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Nucleation processes are at the heart of a large number of phenomena, from cloud formation to
protein crystallization. A recently emerging area where nucleation is highly relevant is the initiation
of filamentous protein self-assembly, a process that has broad implications in many research areas
ranging from medicine to nanotechnology. As such, spontaneous nucleation of protein fibrils has
received much attention in recent years with many theoretical and experimental studies focussing
on the underlying physical principles. In this paper we make a step forward in this direction and
explore the early time behaviour of filamentous protein growth in the context of nucleation theory.
We first provide an overview of the thermodynamics and kinetics of spontaneous nucleation of protein
filaments in the presence of one relevant degree of freedom, namely the cluster size. In this case, we
review how key kinetic observables, such as the reaction order of spontaneous nucleation, are directly
related to the physical size of the critical nucleus. We then focus on the increasingly prominent case of
filament nucleation that includes a conformational conversion of the nucleating building-block as an
additional slow step in the nucleation process. Using computer simulations, we study the concentra-
tion dependence of the nucleation rate. We find that, under these circumstances, the reaction order of
spontaneous nucleation with respect to the free monomer does no longer relate to the overall physical
size of the nucleating aggregate but rather to the portion of the aggregate that actively participates in
the conformational conversion. Our results thus provide a novel interpretation of the common kinetic
descriptors of protein filament formation, including the reaction order of the nucleation step or the
scaling exponent of lag times, and put into perspective current theoretical descriptions of protein
aggregation. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4965040]

I. INTRODUCTION

Nucleation is the initial step in the formation of a new
ordered structure through self-organization. It is characterized
by the presence of a free energy barrier to form the smallest
growth-competent unit of the new structure. Many phenomena
in nature, science, and engineering are nucleated processes,
including everyday examples such as cloud formation, ice
crystallization, the boiling of water, or the formation of bubbles
in a champagne glass. A particularly intriguing example of a
nucleated process is the formation of protein filaments, which
is the topic of the present paper. This is a fundamental form of
biological self-assembly with important implications in areas
ranging from medicine to materials science. Biofilaments of
actin and tubulin, for instance, underlie key events in cellular
life, such as providing the rigidity of the cellular cytoskeleton
or participating in cell motility and cell division.1–7 On
the other side, aberrant filamentous protein aggregation
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is associated with over 50 increasingly prevalent human
disorders, such as Alzheimer’s, Parkinson’s diseases, and type
II diabetes.8–14 These pathologies are intimately associated
with the formation and deposition in the brain or other organs
of fibrillar protein aggregates, commonly known as amyloids,
which are the result of the aggregation of normally soluble
and functional proteins into elongated fibrillar structures
characterized by their β-sheet rich structure. Amyloids,
however, are not only associated with disease, as it was
initially believed, but have been increasingly found to serve
also many functional roles within living organisms15 and this
natural use of the amyloid state of proteins and peptides for
functional purposes has inspired many applications of these
structures as materials for nanotechnology.16–20

The formation of protein filaments has been established
to be a nucleated polymerization process where a slow
spontaneous fibril nucleation step, also referred to as primary
nucleation, is followed by rapid growth through filament
elongation6,21–41 and, in certain cases, self-replication through
secondary pathways.23,36,42–45 Here, the term “spontaneous”
refers to the fact that the random formation of the smallest
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growth-competent aggregates (nuclei) occurs directly from
solution, without the participation of surfaces or nucleation
seeds. A particularly useful approach to understand the way
in which soluble proteins are converted into their fibrillar
counterparts through spontaneous nucleation is represented by
kinetic models of filamentous growth.6,41,43,46–48 These kinetic
models allow the underlying molecular-level mechanisms of
fibril formation to be connected with in vitro experimental
measurements of the aggregate mass concentration, e.g., by
fluorescence microscopy or related techniques.49 In these
models, the spontaneous fibril nucleation step is commonly
described as an nc-th order reaction with respect to the free
monomer concentration c with rate

r = kncnc, (1)

where kn is the rate constant for spontaneous nucleation and
nc is an effective reaction order of spontaneous nucleation.
Because nucleation is slow compared to growth, the value
of nc can be obtained experimentally from the concentration
dependence of the half-polymerization time t1/2 (defined as
the time at which half of the monomer’s mass is sequestered
in aggregates), as the slope of this relationship in a double
logarithmic plot gives the so called scaling exponent γ defined
by

t1/2 = A cγ, γ = −nc/2. (2)

