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A B S T R A C T

Aim: To accurately quantify the radioactivity concentration measured by PET, emission data need to be
corrected for photon attenuation; however, the MRI signal cannot easily be converted into attenuation values,
making attenuation correction (AC) in PET/MRI challenging. In order to further improve the current vendor-
implemented MR-AC methods for absolute quantification, a number of prototype methods have been proposed
in the literature. These can be categorized into three types: template/atlas-based, segmentation-based, and
reconstruction-based. These proposed methods in general demonstrated improvements compared to vendor-
implemented AC, and many studies report deviations in PET uptake after AC of only a few percent from a gold
standard CT-AC. Using a unified quantitative evaluation with identical metrics, subject cohort, and common CT-
based reference, the aims of this study were to evaluate a selection of novel methods proposed in the literature,
and identify the ones suitable for clinical use.
Methods: In total, 11 AC methods were evaluated: two vendor-implemented (MR-ACDIXON and MR-ACUTE),
five based on template/atlas information (MR-ACSEGBONE (Koesters et al., 2016), MR-ACONTARIO (Anazodo
et al., 2014), MR-ACBOSTON (Izquierdo-Garcia et al., 2014), MR-ACUCL (Burgos et al., 2014), and MR-
ACMAXPROB (Merida et al., 2015)), one based on simultaneous reconstruction of attenuation and emission (MR-
ACMLAA (Benoit et al., 2015)), and three based on image-segmentation (MR-ACMUNICH (Cabello et al., 2015),
MR-ACCAR-RiDR (Juttukonda et al., 2015), and MR-ACRESOLUTE (Ladefoged et al., 2015)). We selected 359
subjects who were scanned using one of the following radiotracers: [18F]FDG (210), [11C]PiB (51), and [18F]
florbetapir (98). The comparison to AC with a gold standard CT was performed both globally and regionally,
with a special focus on robustness and outlier analysis.
Results: The average performance in PET tracer uptake was within ± 5% of CT for all of the proposed methods,
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with the average ± SD global percentage bias in PET FDG uptake for each method being: MR-ACDIXON (−11.3 ±
3.5)%, MR-ACUTE (−5.7 ± 2.0)%, MR-ACONTARIO (−4.3 ± 3.6)%, MR-ACMUNICH (3.7 ± 2.1)%, MR-ACMLAA (−1.9
± 2.6)%, MR-ACSEGBONE (−1.7 ± 3.6)%, MR-ACUCL (0.8 ± 1.2)%, MR-ACCAR-RiDR (−0.4 ± 1.9)%, MR-ACMAXPROB

(−0.4 ± 1.6)%, MR-ACBOSTON (−0.3 ± 1.8)%, and MR-ACRESOLUTE (0.3 ± 1.7)%, ordered by average bias. The
overall best performing methods (MR-ACBOSTON, MR-ACMAXPROB, MR-ACRESOLUTE and MR-ACUCL, ordered
alphabetically) showed regional average errors within ± 3% of PET with CT-AC in all regions of the brain with
FDG, and the same four methods, as well as MR-ACCAR-RiDR, showed that for 95% of the patients, 95% of brain
voxels had an uptake that deviated by less than 15% from the reference. Comparable performance was obtained
with PiB and florbetapir.
Conclusions: All of the proposed novel methods have an average global performance within likely acceptable
limits ( ± 5% of CT-based reference), and the main difference among the methods was found in the robustness,
outlier analysis, and clinical feasibility. Overall, the best performing methods were MR-ACBOSTON, MR-
ACMAXPROB, MR-ACRESOLUTE and MR-ACUCL, ordered alphabetically. These methods all minimized the
number of outliers, standard deviation, and average global and local error. The methods MR-ACMUNICH and
MR-ACCAR-RiDR were both within acceptable quantitative limits, so these methods should be considered if
processing time is a factor. The method MR-ACSEGBONE also demonstrates promising results, and performs
well within the likely acceptable quantitative limits. For clinical routine scans where processing time can be a
key factor, this vendor-provided solution currently outperforms most methods. With the performance of the
methods presented here, it may be concluded that the challenge of improving the accuracy of MR-AC in adult
brains with normal anatomy has been solved to a quantitatively acceptable degree, which is smaller than the
quantification reproducibility in PET imaging.

1. Introduction

Positron emission tomography/magnetic resonance imaging (PET/
MRI) combines the powerful and functional imaging of PET for
assessment of patients in oncology (Hillner et al., 2008) and neurology
(Heiss, 2009) with MRI's excellent soft-tissue characterization, con-
trast, and power to provide additional functional information like
perfusion and diffusion. A likely key clinical application of simulta-
neous PET/MRI is in neurological disorders, in particular in dementia
(Bailey et al., 2015; Drzezga et al., 2014; Dukart et al., 2011). In order
to accurately quantify the radioactivity concentration measured by
PET, emission data need to be corrected for photon attenuation.

Currently, two fully integrated simultaneous whole-body human
PET/MRI systems are commercially available: the Biograph mMR
(Siemens Healthcare GmbH, Erlangen, Germany) and the Signa PET/
MRI (GE Healthcare, Waukesha WI, USA). The vendor-implemented
attenuation correction (AC) method in the Signa PET/MRI system is
based on an atlas of MRI/CT pairs used to derive the approximate size
and location of bones and air cavities (Wollenweber et al., 2013) but is
yet to be fully evaluated on a large patient cohort (Sekine et al., 2016a).
Two AC-methods are implemented in the Biograph mMR system. They
are both segmenting the MR image into tissue classes: the two-point
Dixon-Water-Fat sequence (Dixon) based on Martinez-Möller et al.
(2009), which can lead to underestimation of PET tracer uptake near
the skull (Andersen et al., 2014), and the ultrashort echo time sequence
(UTE), based on a similar acquisition method as Catana et al. (2010)
and a different segmentation method based on a voxel-based classifier,
which is challenged by remaining segmentation errors in the skull base
and near the frontal sinuses (Dickson et al., 2014). A third, atlas-based
AC method is currently being developed (Koesters et al., 2016; Paulus
et al., 2015).

