3-

cyclopentanedione (100 mg, 0.89 mmol) in dry acetonitrile (6 mL) were added methacrolein 

(1.3 mmol, 93 mg, 73 μL) and DABCO (0.18 mmol, 20 mg) at 25 °C. The solution was 

heated at reflux at 130 °C for 16 h. After allowing to cool, water (15 mL) was added and the 

mixture extracted with dichloromethane (4 x 15 mL). The combined organic layers were 

washed with water (3 x 15 mL), dried over MgSO4, filtered and evaporated to give ketol 14 

(80 mg, 50%) as a 70:30 mixture of endo-14: exo-14; IR (film): 3499, 2933, 1767, 1724, 

1455 cm-1; endo-14: 1H NMR (400 MHz, CDCl3) δ 3.69 (1H, dd, J = 9.6, 3.2 Hz, 2-CH), 3.03 

(1H, dd, J = 7.5, 3.3 Hz, 1-CH), 2.96 (1H, d, J = 19.4 Hz, 7-CHax), 2.48 (1H, dd, J = 19.4, 

7.5 Hz, 7-CHeq), 1.92-1.67 (3H, m, 3-CH and 4-CH2), 1.02 (3H, s, 5-CCH3), 1.01 (3H, d, J = 

6.6 Hz, 3-CHCH3); 13C NMR (100 MHz, CDCl3) δ 213.4 (8-CO), 211.6 (6-CO), 78.9 (2-CH), 

59.4 (5-CCH3), 53.7 (1-CH), 44.5 (7-CH2), 39.1 (4-CH2), 32.9 (3-CHCH3), 17.3 (3-CHCH3), 

11.6 (5-CCH3) (400 MHz, CDCl3); exo-14: 1H NMR (400 MHz, CDCl3) δ 4.25 (1H, ddd, J = 

5.1, 3.4, 2.3 Hz, 2-CH), 3.01 (1H, m, 1-CH), 2.60-2.58 (2H, m, 7-CH2), 2.08 (1H, m, 3-

CHeq), 1.92-1.67 (2H, m, 3-CH and 4-CHax), 1.03 (3H, s, 5-CCH3), 0.97 (3H, d, J = 6.7 Hz, 

3-CHCH3); 13C NMR (100 MHz, CDCl3) δ 215.1 (8-CO), 211.4 (6-CO), 79.6 (2-CH), 58.8 

(5-CCH3), 52.5 (1-CH), 46.7 (7-CH2), 41.8 (4-CH2), 30.2 (3-CHCH3), 15.4 (3-CHCH3), 12.0 

(5-CCH3). HRMS (ESI-TOF) [M+H]+ C10H15O3 calcd. 183.1016, found 183.1014.   

 

2-Hydroxy-4,5-dimethylbicyclo[3.2.1]octane-6,8-dione (15). To a solution of 2-methyl-1,3-

cyclopentanedione (100 mg, 0.89 mmol) in dry acetonitrile (6 mL) were added 

crotonaldehyde (1.3 mmol, 93 mg, 73 μL) and DABCO (101 mg, 0.90 mmol) at 25 °C. The 

resulting solution was heated at 95 °C for 16 h. After allowing to cool, water (15 mL) was 

added and the mixture extracted with dichloromethane (4 x 15 mL). The combined organic 

layers were washed with water (3 x 15 mL), dried over MgSO4, filtered and evaporated to 

give ketol 15 (109 mg, 61%) as a 37:50 mixture of mixture of endo-15: exo-15; IR (film): 

3441, 2936, 1763, 1719, 1455, 1041 cm-1; endo-15: 1H NMR (400 MHz, CDCl3) δ 4.20 (1H, 

ddd, J = 11.1, 5.9, 3.4 Hz, 2-CH), 3.04 (1H, dd, J = 7.0, 3.4 Hz, 1-CH), 2.88 (1H, d, J = 19.5 