A key question, in the field, is how to relate these
experimentally measured kinetic descriptors, including the
reaction order nc and the scaling exponent γ, with the
microscopic characteristics of the underlying nucleation step,
such as the physical size of the nucleating aggregates. This
connection provides important insights into the nature of the
nucleation process from experimental measurements. This
problem has already received significant attention in the
protein aggregation literature, and we start here by providing
a brief overview of the simplest case of fibril nucleation
by direct polymerization of monomers, incorporating the
published theories and quantitative experiments.

We then make a step forward and consider the increasingly
evident process of protein nucleation which includes a
conformational change of the nucleating protein, giving rise to
multi-step nucleation processes via small oligomers. We study
the kinetics of such a process using coarse-grained computer

simulations, and provide a novel physical interpretation of
the related kinetic parameters that are commonly measured
in experiments. In particular, we investigate the physical
interpretation of the reaction order nc when proteins undergo
a conformational change during nucleation, and find that nc

is determined by the portion of the oligomer size that directly
participates in the conformational conversion step.

II. KINETICS OF SPONTANEOUS FIBRIL NUCLEATION
WITH ONE DEGREE OF FREEDOM

We start our discussion by reviewing the simplest model
of fibril nucleation, in which aggregates of different sizes
but same structure are formed by direct polymerization of
protein monomers (Fig. 1(a)). We demonstrate that this model
gives rise to spontaneous nucleation if the cluster free energy
function has a maximum as a function of cluster size. Under
these circumstances, it is found that, independently of the
specific form of the cluster free energy function, the reaction
order of spontaneous nucleation nc is linked to the number of
monomers that compose the fibril nucleus.50 The simplicity
of this model arises from the fact that the aggregate size is the
only degree of freedom in the system; in Section III we relax
this assumption by considering the effect of other potentially
important degrees of freedom, such as the internal structure
of clusters.

A. Direct polymerization models of spontaneous fibril
nucleation and the nucleation theorem

To see how spontaneous nucleation emerges from a direct
polymerization model, we consider the following master
equation describing the time evolution of the concentration
f (t,N) of aggregates of N monomers under the action of
elongation and dissociation processes:51–55

∂ f (t,N)
∂t

= c kon(N − 1) f (t,N − 1) − c kon(N) f (t,N)
+ koff(N + 1) f (t,N + 1) − koff(N) f (t,N), (3)

where c is the free monomer concentration, kon(N) and koff(N)
are the (size-dependent) rate constants for the addition and
removal of monomers. These rate constants are linked together

FIG. 1. (a) One-step nucleation is char-
acterised by a single slow coordinate
that corresponds to the cluster size N .
(b) Cluster free energy of classical nu-
cleation theory for a 3D spherical clus-
ter and for a 1D cluster. Note that in
1D there is no free energy barrier. (c)
Multistep nucleation is characterised by
additional slow coordinates. In the ex-
ample shown here, the additional slow
coordinate corresponds to a structural
change. The dashed line indicates a pos-
sible nucleation pathway.
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by the detailed balance condition

c kon(N − 1) feq(N − 1) = koff(N) feq(N), (4)

where feq(N) is the cluster size distribution function at
equilibrium. As detailed in Refs. 54 and 55, Eq. (3) can
be mapped onto a one-dimensional diffusion equation in a
potential landscape by assuming that f (t,N) varies sufficiently
smoothly with N so that the continuum limit approximation
applies

∂ f (t,N)
∂t

= konc
∂

∂N


∂ f (t,N)
∂N

+ β
∂Φ(N)
∂N

f (t,N)

