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Inherited variants affecting RNA editing may contribute 
to ovarian cancer susceptibility: results from a large-scale 
collaboration 
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ABSTRACT
RNA editing in mammals is a form of post-transcriptional modification in which 

adenosine is converted to inosine by the adenosine deaminases acting on RNA (ADAR) 
family of enzymes.  Based on evidence of altered ADAR expression in epithelial ovarian 
cancers (EOC), we hypothesized that single nucleotide polymorphisms (SNPs) in 
ADAR genes modify  EOC susceptibility, potentially by altering ovarian tissue gene 
expression.  Using directly genotyped and imputed data from 10,891 invasive EOC 
cases and 21,693 controls, we evaluated the associations of 5,303 SNPs in ADAD1, 
ADAR, ADAR2, ADAR3, and SND1. Unconditional logistic regression was used to 
estimate odds ratios (OR) and 95% confidence intervals (CI), with adjustment for 
European ancestry. We conducted gene-level analyses using the Admixture Maximum 
Likelihood (AML) test and the Sequence-Kernel Association test for common and 
rare variants (SKAT-CR).  Association analysis revealed top risk-associated SNP 
rs77027562 (OR (95% CI)= 1.39 (1.17-1.64), P=1.0x10-4) in ADAR3 and rs185455523 
in SND1 (OR (95% CI)= 0.68 (0.56-0.83), P=2.0x10-4).  When restricting to serous 



Oncotarget72384www.impactjournals.com/oncotarget

INTRODUCTION

Over the past decade it has been recognized that 
the complexity of higher organisms is related to the 
information stored in non-protein-coding regions of the 
genome. Such complexity may be attributed to a range of 
processing events and post-transcriptional modifications 
that affect the fate of RNA, including alternative splicing, 
5’ capping, 3’ polyadenylation, and RNA editing [1-3]. 
The most common type of RNA editing in eukaryotes is 
site-selective hydrolytic deamination of adenosine into 
inosine (A-to-I) within double-stranded RNAs, and recent 
bioinformatic analyses and high-throughput sequencing 
efforts have revealed that A-to-I editing is widespread 
and alters non-coding and protein-coding sequences 
throughout the genome [4]. 

A-to-I editing is mediated by a family of adenosine 
deaminases acting on RNA (ADARs), and this process 
modulates expression of genes and biological pathways via 
several mechanisms [4]. Indeed, altered expression and/or 
activity of ADAR enzymes has been linked to a variety 
of conditions, including cardiovascular and neurological 
diseases and cancers [4]. Epithelial ovarian cancer (EOC) 
is the fifth leading cause of cancer death among women 
in the United States [5], and ADAR expression levels 
have been reported to be significantly higher in serum and 
peritoneal fluid from patients with EOCs compared with 
benign ovarian tumors [6, 7], suggesting ADARs may be 
useful biomarkers for the diagnosis and management of 
EOC. 

We hypothesized that germline single nucleotide 
polymorphisms (SNPs) involving ADAR-related/
RNA editing genes may contribute to EOC risk. The 
main purpose of this investigation was to determine 
whether SNPs in five ADAR genes (ADAD1, ADAR, 
ADAR2, ADAR3, and SND1) were associated with EOC 
susceptibility. We used data available from a large-scale 
genotyping collaboration involving 10,891 EOC cases 
and 21,693 controls from the international Ovarian Cancer 
Association Consortium (OCAC) [8]. We also sought to 
evaluate the overall contribution of each gene on EOC 
susceptibility and to determine whether candidate SNPs 
associated with altered expression of corresponding genes 
in EOC tumor tissue.

 RESULTS

Study population

The study sample included 10,891 invasive EOC 
patients and 21,693 controls of European ancestry 
(Supplementary Table 1). Selected subject characteristics 
are shown in Table 1. The mean age at diagnosis for cases 
was 58.1 years, the mean age at interview for controls 
was 56.1 years. Cases were more likely than controls to 
be nulliparous and to have never used oral contraceptives. 
Most cases had serous histology (59.7%), distant stage 
(63.0%), and high-grade disease (58.9%). 