To further improve the quantitative accuracy, a number of methods
have been proposed in the literature. These can be categorized into
three types: template/atlas-based, segmentation-based, and recon-
struction-based. The template/atlas-based methods create a pseudo-
CT image by co-registering database-subjects to a patient's MR image.
The atlas or template can be based on pairs of CT and dual UTE (Delso
et al., 2014b; Roy et al., 2014), CT and anatomical MRI (Dixon, T1,
and/or T2-weighted sequences) (Anazodo et al., 2014; Andreasen et al.,
2015; Burgos et al., 2014; Izquierdo-Garcia et al., 2014; Merida et al.,
2015; Schreibmann et al., 2010; Sekine et al., 2016a; Torrado-Carvajal
et al., 2016). Some methods also use probabilistic measures or machine
learning techniques to compare with an atlas or template (Chan et al.,

2013; Chen et al., 2015; Hofmann et al., 2008; Johansson et al., 2011;
Navalpakkam et al., 2013; Poynton et al., 2014; Yang et al., 2013).
Alternatives to template/atlas-based methods are the segmentation-
based methods, which derive attenuation maps purely from MR
images. These methods usually segment the T1 (Fei et al., 2012;
Zaidi et al., 2003) or UTE images (Cabello et al., 2015; Catana et al.,
2010; Juttukonda et al., 2015; Ladefoged et al., 2015) into multiple
tissue classes, each assigned a mean linear attenuation coefficient
(LAC). Furthermore, a number of UTE-based methods calculate a
patient specific bone density (Cabello et al., 2015; Juttukonda et al.,
2015; Ladefoged et al., 2015) using the normalized logarithmic
difference between the UTE images ( R*2 map) (Keereman et al.,
2010). A number of methods also exist employing special MRI
sequences with modified sampling schemes using either short echo
time (STE)/Dixon (Khateri et al., 2015) or improved UTE sequences,
using point-wise encoding time reduction with radial acquisition
(PETRA) (Grodzki et al., 2012), using zero TE (ZTE) (Wiesinger
et al., 2016), or using triple UTE (Aitken et al., 2014; Berker et al.,
2012; Su et al., 2015). Finally, maximum-likelihood reconstruction-
based methods, where activity and attenuation are simultaneously
reconstructed based on maximum-likelihood (Nuyts et al., 1999), using
either time-of-flight information (TOF) (Mehranian and Zaidi, 2015;
Rezaei et al., 2012, 2014; Salomon et al., 2011) or non-TOF informa-
tion using MR-priors (Benoit et al., 2015), are yet to be evaluated for
PET/MRI-brain applications. The methods using TOF would currently
be limited to the Signa PET/MRI system or the sequential Ingenuity TF
PET/MRI system (Philips Healthcare, Cleveland, OH) (Zaidi et al.,
2011). However, recently, a TOF-based MLAA implementation failed
to show additional benefit for attenuation correction in PET/MR
imaging compared to a robust atlas-based method (Mehranian et al.,
2016).

The proposed methods demonstrate improvements compared to
the currently vendor-implemented AC, and many studies report
deviations in PET uptake after AC of only a few percent from a gold
standard CT-AC; or conclude that the methods are ready for clinical use
on the basis of quantitative accuracy (Burgos et al., 2014; Izquierdo-
Garcia et al., 2014; Ladefoged et al., 2015). There are publications
indicating the desire for more accuracy in PET brain attenuation
correction (Andersen et al., 2014; Dickson et al., 2014; Hitz et al.,
2014), but whether the problem of AC has been solved fully is still
debatable (Bailey et al., 2015).

There is currently no consensus on a method for summarizing
evaluations, and this lack of standardization of metrics makes direct
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comparisons across the published AC methods difficult. The methods
rely on different gold/silver standards or make use of cohorts with
different diseases or imaging tracers. The cohorts are of varying sizes,
from 5 (Navalpakkam et al., 2013) to 92 subjects (Juttukonda et al.,
2015), which might not be enough to ensure robustness and capture
potential outliers in a clinical setting.

In this work, we present the performance of prototype methods
within a multi-centre study, which include:

• A large patient cohort (n=359) who were scanned with three
different radiotracers ([18F]fluoro-D-glucose (FDG), [11C]
Pittsburgh-compound-B (PiB), and [18F]florbetapir), allowing for
detailed evaluation of outliers and robustness.

• Patients recruited from clinical populations with established or
emerging clinical indications for both PET and MRI, and therefore
well-suited for evaluating regional effects of brain MR-AC.

• A unified comparison between 11 PET/MRI brain AC methods using
identical metrics and a common CT-based reference: two vendor-
implemented (Dixon and UTE), five based on template/atlas-based
information (Anazodo et al., 2014; Burgos et al., 2014; Izquierdo-
Garcia et al., 2014; Koesters et al., 2016; Merida et al., 2015), one
based on simultaneous reconstruction of attenuation and emission
(Benoit et al., 2015), and three based on image-segmentation
(Cabello et al., 2015; Juttukonda et al., 2015; Ladefoged et al.,
2015).

The methods were assessed both globally and regionally using
multiple metrics, including a detailed robustness and outlier analysis
across the whole patient group. We also compared the methods by
assessing the time that was required to execute the methods, referring
to the actual run-time and scan-time of the corresponding sequences.
While time may not be of high importance in a research setting, a
clinical setup may demand high requirements for this factor in order to
provide a timely diagnosis and acceptable patient management and
throughput. The aim of this study was to evaluate the proposed
methods and identify the ones suitable for clinical use by performing
a unified quantitative evaluation.