, (5)

where β = 1/(kT) denotes the inverse temperature (k is the
Boltzmann constant) and we have introduced the cluster free
energy function Φ(N) defined by the relationship

feq(N)
c
= e−βΦ(N ). (6)

If the free energy function Φ(N) has a maximum at some
value N∗, corresponding to the critical nucleus size, then an
expression for the rate of nucleation can be obtained from
Eq. (5) using the saddle point approximation54–56

r ∼ konc
(
Φ′′(N∗)
2π β−1

)
e−βΦ(N

∗). (7)

Thus, the master equation (3) of direct polymerization yields
spontaneous nucleation. An important point to recognize here
is that Eq. (7) is valid for arbitrary cluster free energy
functions, so that depending on the specific form of Φ(N)
several models of spontaneous nucleation can be formulated.
Classical nucleation theory,57,58 for instance, describes clusters
of dimensionality d as an object with associated volume and
surface energy terms

Φ(N) = aσN
d−1
d − N∆µ (d > 1), (8)

where ∆µ = β−1 log(c/cs) is the supersaturation, cs the
saturation concentration, σ the surface tension (energy per
unit surface) of the interface between the aggregate and the
surrounding solvent, and a is a geometrical prefactor. The
balance between unfavourable entropy contribution from the
loss of molecular degrees of freedom and the favourable
energy from the bonds between monomers creates a barrier.
As N increases, more bonds are created between monomers
eventually overcoming the unfavourable entropy contributions
that make the small cluster unstable. The nucleus formation is
the rate limiting step and corresponds to the point at which the
free energy Φ(N) peaks (Fig. 1(b)), and according to Eq. (7)
the rate of nucleation is given by

r ∼ c e−
β∆µN∗
d−1 , N∗ =

( (d − 1)aσ
d ∆µ

)d
. (9)

It is easy to verify from Eq. (9) that the nucleus size N∗

satisfies the relationship

N∗ =
d log(r)
d log(c) − 1 = nc − 1, (10)

where the factor −1 comes from the concentration dependence
of the prefactor in Eq. (7). Equation (10) is a key result: it states
that the nucleus size can be obtained from the slope of a double

logarithmic plot of the nucleation rate r against the monomer
concentration c and provides a direct relationship linking
the physical size of nuclei to the experimentally accessible
reaction order nc of spontaneous nucleation. Importantly,
Eq. (10), which was derived here for the specific cluster free
energy function of Eq. (8), turns out to be a far more general
result known as the nucleation theorem.50 This theorem states
that Eq. (10) is valid for arbitrary cluster free energy functions
of the form Φ(N) = F(N) − N∆µ, so that in a nucleating
system where the aggregate number is the only relevant
degree of freedom, the experimental kinetic parameters nc

and γ can always be linked directly to the physical size of the
nuclei. As a final note, we remind here that, in the context
of classical nucleation theory, the surface energy term F(N)
of one dimensional clusters (d = 1) is independent of N so
that the cluster free energy function Φ(N) has no maximum
(Fig. 1(b)). Hence, direct polymerization in 1D is a downhill
process, where every aggregate is more stable that the previous
ones; there is no classical nucleation in a truly 1D system.58

Direct polymerization models have been used widely in
the protein aggregation literature to describe spontaneous fibril
nucleation. Important examples include classical nucleation
theory descriptions of amyloids as elongated 2D crystals.59–61

By considering prismatic aggregates of fixed width but
variable length and thickness built up by successively layered
β-sheets, expressions for the nucleation rate, nucleus size,
and nucleation work have been obtained. In accordance
with the nucleation theorem Eq. (10), these theories predict
the existence of a well-defined nucleus size which can be
obtained from a log-log plot of the nucleation rate against
monomer concentration. Recent simulation and theoretical
studies of fibril nucleation have highlighted that introducing
an interaction anisotropy in these models results in a non-
standard nucleation mechanism where the concept of a well-
defined nucleus size breaks and nuclei with varying size are
observed instead.62–64