Hz, 7-CHax), 2.56 (1H, dd, J = 19.5, 7.0 Hz, 7-CHeq), 2.05 (1H, dt, J = 14.4, 5.5 Hz, 3-

CHeq), 1.65 (1H, m, 4-CH), 1.27 (1H, m, 3-CHax), 0.98 (3H, d, J = 5.0 Hz, 4-CHCH3), 0.88 
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(3H, s, 5-CCH3); 13C NMR (100 MHz, CDCl3) δ 210.4 (8-CO), 209.9 (6-CO), 71.8 (2-CH), 

61.3 (5-CCH3), 53.8 (1-CH), 39.7 (4-CH), 38.6 (7-CH2), 36.3 (3-CH2), 15.0 (4-CHCH3), 9.79 

(5-CCH3); exo-15: 1H NMR (400 MHz, CDCl3) δ 4.48 (1H, ddd, J = 5.1, 4.1, 1.6 Hz, 2-CH), 

2.98 (1H, m, 1-CH), 2.55-2.45 (2H, m, 7-CH2), 2.36 (1H, m, 4-CH), 1.82 (1H, ddt, J = 15.8, 

5.6, 1.3 Hz, 3-CHeq), 1.55 (1H, ddd, J = 15.8, 13.1, 3.9 Hz, 3-CHax), 0.99 (3H, d, J = 5.0 Hz, 

4-CHCH3), 0.90 (3H, s, 5-CCH3); 13C NMR (100 MHz, CDCl3) δ 215.5 (8-CO), 214.3 (6-

CO), 75.8 (2-CH), 62.4 (5-CCH3), 52.1 (1-CH), 44.0 (4-CH) 42.0 (7-CH2), 35.6 (3-CH2), 15.1 

(4-CHCH3), 10.0 (5-CCH3). The 1H NMR spectrum showed the presence of third 

diastereoisomer (13%). HRMS (ESI-TOF) [M+H]+ C10H15O3 calcd. 183.1016, found 

183.1012.  

 

2-Hydroxy-5-methyl-4-phenylbicyclo[3.2.1]octane-6,8-dione (16). To a solution of 2-

methyl-1,3-cyclopentanedione (100 mg, 0.89 mmol) in dry acetonitrile (6 mL) were added 

cinnamaldehyde (176 mg, 168 μL, 1.3 mmol) and DABCO (99 mg, 0.89 mmol) at 25 °C. The 

solution was heated at 95 °C for 16 h. After allowing to cool, water (15 mL) was added and 

the mixture extracted with dichloromethane (4 x 15 mL). The combined organic layers were 

washed with water (3 x 15 mL), dried over MgSO4, filtered and evaporated. Column 

chromatography (silica gel, 20:80 ethyl acetate:dichloromethane) gave ketol 16 (20 mg, 10%) 

as a 60:40 mixture of mixture of endo-16: exo-16; IR (film): 3488, 2988, 1763, 1721, 1455, 

1046 cm-1; endo-16: 1H NMR (400 MHz, CDCl3) δ 7.34-7.26 (3H, m, m- and p-H), 7.03 (2H, 

J = 7.8, 2.4 Hz, o-H), 4.38 (1H, ddd, J = 10.4, 5.9, 3.5 Hz, 2-CH), 3.19 (1H, dd, J = 7.5, 3.5 

Hz, 1-CH), 3.16 (1H, J = 19.0 Hz, 7-CHax), 2.65 (1H, J = 14.0, 4.8 Hz, 4-CH), 2.60 (1H, J = 

19.0, 7.5 Hz, 7-CHeq), 2.29-2.23 (1H, m, 3-CHeq), 2.05 (1H, m, 3-CHax), 0.77 (3H, s, 5-

CCH3); 13C NMR (100 MHz, CDCl3) δ 212.5 (6-CO), 210.3 (8-CO), 137.6 (ipso-phenyl), 

128.7 (phenyl), 128.6 (phenyl), 128.1 (phenyl), 71.7 (2-CH), 61.7 (5-CCH3), 54.3 (1-CH), 