2. Materials and methods

All patient studies were performed using a fully-integrated PET/
MRI system (Siemens Biograph mMR, Siemens Healthcare, Erlangen,
Germany) (Delso et al., 2011). For the purpose of obtaining a reference
low-dose CT image of the head, whole-body PET/CT systems were used
(Biograph TruePoint 40 and Biograph TruePoint 64, Siemens
Healthcare) (Jakoby et al., 2009).

2.1. Patients

Data sets were obtained retrospectively from two different centers;
Rigshospitalet, University Hospital Copenhagen, Denmark, and
Washington University, St. Louis, United States of America. The
Rigshospitalet data were comprised from data sets from the complete

cohort of patients referred for a clinical FDG PET/MRI brain examina-
tion, either in neuro-oncology or dementia, as well as the complete
cohort of subjects having undergone PiB PET/MRI examinations.
These cohorts included healthy subjects and patients with mild
cognitive impairment (MCI), Alzheimer's disease (AD), or clinical
dementia. In total, 210 subjects with FDG PET/MRI scans (5 healthy
volunteers, 4 neuro-oncological patients, 201 MCI, AD or clinical
dementia patients) and 51 subjects scanned with PiB (1 healthy
volunteer, 50 MCI, AD or clinical dementia patients) were consecu-
tively selected between November 2013 and April 2015. From
Washington University, data sets were obtained from 98 subjects
referred for a florbetapir examination (3 very mild dementia, 95 MCI
or clinical dementia patients).

Of a total of 359 PET/MRI brain studies from the two centers, 22
studies were excluded (9 FDG, 3 PiB and 10 florbetapir). Exclusion was
due to metal implant-induced artifacts in the brain images (3 subjects)
or data errors due to corruption or missing raw-data (19 subjects)
leaving 337 studies available for analysis. The local ethics committees
had approved the original studies and all patients gave informed
consent.

2.2. Imaging protocol

2.2.1. PET
The PET scan information is given in Table 1. Patients were

positioned head first with their arms down on the fully-integrated
PET/MRI system. Data were acquired over a single bed position of
25.8 cm covering the head and neck for 10/20/15 min for FDG/PiB/
florbetapir respectively (Table 1 for initiation of scan). For the purpose
of this study, the PET data from the PET/MR acquisition were
reconstructed using 3D Ordinary Poisson-Ordered Subset
Expectation Maximization (OP-OSEM) with 4/3/4 iterations, 21 sub-
sets, and 3/5/5 mm Gaussian post filtering for FDG/PiB/florbetapir,
respectively, on 344×344 matrices (2.1×2.1×2.0 mm3 voxels) in line
with the respective clinical protocols.

2.2.2. MRI
The scan protocol included two-point Dixon images using the

vendor-provided DIXON-VIBE AC sequence with repetition time
(TR)/echo time 1 (TE1)/echo time 2 (TE2)=2300/1.23/2.46 ms, flip
angle 10°, coronal orientation, voxel size of 2.6×2.6×3.12 mm3, 19 s
acquisition time; a UTE AC sequence with TR/TE1/TE2=11.94/0.07/
2.46 ms, a flip angle of 10°, axial orientation, field of view (FOV) of
300 mm2, reconstructed on 192×192×192 matrices (1.6×1.6×1.6 mm3

voxels), 100 s acquisition time; and a T1w MPRAGE with TR/
TE=1900/2.44 ms (FDG/PiB) and 2300/2.95 ms (florbetapir), inver-
sion time=900 ms, flip angle=9°, sagittal orientation, reconstructed on
512×512×192 matrices (0.49×0.49×1 mm3 voxels) (FDG/PiB) and
256×240×176 matrices (1.05×1.05×1.2 mm3 voxels) (florbetapir),
300 s acquisition time. The patients injected with FDG or PiB were
all imaged using the software version VB20P, whereas those injected
with florbetapir were imaged with VB18P, which included a work-in-
progress version of the UTE sequence. Due to the difference in version

Table 1
Patient information.

Tracer Originating center N (fat/water
inverted)

Male/
Female

Age (min-max)
in years

Injected tracer ( ± SD) in MBq Scan start p.i. (min-
max) in min

[18F]FDG Rigshospitalet, Copenhagen
Denmark

201 (9) 108/93 68 (23–96) 203 ( ± 20) 51 (24–134)

[11C]PiB Rigshospitalet, Copenhagen
Denmark

48 (1) 2424 68 (39–85) 426 ( ± 75) 43 (37–100)

[18F]florbetapir Washington University, North
Carolina, USA

88 (3) 21/67 71 (41–91) 353 ( ± 30) 0 n=75, or 52 (49–60)
n=13

p.i.: post injection.
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numbering, mainly expressed in the UTE sequences, the tracers were
evaluated separately.

2.2.3. CT
A low dose CT (120 kVp, 36 mAs, 74 slices, 0.6×0.6×3 mm3 voxels)

was acquired from each patient to be used as gold standard. The CT
images were acquired either on the same day as the PET/MRI

examination (FDG and PiB) or within 8.3 ± 6 days of each other with
no surgical procedures in between (florbetapir).

2.3. Creating the attenuation maps

In all, nine proposed MR-AC methods were selected for evaluation.
These were selected to be representative of the three major types of

Fig. 1. Attenuation correction images for a sample patient that minimizes the difference of the overall brain error to the median error across all methods. (A) CT, (B) Dixon, (C) UTE,
(D) Segbone, (E) Ontario, (F) Boston, (G) UCL, (H) MaxProb, (I) MLAA, (J) Munich, (K) CAR-RiDR, (L) RESOLUTE.

