
   

i 
 

 

Understanding The Formation Of Gold And 

Iron Based Nanomaterials Using  

X-ray Absorption Spectroscopy 

 

 

 

 

 

Anastasia Mantalidi 
 

 

 

 

UNIVERSITY COLLEGE LONDON 

DEPARTMENT OF CHEMISTRY  

 

A thesis presented in partial fulfilment of the requirements for the 

degree of Doctor of Philosophy (Chemistry) 

 

 

 

 

 

 

Supervised by Prof. Gopinathan Sankar and Dr. Timothy Hyde 
  

 

 

Christopher Ingold Building 

20 Gordon Street 

WC1H 0AJ 

 

 

2016

 



 

ii 
 

 

Declaration 

 

I, Anastasia Mantalidi, confirm that the work presented in this thesis is my own 

except where indicated. Where information has been derived from other sources, I 

confirm that this has been indicated in the thesis. 

 

 

 

Signed: _______________    

 

Anastasia Mantalidi       

 

2016  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 
 

 

Abstract 

 

In this thesis, X-ray Absorption Spectroscopy (XAS) is used to understand the 

speciation of molecular precursors in various reaction mixtures, elucidate potential 

effects on their structure from the presence of solvents and other reagents present, 

and monitor in situ their thermal decomposition leading to nanoparticle formation. 

XAS is a prominent technique for determining the local structure and oxidation 

state of an element of choice. Since long range order is not a requirement for XAS 

to be applied, it constitutes an ideal technique to study materials in solution phase.  

Chapter 1 provides a brief background of the key points in history that 

marked the commencement of the science of nanotechnology, as well as some of 

their important properties.  An introduction on the general synthetic strategies of 

nanoparticles follows, focusing on the two main chemical methods that were 

employed in this thesis; the chemical reduction and the thermal decomposition. A 

background of the evolution of the Au nanoparticle syntheses is provided, followed 

by the latest developments in the field that involves the synthesis of anisotropic Au 

nanoparticles. Similarly to Au nanoparticles, a detailed literature survey on the 

synthesis methods of iron oxide nanoparticles is presented, focusing on the thermal 

decomposition route which is the synthesis of choice for the work undertaken in 

Chapter 6, accompanied by a small section devoted to the stabilisation methods of 

these nanomaterials.  

Chapter 2 discusses the basic theory of the laboratory and synchrotron based 

characterisation techniques that were utilised in this thesis. Special emphasis is 

given to XAS, as that is the key technique of this work. As a result, XANES and 

EXAFS are discussed in detail, and the data analysis procedure is also presented, 

due to its importance and extensive use in this thesis.   

The studies of Chapter 3 are focused on the speciation of [AuCl4]
- in 

aqueous growth solutions, that upon addition of Au nanoparticle seeds, leads to the 

formation of Au nanoparticles with different morphologies. Since these growth 

solutions contain several reagents, this study addresses the effect of each reagent on 

the ligand environment and oxidation state of Au under realistic reaction conditions. 

For that purpose, ex situ studies were performed at the Au L3-edge upon stepwise 

addition of the reagents, and at the Ag k-edge whenever Ag+ was added to the 
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growth solution. The studies at the Ag K-edge probed the effect of the growth 

solutions on the silver environment too. Ex situ XAS characterisation of the Au 

nanoparticles at the Au L3-edge and Ag K-edge was also performed, providing 

valuable information of the coordination and oxidation state of Ag at the final 

nanoparticles, which is a highly researched topic nowadays. 

Chapter 4 presents the results from the in situ XAS studies on Au 

nanoparticle formation in ethylene glycol, in the presence and absence of the 

particle stabilizer polyvinylpyrrolidone. The results revealed that the particle 

stabiliser has a retarding effect on the nucleation of the Au nanoparticles but also 

affects the final particle size. It was also illustrated that beam effects alter the 

specific decomposition process through interaction of the X-ray beam with the 

solvent.  

The studies illustrated in Chapter 5 investigate the structure and synthesis 

of Au-Pd bimetallic nanoparticles, and the speciation of the starting precursors. 