50.6 (4-CH), 38.8 (7-CH2), 35.3 (3-CH2), 10.7 (5-CCH3); exo-16: 1H NMR (400 MHz, 

CDCl3) δ 7.34-7.26 (3H, m, m- and p-H), 7.07 (2H, J = 7.8, 2.4 Hz, o-H), 4.63 (1H, ddd, J = 

5.2, 3.5, 1.7 Hz, 2-CH), 3.41 (1H, dd, J = 13.7, 4.8 Hz, 4-CH), 3.13 (1H, dd, J = 8.0, 4.5 Hz, 

1-CH), 2.68-2.56 (2H, m, 7-CH2), 2.26 (1H, m, 3-CHeq), 2.04 (1H, m, 3-CHax), 0.79 (3H, s, 

5-CCH3); 13C NMR (100 MHz, CDCl3) δ 213.1 (8-CO), 212.5 (6-CO), 138.0 (ipso-phenyl), 

128.7 (phenyl), 128.6 (phenyl), 128.1 (phenyl), 75.1 (2-CH), 62.7 (5-CCH3), 54.1 (1-CH), 

52.6 (4-CH), 42.0 (7-CH2), 34.8 (3-CH2), 11.0 (5-CCH3); HRMS (ESI-TOF) [M+H]+ 

C15H17O3 calcd. 245.1172, found 245.1172.  

 

6-Hydroxy-1-methyl-8-phenylbicyclo[3.3.1]nonane-2,9-dione (17). To a solution of 2-

methyl-1,3-cyclohexanedione (100 mg, 0.79 mmol) in CH3CN (6 mL) at 25 °C were added 

cinnamaldehyde (155 mg, 1.1 mmol, 150 µL) and DABCO (89 mg, 0.79 mmol). The solution 

was heated at 95 °C for 16 h. After allowing to cool, water (15 mL) was added and the 
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mixture extracted with dichloromethane (4 x 10 mL). The combined organic layers were 

washed with water (3 x 15 mL), dried over MgSO4, filtered and evaporated. Column 

chromatography (silica gel, 1:9 ethyl acetate:dichloromethane) gave 17 (22 mg, 10%) as a 

yellow oil, a 70:30 mixture of endo-17: exo-17; IR (film): 3443, 2927, 1725, 1691, 1496, 

1041. endo-17: 1H NMR (400 MHz, CDCl3) δ 7.32-7.26 (3H, m, 3,4,5-phenyl), 7.03-6.97 

(2H, m, 2,6-phenyl), 4.34 (1H, dt, J = 11.0, 5.5 Hz, 6-CH), 3.09 (1H, app. t, J = 5.5 Hz, 5-

CH), 2.75 (1H, m, 3-CHeq), 2.81-2.70 (2H, m, 3-CHax and 8-CH), 2.58 (1H, m, 4-CHeq), 

2.44-2.25 (2H, m, 7-CH2), 1.82 (1H, m, 4-CHax), 0.95 (3H, s, 1-CCH3); 13C NMR (100 MHz, 

CDCl3) δ 208.5 (9-CH), 208.0 (2-CH), 138.2 (ipso-phenyl), 128.7 (phenyl), 128.6 (phenyl), 

128.5 (phenyl), 71.2 (6-CH), 68.9 (1-C), 52.8 (5-CH), 51.2 (8-CH), 40.2 (3-CH2), 37.0 (7-

CH2), 17.2 (4-CH2), 15.0 (1-CCH3); exo-17: 1H NMR (400 MHz, CDCl3) δ 7.32-7.26 (3H, m, 

3,4,5-phenyl), 7.03-6.97 (2H, m, 2,6-phenyl), 4.52 (1H, dd, J = 2.5, 2.2 Hz, 6-CH), 3.45 (1H, 

dd, J = 13.9, 4.7 Hz, 5-CH), 2.96 (1H, m, 3-CHeq), 2.81-2.70 (2H, m, 3-CHax and 8-CH), 