Table 2
Jaccard distance for overlap with bone (μ > 0.101 cm−1) segmented from MR-ACCT shown for each method and tracer. Results are shown for full head and further subdivided into top
and bottom representing the area above and below the eyes. The best results are highlighted in bold. Note the Dixon method is left out due to there not being any bone present.

FDG PiB Florbetapir

Full Top Bottom Full Top Bottom Full Top Bottom

UTE 0.56 ± 0.06 0.62 ± 0.10 0.51 ± 0.05 0.57 ± 0.06 0.65 ± 0.09 0.51 ± 0.04 0.32 ± 0.07 0.38 ± 0.12 0.27 ± 0.04
Segbone 0.54 ± 0.04 0.63 ± 0.07 0.48 ± 0.04 0.56 ± 0.03 0.65 ± 0.04 0.49 ± 0.03 N/A N/A N/A
Ontario 0.60 ± 0.04 0.74 ± 0.05 0.52 ± 0.05 0.60 ± 0.05 0.73 ± 0.07 0.52 ± 0.04 0.63 ± 0.05 0.75 ± 0.07 0.55 ± 0.04
Boston 0.74 ± 0.06 0.79 ± 0.08 0.69 ± 0.07 0.78 ± 0.04 0.83 ± 0.05 0.73 ± 0.04 0.78 ± 0.03 0.81 ± 0.06 0.75 ± 0.03
UCL 0.80 ± 0.04 0.83 ± 0.05 0.77 ± 0.05 0.80 ± 0.04 0.83 ± 0.05 0.78 ± 0.04 0.82 ± 0.03 0.85± 0.04 0.80 ± 0.03
MaxProb 0.81 ± 0.04 0.85± 0.05 0.77 ± 0.04 0.82 ± 0.02 0.84 ± 0.04 0.79 ± 0.03 0.80 ± 0.03 0.83 ± 0.04 0.78 ± 0.03
MLAA 0.59 ± 0.07 0.67 ± 0.09 0.53 ± 0.06 0.51 ± 0.07 0.60 ± 0.09 0.44 ± 0.06 0.36 ± 0.09 0.37 ± 0.15 0.35 ± 0.05
Munich 0.72 ± 0.04 0.85± 0.05 0.63 ± 0.05 0.73 ± 0.04 0.86± 0.05 0.64 ± 0.04 0.72 ± 0.03 0.85± 0.04 0.63 ± 0.04
CAR-RiDR 0.50 ± 0.07 0.62 ± 0.09 0.40 ± 0.06 0.50 ± 0.06 0.62 ± 0.08 0.41 ± 0.06 0.46 ± 0.06 0.60 ± 0.09 0.36 ± 0.05
RESOLUTE 0.68 ± 0.04 0.85± 0.04 0.56 ± 0.04 0.69 ± 0.03 0.84 ± 0.04 0.58 ± 0.04 0.68 ± 0.03 0.85± 0.03 0.54 ± 0.04
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MR-AC categories (template/atlas-based, segmentation-based, and
reconstruction-based), and had to be applicable to the Siemens mMR
data available. Furthermore, they should be implemented on a central
site (Copenhagen). Twelve attenuation maps were created. First,
vendor-provided MR-based attenuation maps (MR-ACDIXON and MR-
ACUTE) were derived using the DIXON VIBE sequence and the UTE
MR sequence. Next, the nine proposed brain MR-AC methods were
used. A brief introduction of each method is given below. We refer to
the original publications for detailed explanations. Finally, for each
subject, the CT image was co-registered to the T1 image using a 6-
parameter rigid alignment procedure (minctracc, McConnell Imaging
Center, Montreal, Canada) with normalized mutual information as
objective function. The patient bed and head-holder were extracted
manually from the CT images using an oval ROI (OsiriX software)
applied to each transverse CT slice. The attenuation values were then
converted from HUs to LACs at 511 keV by using a standard bi-linear
scaling approach (Carney et al., 2006) as implemented in the Siemens
PET/CT systems used. The co-registered CT attenuation map was
substituted into the UTE attenuation file (MR-ACCT) to facilitate use of
routine reconstruction. We blurred the resulting image with a 4 mm
Gaussian filter to simulate PET/CT reconstructions. Due to the limited
coverage in the neck region by the acquired CT, we replaced the
missing area by the values from MR-ACDIXON. To ensure a fair
comparison, this replacement was also performed in all the other
attenuation maps.

All attenuation maps, except for MR-ACDIXON, were created in the

Fig. 2. PET images for a sample patient that minimizes the difference of the overall brain error to the median error across all methods. (A) CT, (B) Dixon, (C) UTE, (D) Segbone, (E)
Ontario, (F) Boston, (G) UCL, (H) MaxProb, (I) MLAA, (J) Munich, (K) CAR-RiDR, (L) RESOLUTE.

Fig. 3. Global performance of all methods for the FDG patients (n=201, including
patients with fat/water tissue inversion). The median (red line), 25th and 75th
percentiles (box), 1.5*IQR (whiskers), outliers (red dots), mean and SD are shown for
each method. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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image space defined by the method, and post-resampled and placed
into the UTE file just as the reference CT. Since the CT image was co-
registered to the T1 image, we also co-registered the Dixon and UTE
images to the T1 image, and aligned the MR-AC maps of the methods
defined using either of these.

All of the methods presented in this study, except for two, had been
made available and were processed in Copenhagen. The MR-
ACSEGBONE attenuation maps were created by Siemens, and MR-
ACUCL attenuation maps were created in London, as the CT/MRI
database could not be shared at the time of this study.