Initially, the ex situ characterisation of Au-Pd nanoparticles synthesised by two 

different syntheses is illustrated. The syntheses are performed in oleylamine/xylene, 

through the concomitant thermal decomposition of Au and Pd containing molecular 

precursors. The nanoparticles in the first case were prepared using Au(ethynyl-1-

cyclohexanol) and [Pd(acac)2], while in the latter case, phase transferred [AuCl4]
- 

and [Pd(acac)2] were used. Notably, the Au(ethynyl-1-cyclohexanol) precursor was 

used for the first time in the synthesis of Au-Pd bimetallic nanoparticles. The Au-

Pd nanoparticle syntheses were investigated by in situ XAS to address the impact 

of the change of the Au precursor on the synthesis. Regarding the speciation of the 

starting materials, the results revealed that the structure of [Pd(acac)2] is dependent 

on the molar ratio of Pd to oleylamine, while the [AuCl4]
- undergoes two structural 

changes prior to being reduced to the metallic state. 

The thermal decomposition of [Fe(acac)3] to iron oxide nanoparticles was 

investigated by in situ XAS for the first time, and the results are presented in 

Chapter 6. The decomposition of [Fe(acac)3] was studied in oleylamine, and in 

triethylene glycol in the presence and absence of polyvinylpyrrolidone. The role of 

the solvent was probed through XANES and LCF analysis, and was proven to be 

crucial since the decomposition profile of the precursor in these reactions varied 

considerably. In addition, the speciation was probed by EXAFS, and revealed that 

oleylamine induces changes to the precursor’s structure. 
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Chapter 1.  Introduction 

 

1.1 Nanoparticles Overview 

 

Nanoscience deals with materials that are found on the scale of 1 billionth of a meter 

(10-9 m), a size regime intermediate between bulk and molecular. By convention, 

nanoparticles are found in the range 1-100 nm, but different definitions have been 

given by organisations across the world.[1] Nanomaterials exhibit properties that are 

substantially different compared to their bulk counterparts, this is a direct 

consequence of their size. These unique properties include lower melting points, 

higher surface areas and distinctive optical profiles. As a result, many different 

groups around the world started exploring the synthesis, characterisation and 

properties of a range of nanomaterials, and the developments in this field are 

illustrated by the exponentially increasing number of publications over the last few 

years.[2] 

  The enormous potential of nanotechnology was first recognised and 

highlighted by Richard Feynman in his famous talk at the American Chemical 

Society annual meeting in December 1959 entitled ‘There’s plenty of room at the 

bottom’.[3] However, nanotechnology was known empirically for years - the size 

dependent properties of Au nanoparticles were first reported in 1857 by Michael 

Faraday.[4] Nanoscience, however, would not be at the advanced level it is today 

without the concomitant development of analytical techniques such as the 

ultramicroscope by Zsigmondy, Nobel Prize winner in Chemistry in 1925.[5] The 

discoveries that proceeded this set the foundations for nanotechnology, and this 

field has nowadays become an interdisciplinary science enabling collaborations 

among fields that initially seemed to be completely unrelated.  

 

1.2 Nanoparticle Properties and Stabilisation 

   

One of the main reasons behind the remarkable properties of nanomaterials arises 

from the increased surface-area to volume ratio that they exhibit compared to bulk 

materials.[6] When a process such as catalysis or sensing is happening on the 

surface, then the nanoparticles with their large surface-area to volume ratio are more 

active. 
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Another property that arises in the nanoscale is called Surface Plasmon 

Resonance (SPR) and is particularly observed in noble metal nanoparticles, such as 

gold and silver,[7] when light interacts with them. When an electromagnetic wave is 

incident on the particles it interacts with their conduction electrons, giving rise to 

collective oscillations across the entire particle. When the oscillation of the particles 

is the same as the oscillation of the electric field of the wave, a strong SPR is 

observed in the UV-Vis.[7] SPR bands for Au spherical particles are usually found 

above 500 nm, whereas in anisotropic nanoparticles additional absorption bands 

may be observed.  

Nanoparticles can either be amorphous or crystalline and in the latter case 

are also called nanocrystals. When nanoparticles are found in solutions as 

dispersions they are commonly referred to as colloids and they have very distinctive 

properties. In order to take advantage of these properties, the particles have to be 

stable in the colloidal solution and not agglomerate. The tendency to agglomerate 

is intrinsic to every system and is a result of attractive Van der Waals forces between 

the particles; stability can be provided by adding particle stabilisers to the solution, 

these are commonly referred to as ligands. These ligands can help stabilise the 

particles either electrostatically or sterically. In the first case, the ligands used are 

usually small and highly charged, and by adsorbing on the surface of the particles 

they convey their charge to them. This way, all the particles in the solution end up 

having the same charge, causing them to repel each other electrostatically. This 

stabilisation mode was described by Derjaguin, Landau, Verway and Overbeek.[8,9] 

In the case of steric stabilisation the ligands used are quite bulky, usually fatty acids 

or polymers. In their presence, the nanoparticles overcome agglomeration due to 

the physical barrier that these ligands form by encapsulating the particles. In this 

way, the inter-particle interactions are inhibited and the colloid is stable.  