B. Pre-equilibrium kinetic models of spontaneous
fibril nucleation

Worth mentioning at this point are pre-equilibrium kinetic
models of fibril nucleation, which often correspond to direct
polymerization mechanisms. These models are characterized
by two main assumptions. The first assumption is that clusters
do not possess internal structure, so that the nucleus can be
considered as a small piece of a long aggregate and the cluster
size is the only relevant degree of freedom in the system.
The second assumption is that the nuclei are in equilibrium
with the soluble monomer, so that their concentration can
be obtained by equating the respective chemical potentials
and the original kinetic problem is now transformed into an
equilibrium one. In these models the rate of nucleation can be
summarized as6,7,21–24,41,46,65–67

r = A cnc. (11)

The exact connection between the exponent nc and the nucleus
size is model dependent. For example, some authors22–24,65,66

describe the rate of nucleation as the rate at which nuclei
elongate, r = k+c [N∗], where k+ is the elongation rate constant
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and [N∗] is the concentration of nuclei. The assumption
that nuclei are in equilibrium with the monomers results in
[N∗] = KncN ∗, where Kn is the equilibrium constant for the
nucleus-monomer equilibrium. Combining these expressions
yields r = k+KncN ∗+1 and we find the following relationship
between the reaction order nc of spontaneous nucleation and
N∗:50

N∗ =
d log(r)
d log(c) − 1 = nc − 1. (12)

Other authors have employed similar pre-equilibrium argu-
ments to obtain alternative expressions for the nucleation rate
that differ in the interpretation of the reaction order, including
N∗ = nc + 1 or N∗ = nc, but not in substance.6,7,21,41,46,67 In
all these models, in fact, the value of the nucleus size is
directly related to the slope of a plot of log(r) against the
logarithm of the monomer concentration, and thus the physical
size of nuclei can in principle be accessed from kinetic
measurements. Several variations of these pre-equilibrium
models of nucleation have also been formulated, for instance
by considering different addition rates for monomers above
and below N∗,24,65,68–70 by assuming that the nucleus is formed
through successive associations of small oligomers71–74 or
by including reversible association steps for aggregate sizes
below N∗ and considering only irreversible polymerization
for N > N∗.71–73,75

III. KINETICS OF SPONTANEOUS FIBRIL
NUCLEATION WITH MULTIPLE DEGREES
OF FREEDOM

So far, we have considered the situation when the relevant
degree of freedom of the nucleating system is the physical
size of aggregates. Under these circumstances, the nucleation
theorem50 provides a direct relationship between the nucleus
size and the concentration dependence of the nucleation
rate. This result offers a powerful strategy for accessing
key information about the underlying nucleation step from
experimental measurements of aggregation kinetics. We now
make a step forward and consider the more complicated
situation when the nucleation process is controlled by
additional relevant degrees of freedom, such as the internal
structure of clusters. A prominent example of such a situation
is realized when the aggregating species change their shape
or conformation during nucleation. In fact, when considering
the assembly of soft species, such as proteins, one needs to
take into account the fact that the species within the final
aggregate might be in a significantly different state from their
counterparts in solution.76,77 This situation can be viewed as
a nucleation process that is governed by multiple degrees
of freedom (e.g., molecular rearrangements), in addition
to the cluster size, as sketched in Fig. 1(c). An important
realization of this scenario is the aggregation of amyloid
fibrils, where proteins acquire a β-sheet conformation within
the fibril, which is typically very different from their native
conformations in solution. A large number of structurally
unrelated proteins form this type of fibrils, hence amyloid
fibril formation is regularly accompanied by a marked change
in protein conformation. As demonstrated below, in this

scenario we do not find a single-valued relationship between
nucleus size N∗ and the reaction order nc, but rather find
that for a given value of nc the overall size of the nucleating
oligomers can change. Interestingly, however, we find that
a modified nucleation theorem connects nc to the sub-
oligomer size within which the conformational change takes
place.