2.65-2.62 (1H, m, 4-CHeq), 2.44-2.45 (2H, m, 7-CH2), 2.11 (1H, m, 4-CHax), 1.00 (3H, s, 1-

CCH3); 13C NMR (100 MHz, CDCl3) δ 209.2 (9-CH), 207.8 (2-CH), 138.5 (ipso-phenyl), 

128.7 (phenyl), 128.6 (phenyl), 128.5 (phenyl), 75.0 (6-CH), 70.4 (1-C), 53.0 (5-CH), 52.2 

(8-CH), 39.0 (3-CH2), 36.0 (7-CH2), 20.7 (4-CH2), 15.1 (1-CCH3). HRMS (ESI-TOF): m/z 

[M+H]+ C16H18O3 calcd 259.1329, found 259.1328. 

 

6-Hydroxy-1,3,3,7-tetramethylbicyclo[3.3.1]nonane-2,9-dione (18). To a solution of 2,4,4-

trimethylcyclohexane-1,3-dione (0.20 g, 1.28 mmol) in dry acetonitrile (10 mL) were added 

methacrolein (134 mg, 0.16 mL, 1.92 mmol) and DABCO (143 mg, 1.28 mmol) at 25 °C. The 

solution was heated at 95 °C for 16 h. After this time the reaction was allowed to cool to 25 

°C then evaporated. Water (15 mL) was then added and the mixture extracted with 

dichloromethane (2 x 15 mL). The combined organic layers were washed with water (2 x 15 

mL) then with and brine, dried over MgSO4, filtered and evaporated to give ketol 18 (186 mg, 

65%) as a colourless oil (mixture of diastereoisomers approx. 43:41:14:2 and confirmed by 

oxidation to 20): 1H NMR (400 MHz, CDCl3) δ 3.93 and 3.78 (1H, m), 3.50 (1H, dd, J = 10.5, 

4.5 Hz), 3.15-2.63 (2H, m), 2.40-0.90 (16H, m); 13C NMR (100 MHz, CDCl3) δ 216.4, 216.1, 

215.2, 213.8, 213.40, 212.1, 211.7, 207.5, 83.9, 83.1, 81.2, 79.3, 77.4, 59.9, 59.8, 59.3, 53.0, 

51.9, 51.7, 46.2, 45.8, 45.72, 45.4, 45.3, 44.1, 43.4, 37.1, 35.3, 33.4, 31.9, 31.5, 31.4, 29.4, 

27.4, 26.3, 26.1, 26.1, 25.8, 25.5, 25.3, 24.6, 24.1, 19.2, 18.6, 18.5, 18.3, 17.2, 16.5; m/z (EI+, 

%) 225 (3), 224 (M+, 17), 196 (6), 138 (52), 123 (100); HRMS M+ C13H20O3 calcd. 224.1407, 

found 224.1408. 

 

6-Hydroxy-1,3,3,8-tetramethylbicyclo[3.3.1]nonane-2,9-dione (19). To a solution of 2,4,4-

trimethylcyclohexane-1,3-dione (100 mg, 0.64 mmol) in dry acetonitrile (6 mL) were added 

crotonaldehyde (0.96 mmol, 67 mg, 80 μL) and DABCO (0.64 mmol, 72 mg) at 25 °C. The 

resulting solution was heated at 95 °C for 16 h. After allowing to cool, water (15 mL) was 
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added and the mixture extracted with dichloromethane (4 x 15 mL). The combined organic 

layers were washed with water (3 x 10 mL), dried over MgSO4, filtered and evaporated to 

give 19 (71 mg, 49%) as a pale yellow oil, (mixture of diastereoisomers approx. 41:28:26:5 

and confirmed by oxidation to 21); IR (film): 3405, 2972, 2937, 1726, 1694, 1496, 1061, 

1034 cm-1; 1H NMR (400 MHz, CDCl3) δ 4.25 and 4.00 (1H, m), 3.20 and 2.90 (1H, m), 2.70-