Ligands serve more purposes than just particle stabilisation. They can 

adsorb on specific facets during particle growth, thus contributing to shape 

controlled synthesis. They can also modulate the surface of the nanoparticles so that 

they can be easily dispersed in different media, and they can also serve as sites for 

chemical functionalisation and/or conjugation.  

Another important aspect of colloidal nanoparticles is their size distribution. 

Narrow size distributions are greatly desired, since the more alike the particles are, 

the more similar their behaviour will be. Thus the performance of a uniform 
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nanoparticle population will be greater. According to the definition of 

monodispersity, for a colloid to be monodisperse 90% of the population has to lie 

within ± 5% of the mean particle diameter.[6] This property of a colloid can be 

controlled mainly via the nucleation step.   

 

1.3 Nanoparticles Synthesis Strategies 

 

1.3.1 General Approaches  

 

Metal nanoparticles can be generated through two main approaches namely the 

“top-down” and the “bottom-up” approaches.[10] The top-down approach uses a 

matrix to control the particle formation from bulk material down to the desired 

nanoscale dimensions. The main disadvantages of the top-down method are that a 

large quantity of material needs to be removed in order to produce the desired 

product, and that commercial instrumentation is expensive. On the contrary, the 

bottom-up approach relies on the formation of nanoparticles by chemical reduction 

of metal ions. This synthetic protocol is often reported as “chemical colloidal” 

synthesis in literature. It is an easier and less expensive method compared to top-

down approaches, and it is often employed in the synthesis of noble metal 

nanoparticles. Moreover, it is a more effective method to prepare nanoparticles with 

a variety of morphologies. The chemical colloidal synthesis comprises two main 

categories: chemical reduction of a metal salt and thermally induced decomposition 

of molecular precursors (thermal decomposition synthesis). As the work in this 

thesis focuses on the chemical colloidal synthesis, these two approaches will be 

considered in detail. A detailed summary of the extensive list of preparation 

methods of nanoparticles that are available in the literature is beyond the scope of 

this work.   

 

1.3.1.1 Chemical Reduction 

 

The chemical reduction method for preparing nanoparticles involves the mixing of 

appropriate metal salts and stabilising agents and the subsequent reduction of the 

metal salt to its metallic state by the introduction of a reducing agent in the solution. 

Typically, the reducing agent is strong and complete reduction of the metal centre 
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is achieved. A characteristic example is the popular Brust-Schiffrin method[11] that 

employs sodium borohydride (NaBH4) for the reduction of chloroauric acid 

(HAuCl4) in the presence of dodecanethiol (CH3(CH2)11SH), as illustrated in 

reaction scheme 1.1. Thiols have a great affinity for Au surfaces, thus the particles 

are effectively stabilised and aggregation is prevented. The birth of this method 

should be credited to Michael Faraday, for producing Au colloids through the 

reduction of auric chloride with phosphorus.[4] 

 

Reaction Scheme 1.1: Brust-Schiffrin method.  

 

 

 

 

 

 

 

A further development of this method has led to a new approach, namely 

the seed-assisted or seed-mediated synthesis, which is extensively used for Au 

nanoparticles. In the seed-assisted synthesis two steps can be identified. In the first 

step, Au nanoparticle seeds are produced by the reduction of a [AuCl4]
- by NaBH4 

in the presence of a surfactant – commonly cetyltrimethylammonium bromide 

(CTAB). In the second step, the seed particles are added to a growth solution. 

Growth solution is a term given for a reaction mixture that contains appropriate 

amounts of Au precursor ([AuCl4]
-), surfactant – commonly CTAB – and other 

small molecules such as Ag+ or NaI, if necessary.  A mild reducing agent such as 

ascorbic acid is used to promote partial reduction of Au3+ to Au+ and nucleation is 

withheld until the addition of the Au seeds. Upon addition of the Au seeds, the 

nanoparticle growth is expected to occur on the surface of the Au seeds as the seeds 

become part of the new particles. The structures of CTAB and CTAC are illustrated 

in Figure 1.1, while a typical reaction scheme of a seed-assisted protocol is 

illustrated in Figure 1.2. 