A. Conformational change in amyloid nucleation

Amyloidogenic proteins can be characterised according
to their propensity to change their conformation and acquire
the β-sheet prone structure.78–81 This propensity for the
β-sheet controls the rate and pathways of amyloid fibril
nucleation.82–88 For proteins with low β-sheet propensity, the
conformational change from the native into the β-sheet form
is slow and energetically unfavourable, and the fraction of
proteins in the β-sheet conformation can act as a second slow
degree of freedom in amyloid fibril formation, in addition to
the aggregation number.

A number of experimental studies have investigated am-
yloid nucleation pathways and reported the existence of non-
β-sheet clusters during amyloid formation,89–97 suggesting
multi-step nucleation mechanisms, where fibril nucleation
takes place via disordered prefibrillar clusters.27,30,35,49,98,99

This nucleation scenario, also called a nucleated conforma-
tional conversion or a two-step nucleation, has also been in
the focus of several theoretical studies.82,83,86,100–107

B. Computer simulations of amyloid nucleation

As a quantitative understanding of aggregation processes
with more than one slow degree of freedom is still presently
lacking, it is beneficial to obtain interpretation of its kinetic
descriptors. Coarse-grained computer simulations can be
of great help in this case. Here, we use coarse-grained
Monte Carlo (MC) simulations to study the kinetics and
thermodynamics of nucleation of amyloid-like fibrils, for
proteins with a range of β-propensities, attempting to
rationalise experimentally measurable kinetic parameters in
terms of the underlying microscopic steps. Amyloid fibril
formation is known to involve pre-nucleation disordered
oligomers, which do not possess much β-sheet content typical
for fibrils, hence the oligomer aggregation number emerges as
one slow degree of freedom, while the β-sheet content, typical
for fibrils, emerges as the second one. Our model, although
presented in the context of amyloid nucleation, is generic and
can be applied to formation of any protein filaments which
involves a conformational change.

We employ a minimal Monte Carlo computational model
that reproduces fibril nucleation, as described in our previous
work.45,104 Briefly, the model accounts for the fact that
amyloidogenic peptides and proteins exist in minimally
two states: a state in solution (denoted “s”) that can form
disordered oligomers and a higher free-energy state that
can form the β-sheet enriched fibrils (denoted “β”).104,109

The “s” state is modelled as a hard spherocylinder with
an attractive patch at the tip, which represents non-specific
interprotein interactions and drives the formation of small
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FIG. 2. The Monte Carlo model. (a) The protein can switch between two
states: the soluble state, “s,” that is lower in energy, interacts weakly with its
own kind, and forms disordered oligomers and the β-sheet prone state,“β,”
which is higher in energy, but interacts stronger with its own type than the
soluble state, and forms fibrils. Attractive patches are coloured in blue and
red for the “s” and “β” state, respectively. (b) Aggregates of the two possible
states: disordered oligomer (left panel) and fibril (right panel). (c) At low
protein concentrations nucleation proceeds via oligomers. Illustration of an
oligomer of size N = 6, where the nucleation takes place when two proteins
simultaneously convert into the β-prone state, which triggers the nucleus
growth into a long fibril.

disordered oligomers, as depicted in Figs. 2(a) and 2(b).
The strength of the attraction between two “s” proteins is
characterised with a parameter ϵ ss, set to ϵ ss = 5.5kT in this
paper. The fibril forming configuration is described as a hard
spherocylinder with an attractive side patch, which captures
the interactions between the β-sheet prone state, such as the
hydrogen-bonding and hydrophobic interactions, and leads to
the fibrillar aggregates (Figs. 2(a) and 2(b)). The magnitude
of this attraction is considerably stronger than that between
proteins in the soluble state, with ϵ ββ = 30kT . The “s”-“β”
interaction was set to ϵ sβ = ϵ ss + 1kT , as in our previous
work.104 Throughout the text, k denotes Boltzmann’s constant
and T the temperature.