1.20 (5H, m), 1.25-0.80 (12H, m); 13C NMR (100 MHz, CDCl3) δ 216.9, 216.8, 214.9, 214.0, 

213.6, 212.5, 211.5, 80.9, 76.3, 72.6, 70.6, 63.8, 63.6, 62.5, 61.9, 52.4, 52.2, 51.7, 51.2, 46.0, 

45.7, 45.6, 45.4, 45.3, 42.6, 41.1, 39.8, 36.2, 36.1, 36.0, 34.6, 34.2, 31.9, 30.9, 30.7, 27.3, 

27.1, 26.6, 26.5, 24.7, 24.6, 24.3, 24.1, 17.1, 17.0 (2 lines), 16.9, 16.4, 15.7, 15.6, 14.6; m/z 

(EI+, %) 225 (8), 224 (M+, 58), 196 (14), 178 (22), 138 (88), 123 (100); HRMS M+ C13H20O3 

calcd. 224.1407, found 224.1408. 

 

1,3,3,7-exo-Tetramethylbicyclo[3.3.1]nonane-2,6,9-trione (20).  To a solution of 6-

hydroxy-1,3,3,7-tetramethylbicyclo[3.3.1]nonane-2,9-dione (18, 200 mg, 0.90 mmol) in dry 

dichloromethane (10 mL) was added pyridinium chlorochromate (230 mg, 1.08 mmol) and 

the resulting dark solution was stirred at 25 °C for 16 h. After allowing to cool, the solution 

was filtered through a pad of Celite® and the filtrate was evaporated. The residue was 

dissolved in ethyl acetate, the mixture filtered through a pad of silica, and the filtrate 

evaporated to give an 85:15 mixture of epimers. On standing for 2 weeks, the mixture 

afforded trione 20 (191 mg, 94%) as pale green needles, m.p. 94-95 °C; IR (film): 2262, 

1716, 1699, 1270, 1037 cm-1; 1H NMR (400 MHz, CD3CN) δ 3.69 (1H, dd, J = 10.8, 1.7 Hz, 

5-CH), 2.51 (1H, app. septet, J = 10.8 Hz, 7-CH), 2.31 (1H, dd, J = 14.5, 10.8 Hz, 4-CHeq), 

2.32-2.22 (2H, m, 8-CH2), 1.75 (1H, d (br), J = 14.5 Hz, 4-CHax), 1.25 (3H, s, 3-CCH3eq), 

1.13 (3H, s, 1-CCH3), 1.00 (3H, s, 3-CCH3ax), 0.98 (3H, d, J = 6.3 Hz 7-CHCH3); 13C NMR 

(100 MHz, CD3CN) δ 215.6 (2-CO), 206.7 (9-CO), 205.4 (6-CO), 64.8 (5-CH), 60.6 (1-C), 

45.6 (3-C), 41.7 (8-CH2), 38.9 (7-CHCH3), 36.4 (4-CH2), 26.3 (2-CCH3eq), 24.3 (2-CCH3ax), 

18.7 (1-CCH3), 13.7 (7-CHCH3); m/z (EI+, %) 223 (9), 222 (M+, 66), 194 (36), 138 (100), 123 

(97); HRMS M+ C13H18O3 calcd. 222.1251, found 222.1251. 

 

1,3,3,8-Tetramethylbicyclo[3.3.1]nonane-2,6,9-trione (21). To a solution of 6-hydroxy-

1,3,3,8-tetramethylbicyclo[3.3.1]nonane-2,9-dione (19, 50 mg, 0.2 mmol) in dry 

dichloromethane (3 mL) was added pyridinium chlorochromate (0.26 mmol, 57 mg) and the 

mixture was stirred at 25 °C for 16 h. The mixture was then filtered through a pad of Celite® 

and the filtrate was evaporated. The residue was dissolved in ethyl acetate, filtered through a 

pad of silica and the filtrate evaporated. The residue was purified by flash column 

chromatography (silica gel, 1:9 ethyl acetate:dichloromethane) to give trione 21 (15 mg, 30%) 

as a 70:30 mixture of 8-endo-21: 8-exo-21. IR (film): 2975, 1741, 1716, 1698, 1455 cm-1; 8-

endo-21: 1H NMR (400 MHz, CDCl3) δ 3.71 (1H, dt, J = 10.7, 1.5 Hz, 5-CH), 2.57 (1H, dd, J 
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= 15.5, 6.3 Hz, 7-CHeq), 2.47 (1H, m, 8-CH), 2.35-2.21 (2H, m, 7-CHax and 4-CHeq), 1.68 

