Kubas, A;
Orain, C;
De Sancho, D;
Saujet, L;
Sensi, M;
Gauquelin, C;
Meynial-Salles, I;
... Léger, C; + view all
(2016)
Mechanism of O2 diffusion and reduction in FeFe hydrogenases.
Nature Chemistry
, 9
pp. 88-95.
10.1038/nchem.2592.
Preview |
Text
nat_chem_02_06_2016_final.pdf - Accepted Version Download (4MB) | Preview |
Abstract
FeFe hydrogenases are the most efficient H2-producing enzymes. However, inactivation by O2 remains an obstacle that prevents them being used in many biotechnological devices. Here, we combine electrochemistry, site-directed mutagenesis, molecular dynamics and quantum chemical calculations to uncover the molecular mechanism of O2 diffusion within the enzyme and its reactions at the active site. We propose that the partial reversibility of the reaction with O2 results from the four-electron reduction of O2 to water. The third electron/proton transfer step is the bottleneck for water production, competing with formation of a highly reactive OH radical and hydroxylated cysteine. The rapid delivery of electrons and protons to the active site is therefore crucial to prevent the accumulation of these aggressive species during prolonged O2 exposure. These findings should provide important clues for the design of hydrogenase mutants with increased resistance to oxidative damage.
Type: | Article |
---|---|
Title: | Mechanism of O2 diffusion and reduction in FeFe hydrogenases |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1038/nchem.2592 |
Publisher version: | http://dx.doi.org/10.1038/nchem.2592 |
Language: | English |
Additional information: | Copyright © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy |
URI: | https://discovery.ucl.ac.uk/id/eprint/1531948 |
Archive Staff Only
View Item |