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In the last years, it has become evident that computer simulations can assume a relevant role in
modelling protein dynamical motions for their ability to provide a full atomistic image of the
processes under investigation. The ability of the current protein force-fields in reproducing the correct
thermodynamics and kinetics systems behaviour is thus an essential ingredient to improve our under-
standing of many relevant biological functionalities. In this work, employing the last developments of
the metadynamics framework, we compare the ability of state-of-the-art all-atom empirical functions
and water models to consistently reproduce the folding and unfolding of a helix turn motif in a model
peptide. This theoretical study puts in evidence that the choice of the water models can influence
the thermodynamic and the kinetics of the system under investigation, and for this reason cannot be
considered trivial. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4963340]

I. INTRODUCTION

Secondary structures are local patterns defining the three-
dimensional arrangement of protein segments. Mechanisms
underlying the folding and unfolding of such motifs are of
uttermost importance in biology, and have been extensively
investigated in the scientific literature.1–4 Driven by the
desire to obtain a microscopic detailed picture of these
dynamical mechanisms and thanks to progress in algorithms
and hardware,5–7 molecular dynamics (MD) simulations have
rapidly become an important investigation tool in protein
folding.8–11 Nevertheless, as several authors have shown,12–21

the results of MD calculations may be substantially affected
by the choice of the empirical protein force-field (PFF) and of
the water model (WM).

Here, we provide a detailed microscopic picture of the
folding and unfolding of a small helix turn motif, with the aim
of assessing the impact of state-of-the-art all-atom empirical
potentials on the description of these dynamical processes.

With this aim in mind, we focus our efforts on the
formation and disruption of a helical nucleus in a capped
five-residues peptide, Ac-WAAAH+-NH2 (WH5). Recent
experimental and computational studies have demonstrated
that this peptide displays a very fast helix-coil transition
dynamics. This property, combined with its small size, makes
WH5 a perfect candidate to carry out a systematic study of
the kinetics of conformational rearrangements.22–26

Since we are interested in investigating the formation
of a helical turn in the middle of the peptide chain, we

a)ferruccio.palazzesi@phys.chem.ethz.ch

classify the different WH5 conformations according to the
arrangement of the three central alanines. Due to the fact that
each one of these can adopt a coil or a helical configuration,
this classification leads to 8 (23) different states. In this
study we investigate the populations and the interconversion
dynamics among all these states. For this purpose, we apply
the recent development of well tempered metadynamics27

proposed by Tiwary and Parrinello.28 This approach, based on
an infrequent deposition of the metadynamics bias, has already
been successfully employed to obtain rates for processes
such as binding/unbinding of the trypsin-benzamidine
protein complex,29 argon condensation,30 and organics
dissolution.31

While the dynamics of this process is fast enough to be
studied by direct MD simulation, the use of the Tiwary and
Parrinello approach alleviates the computational cost of our
investigation. Furthermore this study provides yet another test
of this metadynamics development in a case in which straight
MD has been performed by us or by others.

Our study in agreement with previous results,17,22,32–34

highlights the role that all-atom PFFs and especially WMs
play in determining the dynamics of such systems.

II. MATERIAL AND METHODS

A. PFFs and WMs

To understand the influences of the PFFs and WMs on the
helix-coil transition processes, we focus our attention on three
amongst the best currently available PFFs:12,14,19 Amber03w
(A03), Charmm22* (C22), and Amber99SB* (A99). The first
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one has been introduced in 2010 by Best and Mittal,35 in
order to obtain in combination with TIP4P/2005,36 a better
description of the protein folding/unfolding processes. For
C22, instead Piana et al.17 re-parametrised the backbone
torsional angles of the original Charmm2237 to balance the
helix-coil stability. Lastly, A99 is based on Amber9938 and
incorporates two different corrections: the SB parameters39 to
achieve a better control on the secondary structure stability
and the Hummer and Best revisions40 introduced to improve
the reproduction of some helix/coil data. Recently it has been
demonstrated that these PFFs in combination with specific
WMs, generate fairly different conformational ensembles
in the case of small and disordered peptides.12,15,16 In
combination with the aforementioned PFFs, we also consider
three different explicit water models: TIP3P,41 TIP4P/2005,36

and the recently developed TIP4P-D.20 In our study, we thus
investigate a total of 9 different PFF/WM combinations. Since
the results do not vary significantly as the TIP4P/2005 water
model is changed in TIP4P-D, we report only the results
obtained with the former one. The interested reader can find
our results for the TIP4P-D model in the Tables S1, S2, and
S4-S6 and Figures S3-S5, S7 and S9 of the supplementary
material.