(1H, m, 4-CHax), 1.31 (3H, s, 3-CCH3eq), 1.18 (3H, s, 1-CCH3), 1.08 (3H, s, 3-CCH3ax), 

0.82 (3H, d, J = 7.2 Hz, 8-CHCH3); 13C NMR (100 MHz, CDCl3) δ 215.2 (2-CO), 205.0 (9-

CO), 204.2 (6-CO), 64.4 (5-CH), 63.0 (1-C), 45.2 (3-C), 42.6 (7-CH2), 37.4 (8-CH), 36.9 (4-

CH2), 27.0 (3-CCH3eq), 24.8 (3-CCH3ax), 16.6 (1-CCH3), 15.3 (8-CHCH3); 8-exo-21: 1H 

NMR (400 MHz, CDCl3) δ 3.73 (1H, dt, J = 10.8, 1.8 Hz, 5-CH), 2.41 (1H, dd, J = 4.7, 1.8 

Hz, 7-CHeq), 2.32-2.05 (3H, m, 7-CHeq, 4-CHeq and 8-CH), 1.75 (1H, m, 4-CHax), 1.36 

(3H, s, 3-CCH3eq), 1.22 (3H, d, J = 6.7 Hz, 8-CHCH3), 1.17 (3H, s, 1-CCH3), 1.02 (3H, s, 3-

CCH3ax); 13C NMR (100 MHz, CDCl3) δ 213.6 (2-CO), 205.5 (9-CO), 203.8 (6-CO), 63.1 (5-

CH), 62.0 (1-C), 45.1 (3-C), 43.8 (7-CH2), 37.2 (4-CH2), 35.8 (8-CH), 27.4 (3-CCH3eq), 24.7 

(3-CCH3ax), 17.3 (1-CCH3), 15.1 (8-CHCH3); m/z (EI+, %) 223 (7), 222 (M+, 49), 194 (19), 

179 (62); HRMS M+ C13H18O3 calcd. 222.1251, found 222.1251. 

 

1,3,3-Trimethylbicyclo[3.3.1]nonane-2,6,9-trione (22). To a solution of 6-hydroxy-1,3,3-

trimethylbicyclo[3.3.1]nonane-2,9-dione (9) (75 mg, 0.36 mmol) in dry dichloromethane (3 

mL) was added pyridinium chlorochromate (92 mg, 0.43 mmol) and the dark solution was 

stirred at 25 °C for 16 h. The mixture was then filtered through a pad of Celite® and the 

filtrate was evaporated. The residue was dissolved in ethyl acetate, the solution filtered 

through a pad of silica and the filtrate was evaporated to give trione 22 (50 mg, 67%) as a 

white solid, m.p. 99-104 °C; 1H NMR (400 MHz, CD3CN) δ 3.65 (1H, d, J = 10.8 Hz, 5-CH), 

2.45 (1H, m, 7-CHeq), 2.37-2.25 (2H, m, 4-CHeq and 7-CHax), 2.21 (1H, app. dd, J = 13.3, 

7.6 Hz, 8-CHeq), 1.72 (1H, m, 4-CHax), 1.47 (1H, td, J = 13.3, 5.3 Hz, 8-CHax), 1.26 (3H, s, 

3-CCH3eq), 1.13 (3H, s, 1-CCH3), 1.01 (3H, s, 3-CCH3ax); 13C NMR (100 MHz, CD3CN) δ 

215.5 (2-CO), 206.0 (9-CO),* 205.8 (6-CO),* 65.1 (5-CH), 59.8 (1-CCH3), 45.7 (3-C), 36.3 

(7-CH2), 35.3 (4-CH2), 33.1 (8-CH2), 26.2 (3-CCH3), 24.4 (3-CCH3), 18.9 (1-CCH3); m/z (EI+, 

%) 209 (8), 208 (M+, 62), 180 (53), 138 (68), 123 (100), 110 (52); HRMS M+ C12H16O3 calcd. 