 

 

 

NaBH4 , H2O 

 SR 

 SR 

 SR 

 SR 

 SR 
 SR 

 SR 

Au  RS HAuCl4  + CH3(CH2)10CH2SH  

[CH3(CH2)7]4NBr 

 toluene 
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H3C(CH2)15         N
+                                           H3C(CH2)15         N

+   

 

 

 

Figure 1.1: Left to right: Structures of CTAB and CTAC respectively. 

 

 

Step 1: Preparation of Au nanoparticle seeds. 

 

CTAB(aq) 

    

+   HAuCl4(aq) 

 

   

                                 Au0 nanoparticle seeds 

                   

Step 2: Addition of Au nanoparticle seeds to the growth solution. 

 

CTAB(aq) +   HAuCl4(aq) + M(aq)  + C6H8O6(aq)                                Au0 nanoparticles 

                                

M =  AgNO3 or NaI                               

 

Figure 1. 2: Reaction protocol of seed-assisted synthesis. 
 

The two steps in the seed-assisted method clearly separate the nucleation 

stage and the growth stage during nanoparticle formation. This separation offers 

better control over the reaction conditions and, subsequently, of the final product. 

The energy required for nanoparticle growth on the preformed seeds is substantially 

lower than the energy required for homogeneous nucleation to occur.[12] As a result, 

experimental conditions are milder, and there is no need for strong reducing agents 

or high temperatures. This method is reliable and highly controllable and has been 

employed with success in the synthesis of various anisotropic morphologies. 

Additionally, it has been proven to be a very effective technique for the synthesis 

of core-shell and multishell structures, too, through deposition of a second metal on 

already preformed metallic seed particles.  

The seed-assisted synthesis might have gained recognition relatively 

recently, but the first report dates back to 1917 when it was known as ‘nuclear 

method’.[13] Nevertheless, it was not until 1990 that the seed-mediated synthesis 

was filed as a European patent.[14]  

CH3  

CH3  

CH3  

Br -  
CH3  

CH3  

CH3  

Cl -  

NaBH4(aq)                                                                

Au seeds(aq)                                                                
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Even though it is an old preparation method, its revisiting and use in shaped 

nanoparticle synthesis is a new area; offering a high degree of flexibility on the 

particle size and shape. By varying the nature and the amount of the seeds, as well 

as the ratio of the reagents, a range of anisotropic morphologies and sizes can be 

obtained, and publications on this aspect are emerging daily.[15,16] Characteristic 

examples of anisotropic Au nanoparticles produced with this method are rod-

shaped particles, nanocubes, icosahedra  and so on.[15] 

A slight modification of the seed-assisted process was reported relatively 

recently[17] where the seeds are generated in situ and not separately, by adding small 

aliquots of a strong reducing agent to the growth solution.  

 

1.3.1.2 Thermal Decomposition Synthesis  

 

Thermal decomposition has been extensively used for the preparation of metal 

oxides,[18] metal sulphides,[19] and quantum dots.[20] The thermal decomposition 

synthesis is divided into two approaches, depending on whether the precursor is 

present in the reaction flask from the beginning of the reaction or not. In the first 

case, the precursor is dissolved in a high boiling point solvent at room temperature, 

and it is heated with the reaction mixture typically at high temperatures within the 

range 200-300 oC. This is known as the ‘heat up’ method.[18] In the second case, the 

process is named the ‘hot injection’ method and the precursor is injected into the 

solvent after it has reached the appropriate temperature.[18] The reagents used in the 

heat-up synthesis often have multiple roles. The solvent can act as the reaction 

media, as a reducing or coordinating agent, if it has amine or thiol groups, and as a 

particle stabiliser. Additional particle stabilisers may be added to improve colloidal 

stability and particle size dispersion. As a result, elucidation of the reaction 

mechanisms is challenging since during the heating of the reaction mixture complex 

processes are taking place. Additionally, the high temperatures add an extra 

difficulty in unravelling the mechanisms of formation, which often seem to be 

reaction dependent. Nevertheless, a general mechanism has been proposed by 

Kwon and Hyeon.[21] Control over the nanoparticle size and shape can be achieved 

through adjusting the ratio of the precursor and the surfactant, while the crystallinity 

of the particles is dependent on the reaction temperature.  
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Even though both methods have been employed to access a range of 

materials, the ‘heat up’ method is most commonly used in the synthesis of metal 

oxide nanoparticles,[22,23] whilst the ‘hot injection’ method is an advantageous 

technique for the synthesis of quantum dots such as CdSe and InP.[24,25] The main 

advantage of ‘hot injection’, in comparison to the ‘heat up’ method, is the fact that 

the nucleation and growth stages are somewhat separated, leading to highly 

monodisperse populations of particles. However, excellent control can also be 

achieved with the ‘heat up’ method too, and at the same time the latter is more 

reliable and reproducible since it is not dependent on injection times and rates that 

affect the final particles. Additionally, the ‘heat up’ method is a gradual process 

and, therefore, allows for monitoring of the reactions with in situ methods - contrary 

to the ‘hot injection’, which takes place very fast. In the work presented in Chapters 

5 and 6, the ‘heat up’ method was preferred, particularly due to the fact that it would 

allow for in situ XAS data acquisition.  