Variant-level association analysis and overlap 
with regulatory domains

SNP-level association analysis revealed top-ranked 
SNPs (defined as the top 5% of SNPs having the most 
statistically significant P values) in ADAR, ADAR3, and 
SND1 in the all-histologies and serous-only analyses 
(Figure 1A and 1B). Table 2 summarizes association 
results for the most statistically significant SNPs overall 
or by serous histology (P < 4.0x10-3); associations were 
not significant after correction for multiple testing (FDR 
> 0.15). Most of the top-ranked variants were imputed, 
rare or low frequency (MAF < 0.05), and not part of a 
shared haplotype. rs77027562 (A>G; MAF = 0.009), the 
top risk-associated variant among all histologies (OR 
(95% CI) = 1.39 (1.17-1.64, P = 1.0 x10-4)), resides in 
an intron of ADAR3. ADAR3 SNP rs77027562 and its 
proxies (r2>0.80) reside in genomic regions that overlap 
with regulatory domains, particularly enhancers in blood 
and brain (Table 3). The next top-ranked variant, SND1 
rs185455523 (T>A), was associated with a decreased 
EOC risk (OR (95% CI) = 0.68 (0.56-0.83), P = 1.5 x10-4),  
but this SNP and its proxies do not appear to overlap with 
regulatory domains. When analysis was restricted to the 
6,500 patients with invasive serous adenocarcinomas, 
the magnitude of association was slightly attenuated 
for ADAR3 rs77027562 (OR = 1.33, P = 6.1x10-3) and 
slightly stronger for SND1 rs185455523 (OR = 0.60, P 
= 1x10-4). Exploratory analysis for the less common 
histologic subtypes (endometrioid (n = 1,439), mucinous 

histology (n=6,500), the magnitude of association strengthened for rs185455523 
(OR=0.60, P=1.0x10-4). Gene-level analyses revealed that variation in ADAR was 
associated (P<0.05) with EOC susceptibility, with PAML=0.022 and PSKAT-CR=0.020. 
Expression quantitative trait locus analysis in EOC tissue revealed significant 
associations (P<0.05) with ADAR expression for several SNPs in ADAR, including 
rs1127313 (G/A), a SNP in the 3’ untranslated region.  In summary, germline variation 
involving RNA editing genes may influence EOC susceptibility, warranting further 
investigation of inherited and acquired alterations affecting RNA editing.
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Figure 1: Manhattan plot for candidate RNA editing SNPs among a) all invasive cases (n = 10,891) versus controls (n 
= 21,693) and b) serous cases (n = 6,500) versus controls. 
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(n = 696), and clear cell (n = 660)) revealed several SNP-
level associations unique to each sub-type (Figure 2A-
2C). For example, rs145678553-C in ADAR3 is a rare 
variant (MAF = 0.0047) associated with an increased risk 
for mucinous EOC (OR (95%CI) = 3.46 (1.91-6.26), P 
= 3.99x 10-5 ), and rs116983191-A in ADAR3 is a low-
frequency variant (MAF = 0.044) associated with clear 
cell carcinoma (OR (95%CI) = 1.86 (1.42-2.43, P = 6.91 
x 10-6). rs145678553-C was not represented in Haploreg. 
rs116983191-A is located in promoter and enhancer 
regions, but not in tissues relevant to ovarian cancer.

Gene-level analyses

Gene-level analyses based on AML and SKAT-CR 
revealed that variation in ADAR was nominally associated 
(P < 0.05) with susceptibility to all invasive EOC, with P 
= 0.02 using both methods (Table 4). Histology-specific 
analyses revealed that ADAR variation was associated with 
endometrioid EOC susceptibility (PSKAT-CR = 0.005/PAML 
= 0.008). When using a Bonferroni threshold of 0.0025, 
only ADAR3 variation was significantly associated with 
mucinous histology (PSKAT-CR = 0.0016/PAML = 0.031). 