B. Representation of the conformational space

In order to distinguish between a coil (C) from a helix
(H) conformation, we use the values of the backbone dihedral
angles in combination with the Transition-Based Assignment
(TBA).42 This coarsened representation of the conformational
space has already demonstrated its usefulness.42,43 The
application of this method allows to classify all 8 states
of the WH5 system. We graphically represent these states
as the vertices of a cube in Fig. 1. In such a scheme, the
transitions between states are represented either as edges or
diagonals. More details regarding the adopted representation
of the configurational space are reported in Figure S1.

C. Enhanced MD simulations

To obtain the kinetics data on the folding and unfolding
processes of a helix motif, we could have applied unbiased MD

FIG. 1. In the left, we report a ribbon representation of all the possible
configurations that the three central alanines of the WH5 peptide can adopt.
In blue we have the all-coil state, in green the states in which one residue
is in the helical conformation, in orange the states with two helical residues,
while the all helix state is reported in red. On the right panel, we pictorially
represent each of these states as vertexes of a cube. For the sake of clarity all
the possible state-to-state transitions (black lines) are not shown.44

simulations, as routinely done in literature.22,45–48 However to
reduce the required computational time here we decided to
use an enhanced sampling method such as metadynamics,5,49

using an infrequent bias deposition. This is an approach based
on the observation of Voter50 and Grubmüller51 that in a rare
event scenario the unbiased transition rates can be computed
from a bias calculation provided that zero bias is added to the
transition state region. Tiwary and Parrinello28 have shown
how such a bias can be built in a metadynamics context.
Very soon after, Salvalaglio et al.52 have proposed a statistical
test to verify whether the hypothesis under which the scheme
of Tiway and Parrinello is valid is satisfied in the practice.
This test is based on the consideration that in a rare event
scenario, in which the residence time is much longer than the
transition time, the distribution of escaping times has to be
Poissonian. To further verify the validity of our calculations
for one of our PFF/WM combination (A03+TIP4P/2005) we
also run long unbiased MD simulations. See Table S3 for more
details.

D. Rates calculations

We first calculate the overall transition rates from fully
folded (HHH) to one of the other states that we classified
as unfolded (see Fig. 1). We also study in a similar way
the folding events. Later, to get a deeper understanding
of the dynamics, we consider separately all the transitions
between all the 8 states reported in Fig. 1. From these
data, we construct a Markov chain model from which
the overall dynamics and the dominant pathways can be
obtained.42,53–56 Furthermore from the asymptotic limit of
the dynamics the equilibrium distribution is studied.42,57 This
routinely applied strategy22,45 has already been successfully
combined with metadynamics to compute the state-to-state
dynamics of the unbinding of the trypsin-benzamidine
complex.29

III. RESULTS AND DISCUSSION

A. Equilibrium state populations

In Fig. 2(a) we pictorially represent the equilibrium
populations of the 8 states obtained, as described in
Sec. II.

As can be seen from the figure, the conformational ensem-
bles generated have comparable equilibrium populations, with
low probabilities associated with the folded configurations.
This result confirms the propensity of the system to assume in
prevalence extended, unstructured conformations.22

A more quantitative representation of our results has been
reported in Fig. 2(b), in which the equilibrium populations
are aggregated according to the number of helical residues.
From these data it is possible to measure differences
between the system substate populations by varying the
PFFs. In particular C22 favours the conformations with
one helical residue. These differences are in absolute terms
small. However, given the continuous strive at improving
the all-atom empirical potentials we must consider them
relevant.14

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-006637
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-006637
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FIG. 2. (a) Illustrative comparison of the equilibrium state populations. The volume of the sphere is proportional to the state probability. (b) Distribution of the
equilibrium populations aggregated according to the number of helical residues. In the inset, we report the probability of helical configurations. The bars with
oblique white lines represent the TIP3P data, while the ones without lines represent the TIP4P/2005 data. The errors are calculated from block analysis.