208.1094, found 208.1094. 

 

1-Methylbicyclo[3.3.1]nonane-2,6,9-trione (23). To a solution of 6-hydroxy-1-

methylbicyclo[3.3.1]nonane-2,9-dione (6) (40 mg, 0.22 mmol) in dry dichloromethane was 

added pyridinium chlorochromate (56 mg, 0.26 mmol) in one portion at 25 °C and stirred for 

16 h. The mixture was then filtered through a pad of Celite® and evaporated. The residue was 

dissolved in ethyl acetate, the solution passed through a pad of silica and the filtrate 

evaporated to give trione 23 (30 mg, 76%) as a pale green powder, m.p. 97-99 °C. IR (film): 

1711, 1453, 1246, 1036, 1029 cm-1; 1H NMR (400 MHz, CD3CN) δ 3.45 (1H, t, J = 5.0 Hz, 5-

CH), 2.70-2.55 (4H, m, 7-CH2 and 8-CH2), 2.53 (1H, m, 3-COCHeq), 2.12-2.03 (2H, m, 4-

CH2), 1.75 (1H, m, 3-CHax), 1.22 (3H, s, CH3); 13C NMR (100 MHz, CD3CN) δ 209.9 (9-

CO), 208.0 (2-CO), 204.6 (6-CO), 64.5 (5-CH), 63.9 (1-C), 37.9 (3-CH2), 37.5 (7-CH2), 32.1 
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(8-CH2), 23.4 (4-CH2), 16.5 (CH3); HRMS (ESI-TOF) [M+H]+ C10H13O3 calcd. 181.0859, 

found 181.0857. 

 

1,7-exo-Dimethylbicyclo[3.3.1]nonane-2,6,9-trione (24). To a solution of 6-hydroxy-1,7-

dimethylbicyclo[3.3.1]nonane-2,9-dione (10) (50 mg, 0.25 mmol) in dry dichloromethane 

was added pyridinium chlorochromate (66 mg, 0.30 mmol) in one portion at 25 °C, and the 

mixture was stirred for 16 h. The mixture was then filtered through a pad of Celite® and the 

filtrate was evaporated. The residue was dissolved in ethyl acetate and the solution passed 

through a pad of silica. The filtrate was evaporated to give trione 24 (37 mg, 77%) as a light 

green oil; IR (film): 2983, 2988, 1740, 1709, 1457, 1038 cm -1; 1H NMR (400 MHz, CD3CN) 

δ 3.54 (1H, dd, J = 7.2, 2.6 Hz, 5-CH), 2.75-2.52 (3H, m, 7-CH and 3-CH2), 2.25-2.15 (3H, 

m, 8-CH2 and 4-CHH), 2.04 (1H, m, 4-CHH), 1.20 (3H, s, 1-CCH3), 1.04 (3H, d, J = 6.3 Hz, 

7-CHCH3); 13C NMR (100 MHz, CD3CN) δ 210.7 (9-CO), 208.1 (2-CO), 204.2 (6-CO), 64.8 

(5-CH), 64.6 (1-C), 41.6 (7-CH), 41.1 (8-CH2), 37.6 (3-CH2), 22.5 (4-CH2), 16.5 (1-CCH3), 

14.5 (7-CHCH3); m/z (EI+, %) 194 (M+, 34), 166 (19), 152 (20), 140 (30), 69 (100); HRMS 

M+ C11H14O3 calcd. 194.0937, found 194.0938. 
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