 

1.4 Noble Metal Nanoparticles 

 

Noble metal nanoparticles have been the subject of intense studies for many years, 

possibly due to their stability as colloidal dispersions, the ease of their preparation 

and their unique properties. Among them, Au has received the most interest and, 

since the majority of studies presented herein are Au related, the next two sections 

provide an overview on the synthesis of isotropic and anisotropic Au nanoparticles. 

 

1.4.1 Au Nanoparticles 

 

Gold has been a subject of investigation since antiquity, being used in a variety of 

fields such as medicine and jewelry fabrication.[26] The first reports of gold 

extraction date back to 1200-1300 BC in Egypt, but gold in a soluble form first 

appeared around the 4th or 5th century BC in Egypt and China. The most 

characteristic example of use of gold colloid is in the Lycurgus Cup, originating in 

the Roman period.[27] The Lycurgus Cup is illustrated in Figure 1.3.  
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Figure 1.3: Lycurgus Cup (British Museum). Colloidal gold causes the cup to 

appear opaque green in reflected light (left) and red in transmitted light (right). 

Adapted from reference [27]. 

 

The cup appears red in transmitted light and green in reflected light due to 

the presence of gold colloids. In ancient times, transition metals were mainly used 

as coloring additives in glass and ceramic preparation for decorative purposes and 

gold was known to give a deep red color to the pottery and glass objects. However, 

the ruby color of colloidal gold solutions was only attributed to the existence of fine 

metallic gold in 1857, by Michael Faraday.[4] Faraday reported the formation of 

ruby red colored solutions,  upon reduction of hydrogen tetrachloroaurate  by 

phosphorus in the presence of carbon disulfide (CS2).  In 1906, Zsigmondy prepared 

Au colloids by reducing auric chloride with formaldehyde.[28]  

In 1951, Turkevitch improved Zsigmondy’s seed-assisted method and 

established the initial protocols for Au nanoparticle synthesis.[29] He described the 

synthesis of Au nanoparticles in boiling aqueous solutions containing hydrogen 

tetrachloroaurate (HAuCl4) and sodium citrate. The sodium citrate has a dual 

purpose: firstly, to promote the reduction of gold from Au3+ to Au0 and, secondly, 

to act as a stabilizing agent to prevent particles from aggregating. Frens revisited 

Turkevitch’s method 20 years later,[30] and identified the effects of the concentration 

ratios of the reagents on the particles. 

An important development in Au nanoparticle synthesis was the two-phase 

method introduced in 1994 by Brust and Scriffin.[11] This method enabled the 

formation of thiolate-stabilized Au nanoparticles in an organic medium (toluene), 

using a strong reducing agent (NaBH4).  It has proven to be a very effective method 

for the synthesis of nanoparticles with very narrow size distribution. The 

preparation technique is straightforward and is performed at ambient conditions. 
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The nanoparticles can be isolated, re-dissolved and further functionalized by ligand 

substitution. However, the first report of thiolate-stabilized Au nanoparticles was 

presented a year earlier by Mulvaney and Giersig who used thiols of different chain 

lengths in their studies.[31] 

Once the first synthetic protocols were established, research based on 

nanoparticle synthesis increased exponentially over the past two decades, and the 

application of nanoparticles has branched out into numerous scientific fields. 