We start our simulations with 600 proteins randomly
distributed in a periodic cubic box, with all proteins in the “s”
state. A protein is randomly chosen to be swapped between the
“s” and “β” state with a probability Pswap. The “s” → “β”
swap is thermodynamically unfavourable, and is penalised
with an excess chemical potential of ∆µsβ, to reflect the loss
of the conformational entropy of the β-hairpin compared to the
form in solution. This value of ∆µsβ quantifies the protein’s
β-sheet propensity, and controls the additional slow degree of
freedom. The degree of oligomerisation of the proteins in the
“s”-state can be controlled via the protein concentration c, as
probed in the text.110

To obtain information about the kinetics of fibril
nucleation, we use the mean first passage time as the proxy for
nucleation rate, and calculate the rate of primary nucleation
as the inverse of the average lag time for nucleation.45 The
lag time is defined as the number of MC steps needed for the
first oligomer containing at least two β-proteins to appear in
the simulation, since the appearance of such a nucleus always
leads to further fibril growth in our simulations. We however

note that such an oligomer can contain any composition of the
proteins in the “s” state and can be of any overall size. The
average lag time is then calculated from at least 6 repetitions of
the same system with different random seeds, and is expressed
in units of 108 MC steps.

C. Kinetics of amyloid nucleation computed
in simulations

At low protein concentrations, which is the regime we
focus on in this paper, nucleation proceeds via oligomers, as
depicted in Fig. 2(c). Starting from an equilibrated population
of soluble proteins and their oligomers, we have calculated
the rate of fibril nucleation across a wide range of protein
concentrations, as shown in Fig. 3(a), for the case of a protein
with a low propensity for the β-state (∆µsβ = 20kT) and the
protein with a relatively high β-propensity (∆µsβ = 10kT).
As expected, the rate of nucleation increases with increasing
protein concentration, and protein β-propensity. The scaling
exponent, nc, which relates the reaction order of the nucleation
step with the monomer concentration is given by the slope of
the plot in Fig. 3(a), and is found to decrease with increasing
β-propensity.

What is the physical interpretation of the scaling exponent
nc? An obvious characteristic of nc is that it decreases sharply
in the vicinity of the critical micelle concentration (cmc). The
cmc is the concentration above which increasing the total
protein concentration leaves the concentration of monomers
in solution unaffected, causing the weaker dependence of the
nucleation rate on the protein concentration observed above
the cmc (Fig. 3(b)). Since amyloidogenic proteins typically
occur at low concentrations, as low as nanomolar, we focus
here on the meaning of the exponent at low concentrations,
much before the cmc is reached. In this concentration regime,
the measured scaling exponent is nc ≈ 4.5 and γ ≈ 2, for
the protein with a low and high β-propensity, respectively
(Fig. 3(a)).

In light of the various theories of nucleation discussed in
Section II, where the scaling of the nucleation rate was found to
be linked with the protein concentration raised to the critical
nucleus size (Eq. (10)), we studied the size (aggregation
number) of the nucleating oligomers, a parameter that can be
accessed directly in our simulations. Over the concentration
range studied here, the average aggregation number of the
nucleating oligomer changes between N∗ ≈ 2–12 for the low
β-propensity protein (red circles in Fig. 3(c)) and between
N∗ ≈ 2–4 for the high β-propensity one (blue crosses in
Fig. 3(d)). Clearly, the size of the nucleating oligomer
increases with the increase in the protein concentration, as
predicted in our previous analysis of free energy barriers
for nucleation via small oligomers.104 However, the size of
the nucleating oligomer does not correspond to the value
of the reaction order, and this discrepancy becomes more
prominent for the protein with low β-propensity. Instead,
we find that the reaction order corresponds to the subset
of proteins in the oligomer that directly participate in the
conversion step, as shown by the black filled circles in
Fig. 3(c) for the low β-propensity protein and the black
squares in Fig. 3(d) for the high β-propensity protein. This
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subset includes the converting protein, and the proteins
that directly interacted with it in the conversion step. Not
unexpectedly, the conformational conversion ceases to be a
slow degree of freedom for the high β-propensity protein,
and the situation where the reaction order corresponds
to the oligomer size, described by classical nucleation, is
recovered.