To examine associations between genotype and 
gene expression for the 5 candidate RNA editing genes, 
expression quantitative trait locus (eQTL) analysis was 
performed using matched genotype and tissue expression 
data from The Cancer Genome Atlas (TCGA) high-grade 

serous adenocarcinoma tumors (https://tcga-data.nci.nih.
gov/tcga/). eQTL analysis revealed statistically significant 
associations (P < 0.05) with ADAR expression for several 
SNPs in ADAR, including rs1127313 (G/A), a SNP in the 
3’UTR within a putative miRNA binding site that was 
associated with susceptibility in all histologies (OR = 
1.05, P = 0.009). rs1127313 is also in high LD (r2 = 0.86) 
with top ADAR risk SNP rs9426826 (see Table 2). ADAR 
tumor tissue expression was slightly higher among G 
allele carriers of rs1127313 compared to A allele carriers 
(P = 0.027; Figure 3). rs1127313 is also an eQTL for 
ADAR in whole blood (Supplementary Table 2), and lies 
in a genomic region with enhancer features and DNase 
I hypersensitivity site in several tissues, including ovary. 
Statistically-significant cis-eQTLs were not detected for 
SNPs in other candidate RNA editing genes. 

DISCUSSION

An emerging body of data suggest that defects 
in RNA editing may contribute to a range of human 
diseases, including cancer [2-4, 9-11]. The current large-
scale collaboration represents the first comprehensive 
association study of germline variants involving RNA 
editing genes and susceptibility to epithelial ovarian 
cancer. At the SNP- level, the strongest associations 
were observed for SNPs in RNA editing genes ADAR3 
and SND1, but no associations reached genome-wide 

Table 1: Characteristics of study participants (N = 32,584)

Variable Cases (n = 10,891) Controls (n = 21,693)

Age at diagnosis/interview(y),  mean (SD) 58.1 (11.4) 56.1 (24.9)
History of pregnancy
   Yes
   No
   Unknown

6021 (80.4)
1318 (17.6)
149 (2.0)

15190 (87.9)
1868 (10.8)
217 (1.3)

Oral contraceptive use
    Ever
    Never
    Unknown

4017 (57.4)
2864 (41.0)
112 (1.6)

10572 (63.3)
5900 (35.3)
243 (1.5)

Histology 
     Serous
     Mucinous
     Endometrioid
     Clear Cell
     Mixed Cell
     Other or unknown epithelial type

6500 (59.7)
696 (6.4)
1439 (13.2) 
660 (6.1)
369 (3.4)
1227(11.3)

NA

Stage
     Localized
     Regional 
     Distant
     Unknown   

1425 (15.7)
1838 (20.2)
5721 (63.0)
103 (1.1)

NA

Grade
     I/II
     III/IV
     Other/Unknown

2882 (32.8)
5174 (58.9)
729 (8.3)

NA
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Figure 2: Manhattan plot for candidate RNA editing SNPs among a) endometrioid cases (n = 1,439) versus controls (n 
= 21,693), b) mucinous cases (n = 696) versus controls, and c) clear cell cases (n = 660) versus controls.
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levels of statistical significance. Gene-level analyses 
highlighted ADAR and ADAR3 as potential contributors to 
EOC susceptibility within the set of ADAR-related genes. 
Finally, positive eQTLs were also observed between 
ADAR genotype and ADAR expression in EOC tumor 
tissue. 

Focused evaluations of RNA editing SNP-disease 
associations are limited [12], especially with cancer as an 
outcome, so it is not possible to compare our SNP findings 
to those of other studies of cancer risk. We are, however, 
unaware of GWAS hits in or near these genes. Several 
recent studies [2, 3] have evaluated the genomic landscape 
and clinical relevance of RNA editing in numerous human 
tissue types. These analyses used RNA-sequencing data 
from both tumor and normal samples profiled as part 
of TCGA Project. Striking differences in RNA-editing 
patterns were observed in tumors relative to matched 
normal tissues for 12 cancer types [2]. Further analyses 
revealed that altered RNA editing patterns in tumors 
correlated with ADAR expression, and that non-random, 
clinically-relevant RNA editing events (frequently located 
in noncoding RNAs, nonsynonymous sites, intronic 
regions, and non-Alu elements) correlated with tumor 
classification and patient survival and with increased cell 

survival and altered drug sensitivity [2, 3]. Interestingly, 
gene amplification-associated overexpression of ADAR 
was recently shown to enhance lung tumorigenesis and 
contribute to poor outcomes by affecting downstream 
RNA editing patterns [10]. As mentioned previously, 
ADAR expression levels have been reported to be 
significantly higher in serum and/or peritoneal fluid from 
patients with EOCs compared with benign ovarian tumors 
[6, 7]. Although high-grade serous EOCs from TCGA 
were not profiled as part of the aforementioned genomic 
investigations [18, 19], Haploreg 4.1 effectively integrates 
GTEX eQTL results for normal ovary. 