2.3.1. Template/Atlas-based methods (Segbone, Ontario, Boston,
UCL, MaxProb)

• Siemens Healthcare GmbH - Segbone: The prototype method
by Siemens Healthcare (Koesters et al., 2016; Paulus et al., 2015) is
a template-based method, where an MR model image of the skull
region is non-rigidly registered to an individual subject exclusively
on the Dixon input images. A pre-aligned skull mask is then brought
to subject space, and attenuation values greater than soft-tissue are
superimposed on the original Dixon attenuation map. This method
is still a work-in-progress. The attenuation map is denoted MR-
ACSEGBONE.

• London Ontario: The method by Anazodo et al. (2014) uses the
SPM8 function ‘new segment’ to extract a bone probability map
from each individual's T1 MPRAGE image. The bone map defined by
voxels with probability above 80% are, following a post-processing
procedure, superimposed on MR-ACDIXON and assigned the con-
stant value 0.143 cm−1. The resulting attenuation map is denoted
MR-ACONTARIO.

• Boston MGH: The method by Izquierdo-Garcia et al. (2014) also
uses SPM8 to extract patient specific tissue probability maps from
the individual's intensity normalized T1 MPRAGE image and
register these to a template of co-aligned probability maps of 15
subjects. The averaged corresponding CT template is then back-
warped to patient space, converted to LACs, blurred with a 4 mm
Gaussian filter, and used as the template-based AC map MR-
ACBOSTON.

• London UCL: The method by Burgos et al. (2014) non-linearly
aligns a database of 41 T1-CT pairs to the intensity-normalized T1
image of a patient. At each voxel, a patch is extracted and the local
normalized correlation coefficient is calculated between the patient
T1 and each of the T1 images in the database. A weighting vector is
calculated from the coefficients ranking each T1-CT pair relative to
the other pairs, and used to obtain a target CT voxel value. The
resulting synthesized CT image is converted to LACs, blurred with a
4 mm Gaussian filter, and denoted MR-ACUCL.

• Lyon - MaxProb: The method by Merida et al. (2015) is similar to
Burgos et al. (2014) by also aligning a database of 27 T1-CT pairs to
an intensity normalized T1 MPRAGE image of a patient, but
deviates in the method used to combine the database into a target
CT image. The authors discretize the CT images into air, soft tissue
and bone voxels, calculate the modal tissue type across the database,
and assign the mean of the CT values from the database subjects
with that tissue type to the voxel. The final fused image is converted
to LACs, blurred with a 4 mm Gaussian filter, and denoted MR-
ACMaxProb.

2.3.2. Maximum-likelihood reconstruction-based

• Copenhagen - MLAA: The method by Benoit et al. (2015) is a
reconstruction-based method aimed at optimizing the existing non-
TOF MLAA technique. The method uses the individual's MR-ACUTE

and a discretized version of the individual's T1 image as prior
information to the MLTR algorithm. A heuristically determined
schema assigns the value for αj based on the two prior images, as

well as the update term calculated in each MLTR iteration step. The
final image of the MLAA algorithm is denoted MR-ACMLAA.

2.3.3. Segmentation-based (Munich, CAR-RiDR, RESOLUTE)

• Munich: The method by Cabello et al. (2015) uses the individual's
UTE TE1 and TE2 images to extract air, soft tissue as well as the
bone signal, which is extracted using R2

* and scaled to LACs by
normalizing to the maximum intensity and thresholding using an
empirically chosen value. The intensity of the bone voxels from the
R2

* map are equalized by the mean and maximum values from a CT-
based database. The resulting image is blurred with a 3 mm
Gaussian filter, and denoted MR-ACMUNICH.

• University of North Carolina - CAR-RiDR: The method by
Juttukonda et al. (2015) also uses the individual's UTE TE images to
extract air, soft tissue and R2

* signal. By fitting a sigmoid-best-fit to
a set of 98 R2

*-CT relationship pairs, the authors convert the
measured R2

* signal to a continuous CT value. The resulting image
is denoted MR-ACCAR-RiDR.

• Copenhagen - RESOLUTE: The method by Ladefoged et al.
(2015) segments brain, CSF, soft tissue, and air from the UTE TE
images, and also uses R2

* to extract a bone signal, which is converted
to LACs using a set of R2

*-CT relationship pairs from 10 training
patients. To limit possible bias from regions with known R2

* noise
(Delso et al., 2014a), and because the amount of included bone is
higher compared to Cabello et al. (2015), Juttukonda et al. (2015),
the threshold for included bone was regionally varied within the
head. The resulting image is blurred with a 4 mm Gaussian filter and
denoted MR-ACRESOLUTE.

2.4. Image analysis

As Dixon-based methods may suffer from fat/water inversion
(Ladefoged et al., 2014), we excluded the patients with inversion from
further analysis in most of the metrics. This was the case for nine FDG,
one PiB, and three florbetapir patients. To avoid bias in the results, the
patients with fat/water inversion are excluded in most figures. When
included, it will be clearly stated. The methods directly affected by the
inversion are MR-ACSEGBONE, MR-ACONTARIO and MR-ACCAR-RiDR.

2.4.1. Global attenuation map performance
To evaluate the performance precision of the methods based on the

attenuation maps, we measured the Jaccard-index for the bone
compared to CT-derived attenuation maps. We defined bone as being
greater than 0.101 cm−1, representing values above soft-tissue.