At this point, it is worth noticing that in order to test for
the presence of possible additional time scales involved in our
results, we repeated the rate measurements for a larger value
of the “s” → “β” conversion attempt, Pswap = 1 in our MC
scheme (data not shown). In this case, the reaction was overall
faster, but the scaling exponent and sizes of the nucleating
oligomers remained unchanged, as the free energy landscape
of the system remained unaltered.

D. Control of kinetics of amyloid nucleation

In what follows, we explore the factors that control
the kinetics of amyloid nucleation, or in general, nucleation
via oligomers which includes a conformational change of
the nucleating molecule. As previously discussed,104 the free
energy barrier for nucleation with such two slow degrees of
freedom is a trade-off between two opposing effects. At
constant protein concentration, the probability of protein
conversion from a soluble into the β-sheet prone state
increases with the increase in the cluster size N . At the

same time, the probability of formation of an oligomer of
size N , given by c(N), decreases with N . Hence, it follows
that there is an intermediate cluster size that is optimal for
nucleation at constant protein concentration, and this optimal
cluster size increases with increasing protein concentration.
In our simulations we can measure the conversion probability
of a protein within an oligomer of the given size per MC
step,108 Pc(N), as shown in Fig. 4(a). We can also separately
measure the steady-state concentration of oligomers at a
certain protein concentration, c(N), from simulations under
the situation when proteins are not allowed to convert into the
β-prone state, as shown in Fig. 4(b).

Clearly, the conversion probability initially increases with
increasing oligomer size (Fig. 4(a)). The reason for this
observation is two-fold: firstly, larger oligomers contain a
larger number of proteins available for conversion; secondly
and more importantly, larger oligomers can have more possible
binding partners to energetically stabilise the unfavourable
“s” → “β” conversion. The slope of this function Pc(N)
decreases abruptly at some point, after which Pc(N) saturates
to a plateau. On the other hand, the oligomer concentration
c(N) decreases with increasing oligomer size (Fig. 4(b)). The
probability of nucleation per MC step of a cluster of size N
should then be given by the product Pc(N) · c(N). Fig. 4(c)
shows this product versus the oligomer size for five different
protein concentrations. The nucleation probability per MC
step at a certain protein concentration, given by Pc(N) · c(N),

FIG. 3. Kinetics of nucleation via oligomers from Monte Carlo simulations. (a) The rate of nucleation versus protein concentration measured in simulations, for
proteins with low propensity for β-sheet (∆µsβ = 20kT , red circles) and high β-sheet propensity (∆µsβ = 10kT , blue crosses). (b) The concentration of free
monomers in solution versus the total protein concentration. The solid line has the slope of 1, and the dashed line indicates the critical micelle concentrations.
(c) The average size of the overall nucleating oligomer (red circles) for the low β-propensity protein (∆µsβ = 20kT from (a)), and the average size of the
sub-oligomer participating in the conversion step (black circles). (d) The average sizes of the overall nucleating oligomer (blue crosses) and the sub-oligomer
participating in the conversion step (black squares) for the high β-propensity protein (∆µsβ = 10kT from (a)).
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FIG. 4. (a) The calculated probability of “s” → “β” conversion of a single protein within an oligomer of the size N , for the protein with a low β-propensity,
∆µsβ = 20kT , per MC step. (b) Steady-state concentration of “s”-state oligomers of size N for five different protein concentrations. (c) Product of a conversion
probability within an oligomer of a size N per MC step, from (a), with the concentration of the oligomers of size N , from (b). (d) The calculated rate: Sum of
the concentrations of all oligomers multiplied by the corresponding protein conversion rates within an oligomer, across the concentration range, as in Eq. (13).
The nucleation rate measured in simulations for the same set of parameters is shown for comparison (red circles), taken from Fig. 3(a).

clearly exhibits a maximum, which corresponds to the most
probable oligomer size for nucleation, N∗. It is essential to
notice that this oligomer size N∗ does not correspond to the
most probable oligomer size observed in the system, which is
N = 2 (Fig. 4(b)).