Taken together with several lines of investigation 
from ovarian [6, 7] and other cancers [2, 3, 10] the current 
study suggests that ADARs (and ADAR in particular) may 
be useful biomarkers for the diagnosis and management of 
EOC. Thus, with replication, ADAR genotype status and/
or expression level may serve as a risk factor for EOC. 
Indeed, we find that our top risk SNP in ADAR, rs9426826, 
has several proxy variants (r2>0.8, Supplementary Table 2) 
that are strongly associated with expression of this gene 
in blood (rs1127313: 7.23x10-14) and to a lesser extent, 
expression in high-grade serous EOC tumors (rs1127313: 
P = 0.027). Based on growing data which demonstrate 

Table 2: Top-ranked RNA editing SNP-EOC risk associations among all histologies (N = 10,891) or serous histology (N 
= 6,500) versus controls (N = 21,693), sorted by gene and p-value

Gene SNP Alleles MAF Imputation 
accuracy R2

All histologies 
OR (95% CI) P FDR Serous

OR (95% CI) P FDR

ADAR rs9426826 C>G 0.481 0.86 1.05 (1.02-1.09) 0.0038 0.76 1.04 (1-1.08) 0.0759 0.9996

 rs3738030 A>C 0.116 0.79 0.93 (0.89-0.98) 0.0080 0.83 0.91 (0.86-0.97) 0.0038 0.9996

ADAR3 rs77027562 a A>G 0.009 0.41 1.39 (1.17-1.64) 0.0001 0.34 1.33 (1.08-1.62) 0.0061 0.9996

 rs11250601 C>T 0.070 0.62 0.89 (0.83-0.95) 0.0007 0.34 0.9 (0.83-0.97) 0.0071 0.9996

 rs142123280 b A>G 0.001 0.48 2.08 (1.36-3.17) 0.0007 0.34 2.01 (1.23-3.29) 0.0056 0.9996

 rs4880912 T>C 0.200 0.82 1.07 (1.03-1.11) 0.0015 0.51 1.06 (1.01-1.11) 0.0267 0.9996

 rs11598359 C>T 0.005 0.45 0.68 (0.54-0.87) 0.0018 0.53 0.63 (0.47-0.86) 0.0032 0.9996

 rs6560760 C>T 0.025 0.59 1.17 (1.06-1.3) 0.0024 0.65 1.07 (0.95-1.22) 0.2688 0.9996

 rs2676202 c C>T 0.122 0.66 0.93 (0.88-0.98) 0.0038 0.76 0.9 (0.85-0.96) 0.0014 0.9996

 rs139646191 TAGAA>T 0.062 0.66 1.11 (1.03-1.18) 0.0038 0.76 1.07 (0.98-1.16) 0.1242 0.9996

 rs139812582 G>A 0.002 0.47 1.71 (1.15-2.54) 0.0078 0.83 2.03 (1.31-3.14) 0.0017 0.9996

 chr10:1419524 T>TGG 0.009 0.60 0.79 (0.65-0.95) 0.0106 0.83 0.68 (0.54-0.86) 0.0014 0.9996

 rs185147330 C>T 0.005 0.45 1.32 (1.05-1.67) 0.0176 0.86 1.54 (1.19-2) 0.0011 0.9996

SND1 rs185455523 T>A 0.008 0.56 0.68 (0.56-0.83) 0.0002 0.34 0.6 (0.46-0.77) 0.0001 0.45

 rs145106202 d G>C 0.009 0.87 0.73 (0.61-0.88) 0.0008 0.35 0.67 (0.53-0.84) 0.0006 0.9996

 rs181460088 C>T 0.008 0.80 0.73 (0.6-0.89) 0.0021 0.58 0.67 (0.52-0.86) 0.0020 0.9996

 rs199750392 G>GT 0.036 0.61 1.14 (1.05-1.25) 0.0028 0.71 1.11 (1-1.23) 0.0550 0.9996

 rs79138382 C>T 0.007 0.72 1.32 (1.09-1.61) 0.0056 0.83 1.42 (1.13-1.77) 0.0025 0.9996
Significant SNPs (P < 4.0x10-3) are listed and SNPs in LD (r2>0.60) with more significant SNP are not reported:
a) 7 SNPs in LD not reported 
b) 12 SNPs in LD not reported 
c) 1 SNP in LD not reported
d) 1 SNP in LD not reported
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the inhibition of tumor growth in the presence of ADAR 
inhibitors [13] and other therapeutic agents such as the 
IGFR-1R inhibitor BMS536924 and the MEK inhibitors 
CI1040 and trametinib [2], ADAR genotype and/or 
expression may help identify women whose tumors may 
respond to new combinations of therapies. 