2.4.2. Global PET performance
As a prior step to evaluating the global PET performance, we first

created individual brain masks. We moved all patient data to common
MNI space using ANTs (Avants et al., 2011) by non-rigidly registering
the patients’ T1 images to the ICBM 152 2009a template (Fonov et al.,
2009). The MNI brain mask was back-warped to patient space, and the
PET image reconstructed with the CT attenuation map was thresholded
at > 20% of the maximum intensity value. Finally, the intersection
between the two masks was calculated and used as the final mask of the
brain, and used throughout this manuscript when referring to the brain
region. Next, the voxel-wise percent difference relative to PETCT,
defined as:

Rel PET PET
PET

= − ×100,x CT

CT
%

(1)

as well as the absolute percent difference, defined as:

Abs PET PET
PET

= − ×100,x CT

CT
%

(2)

were calculated for the PET images corrected with each of the evaluated
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methods (PETX). We calculated the averaged performance of Rel% and
Abs% for the full brain across all patients for each of the methods. We
computed the distribution of Rel% errors for each of the methods using

a histogram analysis. Finally, we computed the voxel-wise correlation
between PETCT and each of the proposed methods for all voxels within
the brain. We plotted the correlations in a joint histogram, and

Fig. 4. Summed joint histograms of PET activity within the brain mask for FDG (n=192, excluding patients with fat/water tissue inversion) for PETCT versus each of the methods. The
R2 scores are average ± SD of the individual patients. The joint entropy (JE) is calculated for all patients.
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computed the goodness-of-fit value (R2) to the identity line for each of
the patients.

2.4.3. Regional PET performance
To evaluate the regional PET performance, we back-warped the

anatomical predefined regions from MNI space (Collins et al., 1999;
Fonov et al., 2009) to each patient, and extracted the mean Rel% for
each region in the template. We furthermore calculated the average and
standard deviation Rel%-images across all patients for each of the
methods for visual evaluation.

2.4.4. Analysis of robustness and outliers
To estimate the number of outliers for each method, we introduced

a novel metric. The metric calculates the percentage of patients with at

least x% of the brain within ± y% in the Rel% images, where x varies
from 0–100 and y={5,10,15}. A perfect method therefore has 100% of
the patients within ± 0% in the Rel% images. To understand the reason
for the worst outliers, we then analyzed the three FDG patients with the
worst performance based on the ± 10% threshold and categorized the
error. We present the worst outlier of each method.

3. Results

3.1. Global attenuation map evaluation

Fig. 1 shows the axial, sagittal and coronal views for each attenua-
tion method for a single sample patient. The representative sample
patient was chosen objectively to be that which minimizes the
difference to the median Rel% error (Eq. (1)) across all methods.

The Jaccard similarity coefficient for bone for each tracer-group
was comparable. For the largest group (FDG) the averaged scores
ranged between 0.50–0.81 for the entire head, 0.40–0.77 in the bottom
of the head covering from the eye socket and downwards, and 0.51–
0.85 for the top of the head. The overall best performance was seen for
MR-ACBOSTON, MR-ACMAXPROB, MR-ACMUNICH, MR-ACRESOLUTE and
MR-ACUCL, in alphabetical order, with Jaccard indices of 0.68–0.81 in
the entire head, and 0.79–0.85 in the top of the head. The individual
result for all tracer-groups and methods are shown in Table 2. Note
that MR-ACSEGBONE was not evaluated on florbetapir-data, and thus no
results are available.

3.2. Global PET performance

The reconstructed PET images for the sample patient in Fig. 1 are
shown for the same slice in Fig. 2. Visually comparing the maximum
uptake areas in PETCT, it is apparent that PETDIXON and PETUTE

underestimate the PET uptake, whereas all the alternative methods
improve the performance. For this patient, the average error for the
entire brain was between −3.3% (Ontario) and 3.9% (Munich) for the
proposed methods, and −10% and −5.3% for Dixon and UTE,
respectively. The global Rel% performance for the entire brain is
shown for all 201 FDG patients and 11 methods in the boxplot in
Fig. 3. The average performance was within ± 5% of PETCT for all of
the proposed methods, with the best performance seen for MR-
ACBOSTON, MR-ACCAR-RiDR, MR-ACMAXPROB, MR-ACRESOLUTE, and
MR-ACUCL, ordered alphabetically. MR-ACDIXON showed −11% and
MR-ACUTE showed −7%. The global Abs% performance for the entire
brain is summarized for each method and tracer in Supplementary
Table 1. The global histogram analysis is shown in Supplemental
Figs. 1–3 for the three tracers. The averaged voxel-wise joint histo-
grams are shown for PETCT versus each of the proposed methods in
Fig. 4 (FDG) and Supplemental Figs. 4–5 (PiB and Florbetapir). The
highest correlation with the unity line was for FDG obtained by MR-
ACRESOLUTE (0.96 ± 0.02), MR-ACUCL (0.96 ± 0.02), MR-ACMAXPROB

(0.96 ± 0.04), MR-ACBOSTON (0.95 ± 0.03), and MR-ACCAR-RiDR (0.94
± 0.03).

3.3. Regional PET performance

The regional Rel% performance for the anatomical regions defined
in the MNI template is shown in Fig. 5 for FDG and Supplemental
Figs. 6–7 for PiB and Florbetapir. The best performance across all
regions was again found with MR-ACBOSTON, MR-ACCAR-RiDR, MR-
ACMAXPROB, MR-ACRESOLUTE and MR-ACUCL, ordered alphabetically.
Only MR-ACMAXPROB and MR-ACRESOLUTE, ordered alphabetically, had
an average ± 1 SD error across all tracers below ± 5% in all regions.
The averaged absolute difference, Abs%, is shown in Supplemental
Figs. 8–9 for each of the regions and tracers. The average and standard
deviation images of the Rel% calculated for each FDG patient are
shown in Figs. 6 and 7, respectively, and in Supplemental Figs. 10–13

Fig. 5. Global and regional ROI analysis across all FDG patients (n=192, excluding
patients with fat/water tissue inversion). The gray lines indicate 1 SD.
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for PiB and florbetapir. Considering all regions in the brain and all
tracers, the overall best performance in terms of error and robustness
was seen for MR-ACBOSTON, MR-ACMAXPROB, MR-ACRESOLUTE and
MR-ACUCL, ordered alphabetically.