The overall rate of nucleation should then depend, up to
the prefactor, on the product of the two contributions, summed
over all possible cluster sizes

r ∼
∞

N=1

Pc(N) · c(N). (13)

Note that the physical dimensions or r are expressed
in units of concentration per MC step. Using Eq. (13), we
calculated the rate of nucleation, r , for the protein with a
low β-propensity ∆µsβ = 20kT (Fig. 4(d)), and compared
it to the corresponding nucleation rate measured directly in
simulations. The comparison shows an excellent agreement,
up to a prefactor, between the calculated rate and the rate
measured in simulations, giving the same scaling exponent.
These results indicate that the reaction order is not only
governed by the size of the nucleating cluster, as it is in
the case of classical nucleation, but also by the probability

FIG. 5. (a) The calculated probability of “s” → “β” conversion per MC step of a single protein within an oligomer of the size N , for three different
β-propensities, from top to bottom: ∆µsβ = 10kT , ∆µsβ = 20kT , and ∆µsβ = 30kT . The arrows mark the respective saturation of the conversion probability.
(b) The calculated rate, from Eq. (13), for three different β-propensities.
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of conformational conversion within such a cluster, which
is an additional slow degree of freedom in this nucleation
process.

The probability for the conformational conversion is in
general governed by the free energy difference between the
two conformational forms, given by ∆µsβ in our simulations,
and the interactions between the species within the oligomer,
given by ϵ ss and ϵ sβ in our simulations. To test the hypotheses
that the scaling exponent is controlled by the functional form
of Pc(N), we computed the conversion probability per MC step
Pc(N) for three proteins with different β-propensities, while
keeping the interaction parameters unchanged, as shown in
Fig. 5(a). Trivially, the conversion probability increases with
increasing β-propensity. However, the onset of the plateau
occurs at smaller oligomer sizes for proteins with higher β-
propensities, as marked by arrows in Fig. 5(a). This saturation
can be viewed as the average number of neighbouring proteins
needed for the conversion to become sufficiently probable.
This number is smaller for proteins with higher β-propensity,
and will determine the value of the reaction order. Fig. 5(b)
shows the calculated nucleation rate, following Eq. (13),
for the three proteins with different β-propensities. Indeed,
a decrease in the β-propensity leads to an increase in the
reaction order. Hence the functional form of Pc(N) has a
profound effect onto the reaction order, where the latter can
be interpreted as the number of interacting proteins within the
cluster necessary to stabilize the conformational conversion.

IV. CONCLUSIONS

In this paper, we have studied the phenomenon of
spontaneous nucleation in the context of protein filament
formation, a process which has been discussed in the literature
for over 50 years and has important implications in many
areas of research. We have considered the phenomenon
of spontaneous fibril formation first by assuming that the
cluster size is the only relevant degree of freedom in the
system. In this situation, the nucleation theorem states that the
kinetic descriptors commonly measured in experiments, such
as reaction orders and scaling exponents, relate in a direct way
with the critical nucleus size N∗.

We then introduced an additional slow coordinate in the
nucleating system by allowing for a conformation conversion
of the aggregating proteins. Using coarse-grained Monte-
Carlo simulations, we probed the kinetics of this fibril
nucleation process with two slow degrees of freedom. In
the case of amyloid nucleation, this includes the aggregation
number and the content of the fibrillar structure, the latter
being characterised by the fraction of proteins in a β-sheet
conformation. Our analysis showed that, in this case, the
reaction order nc does not relate with the physical size
of the aggregating oligomers, but that nc is modulated by
the structural conversion within oligomers as the additional
slow structural variable is describing the system. Under
these circumstances, nc is found to correspond to the sub-
cluster size that directly participates in the conversion and
stabilizes the converted protein. These results provide direct
practical insights into the interpretation of kinetic data of fibril
formation.
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