Strengths of the current study include the large 
sample size that primarily enabled detection of small 
effects for common variants, the relatively homogeneous 
population of EOC cases, and the multi-tiered genomic 

evaluation. However, this study was underpowered to 
detect the rare variants that were identified and is burdened 
by the low imputation quality. Additionally, the study is 
limited in that eQTL analysis did not permit adjustment 
for somatic copy number changes and DNA methylation 
status, factors that can influence transcript abundance and 
confound associations between germline polymorphisms 
and gene expression [14-16]. Moreover, it is possible 
that the top-ranked SNPs could potentially affect genes 
other than the RNA editing genes that drive candidate 

Table 3: HaploReg results for top-ranked ADAR3 SNP rs77027562 and its proxies from univariate analyses

Position (hg38) LD 
(r2) SNP (Ref>Alt) MAF in 

EUR
Functional 
Annotation CR

Promoter 
histone 
marks

Enhancer 
histone 
marks

DNAse site Proteins 
bound eQTL Motifs 

Changed

Chr10:1688744 -- rs77027562 
(A>G) 0.02 Intronic No BRN BLD

ERalpha-a, 
RXRA, 
Zfp281

Chr10:1675149 0.94 rs12258319 
(G>T) 0.98 Intronic No BLD Pax-5

Chr10:1675875 0.94 rs7077743 
(C>T) 0.98 Intronic No BLD

BDP1, CAC-
binding-
protein, 
HNF4, p300

Chr10:1676470 0.94 rs6560758 
(T>C) 0.98 Intronic No

Chr10:1678882 0.94 rs10751814 
(A>G) 0.98 Intronic No GR, Rad21

Chr10:1680294 0.94 rs7089727 
(A>G) 0.98 Intronic No

ESDR, 
IPSC, 
BLD, LNG

ESC, BLD CTCF

Chr10:1681695 0.94 rs6560759 
(T>C) 0.98 Intronic No ESDR, 

BLD Myc

Chr10:1687566 0.94 rs79784382 
(T>A) 0.02 Intronic No  BRN    

Cphx, Duxl, 
HNF6, Hmx, 
Hoxa13, Pbx-
1, Pbx3

Abbreviations: LD, linkage disequilibrium; MAF, minor allele frequency; EUR, European; CR, conserved region; eQTL, 
expression quantitative trait loci. Tissue groups: BRN, brain cells; BLD, blood and T-cells; ESDR, embryonic stem cell 
derived cells; IPSC, induced pluripotent stem cells; LNG, lung cell; ESC, embryonic stem cells. Proxies were defined as 
variants in LD (r2>0.8) with the index SNP rs77027562 (bolded) in 1000 genomes project Phase 1 data for Europeans. All data 
was accessed using HaploReg v4.1 available at: http://www.broadinstitute.org/mammals/haploreg/documentation_v4.1.html. 
Both conservation prediction algorithms, GERP and SiPhy-omega, were used. Only eQTLs for ADAR genes (5 genes) are 
given.

Table 4: Association between RNA editing genes and EOC susceptibility.