3.4. Analysis of robustness and outliers

The result of the outlier analysis is shown in Fig. 8 for errors within
± 5%, ± 10%, and ± 15% (FDG) and Supplemental Fig. 14 (PiB and
florbetapir). The proposed methods exceed the performance of the
current Dixon and UTE methods. The cutoff where all of the patients
are within ± 10% of PETCT is achieved for MR-ACBOSTON, MR-
ACMAXPROB, MR-ACRESOLUTE and MR-ACUCL, ordered alphabetically,
and at 90% of the brain, and between 60% and 80% for the other
methods. At ± 15%, there is a clear separation between five of the
methods (MR-ACBOSTON, MR-ACCAR-RiDR, MR-ACMAXPROB, MR-
ACRESOLUTE and MR-ACUCL, ordered alphabetically) and the remaining
methods. The robustness of each method can be assessed in the
standard deviation images (Fig. 7). The best performance was obtained
by MR-ACUCL in the center of the brain, shortly followed by MR-
ACMAXPROB, MR-ACBOSTON and MR-ACRESOLUTE. In the cortical re-
gions, the best performance was obtained by MR-ACRESOLUTE and MR-

ACCAR-RiDR. The three patients with the worst performance are
categorized in Table 3, and the worst outlier is shown for each method
in Supplemental Fig. 15.

In general, the worst outliers in the template/atlas-based methods
(MR-ACONTARIO, MR-ACBOSTON, MR-ACUCL, MR-ACMAXPROB) all have
the same error category – the bone density is over or underestimated.
Only a single case is due to registration errors (#1 in MR-ACMAXPROB).
The effect of the error is greatest in the cortical regions, with errors up
to 30% locally.

The general errors in the proposed segmentation-based methods
(MR-ACMUNICH, MR-ACCAR-RiDR, MR-ACRESOLUTE) are over/under
estimation of bone in air/tissue interface areas, resulting in local errors
of up to 25% in the medulla and cerebellum. For the vendor-provided
methods, the worst outliers were due to missing bone (MR-ACDIXON)
and underestimated bone density (MR-ACUTE).

4. Discussion

This study facilitates a framework for comparing a large number of
state-of-the-art methods using multiple metrics, and does so across a
large patient cohort. We aimed to represent a broad spectrum of
published methods, showing promises of clinical feasibility, and

Fig. 6. Averaged Rel% images across all FDG patients (n=201, including patients with fat/water tissue inversion) for each method: (A) Dixon, (B) UTE, (C) Segbone, (D) Ontario, (E)
Boston, (F) UCL, (G) MaxProb, (H) MLAA, (I) Munich, (J) CAR-RiDR, (K) RESOLUTE.
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selected nine methods that were applicable to our large cohort of
Siemens mMR examinations. Adding the vendor-provided methods,
Dixon and UTE, we evaluated 11 methods for obtaining an MR-AC
image. The key findings for the proposed methods were: almost all
achieved relative errors below ± 5% globally and in all regions of the
brain; the methods essentially differed in robustness, clinical feasi-
bility, and outliers. Dixon and UTE have been included as current
vendor references and confirm earlier results from Andersen et al.
(2014), Dickson et al. (2014) with a tendency to global underestimation
of activity.

The cerebellum is a region that is often used for normalization
purposes, especially in kinetic modeling, and therefore requires extra
attention. Considering the average ± 1 SD, the best performance is
obtained with MR-ACBOSTON and MR-ACMAXPROB, shortly followed by
most of the other methods; the only methods exceeding ± 5% were
MR-ACMLAA and MR-ACMUNICH (Fig. 5). The maximum error in the
cerebellum was 6–9% from the reference for most of the proposed
methods (Supplemental Fig. 16), except for MR-ACCAR-RiDR (14%),
MR-ACMLAA and MR-ACMUNICH (17%).

The result of the attenuation map evaluation (Table 2) illustrates
that the multi-atlas and multi-registration based methods (MR-ACUCL,
MR-ACMAXPROB) have the highest overall bone accuracy, with equally

good results achieved in the upper part of the head by R2
*-based

methods (MR-ACMUNICH, MR-ACRESOLUTE). This area-dependent dif-
ference could be explained by the challenges reported in air/tissue
interface areas originating from the UTE sequence, such as the mouth
and esophagus (Delso et al., 2014a). Metal implant-induced artifacts
resulting in overestimation of bone in the mouth area especially affects
the accuracy of the R2

*-based methods, but obviously also the remain-
ing methods. Of all methods, two of the R2

*-based methods (MR-
ACCAR-RiDR and MR-ACRESOLUTE) had the lowest standard deviation in
the cortical regions near the bone (Fig. 7). This can be explained by the
fact that these methods extract patient specific bone density, whereas
the template/atlas-based methods use an average CT value. This can in
some cases lead to local under- or overestimation of the PET signal of
up to 20% (Table 3, Supplemental Fig. 15). It should be noted that for
the subjects where the CT include the dental region, the CTs were also
affected by metal implants resulting in streak artifacts, which could
bias the results further.

The template/atlas-based methods generally produced attenuation
maps very similar to the CT-based attenuation maps, but they are
based on the assumption that any new subject can be represented by a
template, a local combination of atlas patients, or by a non-rigid
registration to a template. The template/atlas-based methods are

Fig. 7. Standard deviation images across all FDG Rel% images (n=201, including patients with fat/water tissue inversion) for each method: (A) Dixon, (B) UTE, (C) Segbone, (D)
Ontario, (E) Boston, (F) UCL, (G) MaxProb, (H) MLAA, (I) Munich, (J) CAR-RiDR, (K) RESOLUTE.
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therefore also potentially challenged by abnormal anatomy and patient
surgery. The template/atlas-based methods are, furthermore, currently
only optimized and tested for adults, as the application to children
might require a purpose specific MRI/CT database. We did not include
children, or any patients who have undergone anatomy-changing
surgery in this study.