 

1.4.2 Anisotropic Au Nanoparticles 

 

Au nanoparticles are perhaps the most studied of noble metal nanoparticles and are 

employed in numerous applications. Subsequently, there has been an explosion of 

interest towards developing more sophisticated nanocrystal morphologies of Au 

over the past decade. The Au shaped nanoparticles reported so far include 

nanorods,[32,33] nanoprisms,[34] nanocubes,[15] as well as more complicated shapes 

such as nanocages,[35,36] and nanopolyhedra.[37]  

Au nanorods are the most characteristic and well-studied example of 

anisotropic growth of Au in nanoparticles via the seed-assisted approach. Au 

nanorod solutions have different colours depending on their aspect ratio. They 

exhibit two intense SPR bands due to the longitudinal and transverse oscillations of 

the conduction electrons with the electric field of the light: along and perpendicular 

to the long axis of the particle. The transverse band is within the visible region, 

whereas the longitudinal is found in the Vis-near-IR. Murphy and coworkers 

applied the seed-assisted protocol that was employed in the synthesis of spherical 

nanoparticles to the synthesis of Au nanorods.[32,33] They showed that Au nanorods 

with aspect ratio 4.6 ± 1.0 can be formed upon addition of citrate-stabilized Au 

seeds to a growth solution. For the formation of Au nanorods with high aspect 

ratios, a three-step synthesis needs to be employed.[38] Nanorods with intermediate 

aspect ratios are produced in every step and are then added to the next growth 

solution to form nanorods with even higher aspect ratios. The main drawback of the 

nanorod synthesis of high aspect ratios is that yields are significantly low (~ 4%) as 

experimental conditions favor the formation of spheroid and spherical 

nanoparticles.  



Chapter 1 

10 
 

Nikoobakht and El-Sayed[39] showed that nanorod yields as high as 99% are 

achievable if the citrate is replaced with CTAB during the seed preparation and 

silver nitrate (AgNO3) is added to the growth solution. The replacement of the 

stabiliser of the seeds was the first indication of the effect of the seeds on the 

nanorod yield, and as a result of the high yield this nanorod synthesis has become 

the most preferable synthetic route to date. Ag+ was also proven to be a valuable 

additive in nanorod synthesis, however its role in nanorod synthesis/yield still 

remains unclear.  

Concerning the nanorods formation, Murphy and coworkers,[40] have 

proposed a mechanism for their synthesis through the seed-assisted approach. 

Nevertheless, the role of CTAB was overlooked in the initial investigations. It was 

only known at the time that CTAB forms rod-shaped micelles in water,[32] and only 

later was it proven that all rods have a CTAB bilayer on their surface,[41] and it was 

suggested that the micellar shape of the CTAB preferentially promotes rod 

shapes.[42] However, it was not until 2010 that the role of CTAB[42] or, more 

specifically, the significance of the [Br]- was shown in the nanorod synthesis.[43] It 

was also shown that the purity of the CTAB plays an important role in the nanorod 

synthesis.[44] Even traces of [I]-, for example, can completely hinder the nanorod 

synthesis.[43,45] Consequently, the presence of surfactant and other ions during 

growth, as well as the type of the seeds used, can have a huge impact on the final 

composition and dimension of the nanorods. Since the nanorod formation is greatly 

affected by the experimental conditions, numerous studies are devoted to 

optimising the yield, the dispersity and the shape of the nanorods. By carefully 

controlling the experimental conditions, it is possible to obtain Au nanorods with 

desired aspect ratios and optical properties with remarkably low polydispersity.  

After the successful nanorod formation, the growth of other shapes through 

the same synthetic strategy was soon attempted. The synthesis was found to work 

for numerous shapes including cubes and octahedra,[15,46] as well as more 

complicated shapes such as tetrahexahedra,[47] concave cubes,[48] and also 

dodecahedra and truncated ditetragonal prisms.[49]  Since the seed-assisted approach 

leads to the formation of numerous shapes, a delicate control over the reaction 

parameters is required to obtain the maximum yield of the desired shape. Kinetic 

and thermodynamic parameters must be well balanced to allow control over the size 

and the shape of the particle. The faceting tendency of the stabilizing agent, as well 
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the rate of introduction of new metallic Au atoms onto the seeds to promote the 

growth, are important aspects in shaped synthesis.  

Murphy and co-workers have reported the synthesis of many shapes of Au 

nanoparticles by controlling the concentrations of the reagents at ambient 

conditions employing the seed-assisted protocol shown in Figure 1.2.[15] In a typical 

procedure, an aqueous solution that contains CTAB, [AuCl4]
- AgNO3 and ascorbic 

acid leads to rods, cubes, or hexagonal nanocrystals under specific reagent ratios. 