Gene
Total N 
Markers 
(N Tested)

N Rare 
Markers
(MAF<0.01)

N Common 
Markers
(MAF≥0.01)

All Invasive Serous Endometrioid Mucinous Clear cell
P. 
SKAT-
CR

P.AML 
Trend

P. 
SKAT-
CR

P.AML 
Trend

P. 
SKAT-
CR

P.AML 
Trend

P. 
SKAT-
CR

P.AML 
Trend

P. 
SKAT-
CR

P.AML 
Trend

ADAD1 210
(210) 98 112 0.698 0.749 0.300 0.433 0.054 0.179 0.857 0.804 0.696 0.635

ADAR1 155
(155) 50 105 0.020 0.022 0.110 0.101 0.005 0.008 0.943 0.841 0.780 0.411

ADAR2 754 
(754) 301 4563 0.861 0.894 0.623 0.720 0.134 0.496 0.338 0.208 0.105 0.041

ADAR3 2656 
(2654) 787 1867 0.216 0.266 0.334 0.541 0.587 0.470 0.002 0.031 0.234 0.502

SND1 1528
(1527) 764 763 0.630 0.809 0.703 0.376 0.919 0.895 0.632 0.204 0.773 0.535
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selection. Efforts to replicate these findings are needed; 
data will be available soon from a large, independent 
cohort of EOC cases genotyped by OCAC for this purpose 
(Amos et al, The OncoArray Consortium: a Network for 
Understanding the Genetic Architecture of Common 
Cancers (provisionally accepted, CEBP). Mechanistic 
studies to reveal how ADAR polymorphisms may affect 
oncogenic phenotypes will also be required, as will 
systematic investigations of the genomic landscape and 
clinical relevance of RNA editing in EOC using data from 
TCGA or other sources. 

In summary, this study provides data to support the 
hypothesis that germline polymorphisms in ADAR related 
genes may influence gene expression and susceptibility 
to EOC. Further investigations are needed to determine 
whether inherited and acquired alterations affecting RNA 
editing serve as biological mechanisms to promote the 
development of EOC. 

MATERIALS AND METHODS

Study population

A total of 41 studies (32 case-control and 9 case-
only) from OCAC contributed to this investigation 
(Supplementary Table 1). Briefly, cases were women 
diagnosed with histologically confirmed primary invasive 
EOC (95%), fallopian tube cancer (1%), or primary 
peritoneal cancer (4%). Controls were women without 

cancer and with at least one intact ovary on the reference 
date. Individual studies were grouped into 26 case-control 
strata. All studies provided data on disease status, age 
at diagnosis/interview, self-reported racial group, and 
histologic subtype. 

Genotyping, quality control (QC), and imputation

Peripheral blood was the primary source of germline 
DNA and was collected in the course of clinical care or 
research at each of the participating sites. The candidate 
SNPs selected for the current investigation were 
genotyped using a custom Illumina Infinium iSelect Array 
as part of the international Collaborative Oncological 
Gene-environment Study (iCOGS), an effort to evaluate 
211,155 genetic variants for association with cancer risk 
[17]. 

Briefly, OCAC genotyping was conducted at 
McGill University and Génome Québec Innovation 
Centre (Montréal, Canada) and Mayo Clinic Medical 
Genomics Facility. Each 96-well plate well contained 
250ng genomic DNA (or 500 ng whole genome-amplified 
DNA). Raw intensity data files were sent to the COGS 
data coordination center at the University of Cambridge 
for genotype calling and QC using the GenCall algorithm. 
Sample and SNP quality control procedures have been 
described previously; in brief, samples were excluded 
with call rates < 95%, >1% discordance, < 80% European 
ancestry, or ambiguous gender, and SNPs were excluded 
with call rates < 95% or monomorphism [18, 19].

Figure 3: Box-plot showing that ADAR1 tumor tissue expression differed, albeit only slightly, by rs1127313 genotype 
(p = 0.027).
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To improve genomic coverage and power [14], we 
imputed genotypes based on data from the 1000 Genomes 
Project (1KGP); we used IMPUTE2 version 2 after pre-
phasing with SHAPEIT [20]. All 14 populations in the 
1KGP were used as the reference. Before imputation, 
we excluded poorly performing SNPs according to the 
genotyping success rates, deviation from Hardy-Weinberg 
equilibrium (HWE) (P < 1x10-7), and replicate errors. To 
ensure the quality of the imputed genotypes, maximum 
likelihood genotype imputation was carried out and an 
estimate of the squared correlation between the imputed 
and true genotypes was calculated. Imputation quality is 
significantly decreased for low and rare frequency variants 
[21]. To be more inclusive of rare variants, we considered 
imputed SNPs with an r2> 0.40 as well-imputed [22] and 
included them in our analyses. The average imputation 
quality for included variants is detailed in Supplementary 
Table 4, overall and by MAF categories.