Most subjects chosen came from dementia studies, as this disease

has the potential to be a key clinical application of PET/MRI (Bailey
et al., 2015). The disease is clinically imaged with FDG, or amyloid
binding radiotracers such as PiB or florbetapir, with the majority of
patients having relatively widely distributed uptake in the brain,
making the tracers well suited for a large-scale evaluation of MR-AC
methods. The overall performance was, generally, similar across the
three tracers for all methods (Supplemental Figs. 1–3).

When considering patient management, the acquisition time and
number of steps required for generating AC maps has also to be taken
into account. A potential challenge for the template/atlas-based
methods is the long computation time due to multiple registrations
for each patient in the database (Table 4). The MR-ACMAXPROB and
MR-ACUCL methods currently require at least an hour of processing
time for each attenuation map, whereas the MR-ACMUNICH and MR-
ACCAR-RiDR methods only take a few seconds. The shorter processing
time is usually a key argument for choosing the segmentation-based
methods in fast-paced clinical services, whereas accuracy is much more
important than speed in research applications. The MR-ACSEGBONE

prototype requires less than 2 min of processing time, with further
potential for speed-up. The processing time for multi-atlas methods
could be shortened by code optimization and by reducing the number
of database studies using pre-selection of the candidates more likely to
match the patient (e.g. using gender, age, etc.) (Aljabar et al., 2009) but
this requires further evaluation. An alternative is to use the newly
proposed one-registration multi-atlas approach, which, however,
comes at the cost of a lower accuracy in bone extraction compared to
the multi-atlas approach (Arabi and Zaidi, 2016). In line with this,
recent result on GE Signa system has shown, that compared to the
clinical single-atlas, multi-atlas (MR-ACUCL) is more accurate espe-
cially in regions close to the skull base (Sekine et al., 2016b). The
emission-based method, MLAA, is currently computationally intensive,
and relies on multiple MR sequences, which might complicate its use in
a clinical setting.

We excluded a single machine-learning-based AC-method (Chen
et al., 2015) from this study, as it had excessively long processing time
for each patient ( > 4 days), making it infeasible both in clinical routine
and in this study in its current state.

4.1. Limitations

The use of a CT as gold standard is debatable. The CT image does
not fully cover the FOV of the MR and PET area, and is further subject
to streak artifacts from dental implants. Since the CT images are not
simultaneously acquired with the PET/MRI, they are also subject to
non-rigid movement, e.g. jaw movement and swallowing, not ac-
counted for during the rigid registration. In lack of a true gold
standard, such as a transmission scan with a rotating source, we
considered the CT to be the reference.

The cohort, mainly consisting of patients with dementia and age-
matched controls, represents an ageing population. This study did not
include data to test the performance of these MR-AC methods on brain
scans from younger patients. Furthermore, the study cohort did not
include patients with focal PET lesions. Therefore, the performance of
these methods in brain tumor patients has yet to be evaluated in most
cases, although evaluation of individual methods (e.g. MR-ACBOSTON)
has already been performed in challenging brain tumors as in
Izquierdo-Garcia et al. (2014).

The data from Washington University (florbetapir) were used to
train the mapping of bone values from HU to LACs in the MR-ACCAR-

RiDR method (Juttukonda et al., 2015). This could potentially bias the
results.

5. Conclusion

All of the proposed methods have an average global performance
within likely acceptable limits ( ± 5% of CT-based reference), and

Fig. 8. Outlier analysis for the FDG patients (n=192, excluding patients with fat/water
tissue inversion). Note different scale of x-axis.
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differences between methods were found in terms of the robustness,
clinical feasibility and outlier analysis. The overall best performance
was seen in the MR-ACBOSTON, MR-ACMAXPROB, MR-ACRESOLUTE and
MR-ACUCL methods, ordered alphabetically, which all minimize the
number of outliers, standard deviation, and average global and local
error. The methods MR-ACCAR-RiDR and MR-ACMUNICH were both
within acceptable quantitative limits, so these methods should be
considered if processing time is a factor. The method MR-ACSEGBONE

also demonstrates promising results, and performs well within the
likely acceptable quantitative limits. For a clinical routine setting where
time is critical, this vendor-provided prototype solution currently
outperforms most methods, especially when acquisition time of the
fast DIXON is included. With the performance of the methods

presented here, it may be concluded that the challenge of improving
the accuracy of MR-AC in adult brains with normal anatomy has been
solved to an acceptable degree, with errors smaller than the quantifica-
tion reproducibility in PET imaging.
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UTE %brain (category) 58% (A) 55% (A) 54% (A)
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template/atlas registration errors.

Table 4
Requirements of the proposed methods.

T1 MPRAGE (acq. time:
300 s)

Dixon (acq time:
19 s)

UTE (acq. time:
100 s)

Prior data Requirements (license) Runtime (approx.)

Segbone ✓ Needs single atlas Proprietary 1–2 m
Ontario ✓ ✓ SPM (GNU) 30 m
Boston ✓ Needs single atlas FreeSurfer, SPM (GNU) 30 m
UCL ✓ Needs multiple atlases NiftyReg (BSD) 1 h
MaxProb ✓ Needs multiple atlases NiftyReg (BSD) 2 h
MLAA ✓ ✓ Optimization needed per tracer type 1 h
Munich ✓ Calibration to specific MR sequence

required
1 m

CAR-RiDR ✓ ✓ Calibration to specific MR sequence
required

1 m

RESOLUTE ✓ Calibration to specific MR sequence
required

MINC (BSD), ANTs (BSD) 15 m
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