For example, an increase in the amount of ascorbic acid leads to the formation of 

hexagonal nanostructures, as observed in the TEM. Therefore, the interdependence 

of the concentrations of the reagents can result in different morphologies being 

accessible able from a growth solution that contains the same reagents. They also 

showed that, by varying the amount of the silver nitrate in the growth solution, 

either cubes or octahedra can be formed at very good yields (80% and 85% 

respectively). For Au nanocubes, the concentration of CTAB needs to be low and 

the concentration of ascorbic acid relatively high. On the contrary, for octahedra, 

the concentration of CTAB needs to be high, but the concentration of ascorbic acid 

needs to be significantly lowered. The same study showed that a decrease in the Au 

precursor and an increase in the ascorbic acid concentration leads to branched 

particles. In contrast to the case of nanorods that can also be formed without the 

addition of AgNO3 in the growth solution, for promoting certain other shapes the 

presence of Ag+ is usually necessary.  

Mirkin’s group presented an organized study of the shape evolution of 

anisotropic Au nanoparticles via the seed-assisted method.[50] In their synthetic 

procedure, cetyltrimethylammonium chloride (CTAC) or CTAB are used in an 

effort to elucidate the role of halides in these reaction systems. It is suggested that 

the presence of an excess of [Cl]- instead of [Br]- facilitates the synthesis of shapes 

such as octahedra and concave cubes due to its weaker adsorbing ability on the Au 

surface. For example, when the same synthesis was attempted using CTAB instead 

of CTAC, tetrahexahedral particles were formed instead of concave cubes.[47] 

Recently, the same group synthesized octahedral Au nanoparticles with hollow 

features using Au concave cubes as seed crystals, showing that particles with 

sophisticated structures are accessible.[51] In their studies, the nanoparticle growth 

takes place at low pH (~2) and the size of the cavities was found to be highly 

dependent on the pH of the solution.[51] 



Chapter 1 

12 
 

Presently, the mechanism of formation of anisotropic Au nanoparticles is 

not yet understood due to the complexity of the reaction mixture. Despite this, 

synthetic protocols for specific shapes have been successfully established, as 

discussed above. 

 

1.5 Metal Oxides 

 

Nanostructured metal oxides have shown great performances in a variety of fields 

and are promising materials in electronic, magnetic, biological and optical 

applications.[52] As chapter 6 deals with the synthesis of nanostructured iron, an 

overview of these materials and their synthesis is provided in the following sections. 

 

1.5.1 Iron Oxides 

 

Research on nanostructured iron oxide has received immense interest due to its 

extensive use in miscellaneous industrial and commercial applications. 

Characteristic technological fields in which these materials exhibit highly 

promising performances include catalysis, high-density information storage,[53] 

contrast agents for Magnetic Resonance Imaging (MRI),[54] drug delivery[55,56] and 

magnetic inks for inkjet printing.[57] 

To date, there are sixteen known phases of iron oxides.[58] Nanoparticles that 

are routinely synthesised are commonly magnetite (Fe3O4) or hematite (-Fe2O3). 

The other two most common structures are Wüstite (FeO) and maghemite (-

Fe2O3), however Wüstite is very susceptible to oxidation and it is usually found in 

the form of core-shell structures of Wüstite-magnetite (FeO/(Fe3O4).
[59] 

Iron oxide nanoparticles (IONPs) have been synthesised mainly by physical 

and chemical methods, even though a biological method has also been reported.[60] 

Physical methods include laser ablation,[61] spray pyrolysis,[62] and flow 

injection.[63] The chemical methods are more popular due to the level of control that 

can be achieved over the properties of the final particles, thus a larger number or 

publications are devoted to them. Examples include co-precipitation,[64] thermal 

decomposition,[21] polyol methods,[65] microemulsions,[66] sol-gel reactions,[67] 

sonochemical methods[68] and electrochemical methods.[69] Notably, co-
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precipitation is the oldest and the most popular method for the synthesis of iron 

oxides. A detailed discussion of all these methods is beyond the scope of this 

section, however an overview will be provided on the state of art syntheses of iron 

oxides by thermal decomposition, which was the method of choice for the synthesis 

of IONPs studied in Chapter 6. 

 

1.5.2 Thermal Decomposition  

 

High quality nanoparticles can be synthesised by the thermal decomposition of 

organometallic precursors in organic solvents with high boiling points, typically in 

the presence of surfactants.[22,70,71] Organometallic precursors include iron 

pentacarbonyl [Fe(CO)5],
[23] [Fe(cup)3] (cup = N-nitrosophenylhydroxylamine),[72] 

and iron acetylacetonate [Fe(acac)3].
[73] The surfactants used for the stabilisation of 

the colloid can also be used as synthetic handles for controlling the size and the 

shape of nanoparticles. Other parameters that have an effect on the nanoparticle size 

and morphology are the reaction temperature and the reaction time. Commonly 

employed surfactants include hexadecylamine,[74] fatty acids,[75] and oleic acid.[76]  

The decomposition of [Fe(CO)5] results in the formation of iron metallic 

nanoparticles, therefore a second step is required for the oxidation of the particles. 