Water models are known to exert some influence on
the disordered state distributions,20,32–34,58 and our results
confirm this. From the data reported in Fig. 2, in fact, we
observe that the TIP4P/2005 water model slightly favours
less structured configurations. A consequence of this effect
is a decrease of the probability of helical configurations
for systems simulated with this water model. Such an
effect can be consistently observed across all the PFFs
considered.

As can be seen from Table S3 our results are in agreement
to those obtained by De Sancho and Best22 with a replica
exchange technique, using one of the protein force-field and
water model combinations investigated here.

B. Reaching the equilibrium

1. Helix turn folding and unfolding rates

We now move to analyse the helix nucleus formation and
disruption rates, calculated for all the PFF/WM combinations
using the procedure described in Sec. II. We report these
data in Fig. 3. These estimates are in accordance with the
folding time value calculated by De Sancho and Best22

and with our own long unbiased MD simulations. See
Table S3.

These findings show that the most important factor
influencing the rate is the water model used and in particular
TIP3P leads to a much faster kinetics.

FIG. 3. On the left the helix turn fold-
ing times, while on the right the unfold-
ing times. The error bars are obtained
by performing 500 bootstrap tests.
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FIG. 4. Results of the analysis of the dominant helix turn folding/unfolding pathways. The bars with oblique white lines represent the TIP3P data, while the
ones without lines represent the TIP4P/2005 data. The errors are calculated from block analysis.

In retrospect the rate dependence on the water model is not
surprising.32,59–62 In fact the TIP3P model is characterised by
higher mobility, smaller surface tension, and smaller viscosity
than any other TIP4P water models or not to mention real
water.20,32,36,63,64

On the contrary, the protein force field used has a smaller
role with C22 leading consistently to the slowest rates, while
A99 to the fastest.

2. Helix turn folding and unfolding pathways

To calculate the dominant helix folding/unfolding
pathways, we analyse all the state-to-state fluxes leaving
the system free to evolve from a completely unfolded state
(CCC) and from a completely folded one (HHH), and
for this reason backward and forward fluxes differ (see
Sec. II). For simplicity we have then grouped the dominant
pathways into three classes, according to the intermediate
states involved in these processes. Pathways that form or
disrupt the helical conformation at the beginning of the
WH5 peptide chain are assigned to the N-TERM category,
while passages that involve the end residue are classified
as C-TERM. Processes that change the conformations of
the central alanine are instead considered as CENTRAL. A
schematic representation of such a classification is reported in
Fig. 4.

From such a figure we observe that while the WMs
can strongly influence the time scale of the overall
folding transition, the partition among different pathways is
instead markedly influenced by the force-field, as previously
observed.17 The same holds for the reverse paths.

Previous computational work based on this peptide
has also provided a detailed description of the helix
folding/unfolding processes.25,26 However, a different partition
of the configuration space as well as the use of earlier

generation of force-fields do not allow a direct comparison
with our results.

IV. CONCLUSION

In this paper, using the recent developments28,52 in
the application of well tempered metadynamics,27 we shed
new light on helix turn folding/unfolding pathways of a
small alanine-based peptide and the relative PFFs/WMs
influences.

In order to understand the multiple effects of these
empirical models and their different contributions, we
systematically analyse different thermodynamic and kinetic
properties, such as the equilibrium state distribution, the
folding/unfolding rates, and the relative pathways. Our
results suggest that WMs play a major role in the
folding/unfolding process, affecting both the equilibrium and
dynamics properties of the simulated system. Different explicit
solvent models can in fact lead to different conformational
ensemble distributions and different folding/unfolding times.
Surprisingly, these observed differences do not influence the
dominant pathways, probably due to the absence of specific
solute-solvent interactions.

In this scenario, the choice of the WMs for an atomistic
simulation emerges as a crucial choice. Moreover if we
consider that flexible parts of the proteins are often able to
play a direct role in many different biophysical processes;65–68

a correct choice of the solvent is of great importance in
obtaining a correct description of many different bio-related
processes of interest.

Finally, the favourable comparison between the rates
calculated with infrequent metadynamics and those obtained
by straight MD provides another demonstration of the Tiwary
and Parrinello scheme capabilities.28
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SUPPLEMENTARY MATERIAL

See supplementary material for further details of the
simulation protocol and the procedures adopted to calculate
folding/unfolding rates, state-to-state fluxes, and dominant
pathways from the MD trajectories.
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