Gene and SNP selection

Five candidate genes were chosen for this study 
based on published literature which directly showed or 
suggested roles in the regulation of A-to-I RNA editing [1, 
4, 23]. The genes included adenosine deaminase domain 
containing 1 (ADAD1), adenosine deaminase, RNA-
specific (ADAR/ADAR1), adenosine deaminase, RNA-
specific, B1 (ADARB1/ADAR2), adenosine deaminase, 
RNA-specific, B2 (ADAR3/ADARB2), and staphylococcal 
nuclease and Tudor domain containing 1 (SND1). In total, 
5,303 SNPs in the 5 genes, 77 genotyped directly and 
5,226 imputed, were available for statistical analysis. 

Population stratification

HapMap DNA samples from European (CEU, n 
= 60), African (YRI, n = 53) and Asian (JPT+CHB, n = 
88) populations were also genotyped as part of the same 
custom Illumina iSelect Array. The program LAMP [24] 
was used to estimate intercontinental ancestry based on 
the HapMap (release no. 23) genotype frequency data for 
these three populations. Eligible subjects with greater than 
90 percent European ancestry were defined as European 
(n = 39,773). We then used a set of 37,000 unlinked 
autosomal markers to perform principal components 
analysis within each major population subgroup. To 
enable this analysis on very large sample sizes we used 
an in-house program written in C++ using the Intel MKL 
libraries for eigenvectors (available at http://ccge.medschl.
cam.ac.uk/software/).

Statistical analysis

Descriptive statistics were calculated in terms of 
means and standard deviations for continuous variables 
and frequencies and percents for categorical variables. 
The primary association analysis focused on individuals 
of European ancestry. Unconditional logistic regression 
was used to estimate odds ratios (OR) and their 95% 
confidence intervals (CI) between genotype and case 
status under a log-additive genetic model, with adjustment 
for the first five principal components representing sub-
European ancestry. Due to the heterogeneous nature of 
EOC, subgroup analyses were conducted to estimate 
genotype-specific odds ratios by histologic subtype: 
serous, endometrioid, mucinous, and clear cell carcinomas. 
False discovery rates (FDR) [25] were used to adjust 
for multiple comparisons, and FDR of 15% was used to 
declare significance. 

Two methods of gene-level evaluations were also 
conducted to combine association evidence from SNPs 
within each gene evaluated: the Admixture Maximum 
Likelihood (AML) Test [26] and the Sequence-Kernel 
Association test for the combined effect of common and 
rare variants (SKAT-CR) [27]. AML is an approach that 
simultaneously examines the global null hypothesis (of no 
SNP-outcome associations) and estimates the proportion 
of underlying false hypotheses. The AML uses univariate 
SNP-level results to calculate the AML Cochran-Armitage 
Trend test. Compared to other methods, AML has been 
shown to have similar or higher statistical power to detect 
associations except under the unlikely scenario that greater 
than 20% of all variants are associated with the outcome 
[26]. SKAT-CR evaluates the cumulative effect of rare and 
common variants, but does not consider low-frequency 
variants. These gene-level approaches were undertaken 
to complement SNP-level findings, and aimed to reduce 
the degrees of freedom, avoid model-fitting issues due 
to multicollinearity from LD, and to improve statistical 
power. The Bonferroni method was used to account for 
multiple comparisons. 

Expression quantitative trait locus (eQTL) analysis 
was performed to examine for association between 
genotype (n = 5,303, imputed as above in n = 5 genes) and 
corresponding gene expression for the 5 candidate RNA 
editing genes. Matched genotype and gene expression 
profiling data were obtained for 402 high-grade serous 
EOC samples evaluated in the Cancer Genome Atlas 
(TCGA) Project using previously described methods [19]. 
Briefly, germline genotypes and matched tumor gene 
expression data were downloaded from the TCGA data 
portal. To conduct the eQTL analysis, we used germline 
genotypes of SNPs/proxies as independent variables and 
expression levels as traits. Expression levels between 
minor allele carriers versus non-carriers were compared 
using the Wilcoxon rank sum statistic. Haploreg v4.1 
http://www.broadinstitute.org/mammals/haploreg/
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haploreg.php) [28] was used to evaluate the putative 
function of candidate SNPs.
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