A characteristic example of this is the synthesis of -Fe2O3 nanoparticles from the 

decomposition of [Fe(CO)5] in octyl ether and oleic acid at 100 oC and subsequent 

oxidation of the product with trimethylamine N-oxide (TMAO) [CH3)3NO] at a 

higher temperature.[23] Another study reports that the decomposition of [Fe(CO)5] 

in octyl ether and oleic acid, and subsequent aeration leads to the formation of 

magnetite particles, that were then turned into magnetite-silica core shells.[77] 

Monodisperse, crystalline 6-7 nm -Fe2O3 particles have also been prepared by 

decomposition of [Fe(cup)3] in trioctylamine at 300 oC.[72] 

Sun et al.[76] reported the decomposition of [Fe(acac)3] in the presence of 

1,2-hexadecanediol, oleylamine, and oleic acid in phenyl ether at 300 oC to 

synthesize highly monodisperse Fe3O4 in the range 3-20 nm. Notably, this was the 

first report of the synthesis of magnetite particles below 20 nm. The same group 

two years later, reported the synthesis of monodisperse Fe3O4 particles using a 

similar reaction mixture, but the nanoparticles had a hydrophilic surface. To a 
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hexane solution of the as-synthesised hydrophobic magnetite particles, 

tetramethylammonium 11-aminoundecanoate was added, and the particles were 

subsequently dispersed in water.[70] IONPs soluble in water are desired by many 

researchers, therefore efforts have been devoted to modify the surface of the IONPs 

that are prepared in organic media. In the same year, another study reported the 

formation of water-soluble Fe3O4 particles by a one-pot reaction involving the 

thermal decomposition of [Fe(acac)3] in 2-pyrrolidone.[73] [Fe(acac)3] is generally 

preferred as a precursor because it is inexpensive, its decomposition leads directly 

to IONPs, and it forms high quality nanoparticles. 2,3-dimercaptosuccinic acid 

(DMSA) has also been used post-synthesis to make magnetite nanoparticles water-

soluble.[78] 

Iron chloride salts ([FeCl2], [FeCl3]) have also been used as precursors to 

IONPs through their thermal decomposition in high boiling point solvents. 

Particularly, [FeCl3·6H2O] is used in a popular synthesis of highly monodisperse 

ultrafine nanoparticles. [FeCl3·6H2O] is dissolved in sodium oleate, forming a 

ferric-oleate complex. The subsequent heating of this complex leads to magnetite 

nanoparticles with controllable sizes. The success of this synthesis lies in the fact 

that it is highly scalable, and as much as 40g of nanoparticles can be prepared in 

one synthesis.[22] Decomposition of ferrous oleate also leads to magnetite 

nanoparticles under similar reaction conditions.[75] Studies on the decomposition of 

[FeCl2] in 2-pyrollidone have also been cited as a method for synthesizing water 

soluble magnetite nanoparticles.[79] 

The majority of the aforementioned studies lead to the formation of 

spherical IONPs. Shaped IONPs have also been reported, including iron oxide 

nanocubes,[80,81] nanorods,[82,83] or even octahedral shaped IONPs.[84] 

1.5.3 Stabilisation 

 

As with every colloidal nanoparticle system, the stability of IONPs in solution is 

greatly desired and various molecules, capping agents or solvents have been 

employed for this purpose. These molecules can be classified into four different 

categories depending on the nature of the stabilisers: inorganic, small organic 

molecules, polymers and proteins.  
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In the first category, Au and silica are the most known stabilisers resulting 

in core/shell structures. For example, Au forms a shell around the IONPs through 

reduction of [AuCl4]
- with hydroxylamine [NH2OH] over as-synthesised IONPS.[85] 

Alternatively, small Au nanoparticles can adhere to the surface of IONPs that have 

been modified with 11-mercaptoundecanoic acid.[86] Silica is also used as a 

stabilizer,[87] and, notably, silica coated IONPs are already commercially available 

and are known as Ferumoxsil,[88] as the result of research that was initiated 26 years 

ago.[89] Stabilisation of IONPs by small organic molecules is also very common. 

For instance, citric acid is frequently used.[90,91] The stabilisation of IONPs with 

citric acid is thought to proceed via adsorption of citric acid on the surface of the 

particles through one or two of its carboxylate groups, leading to a negative charge 

on the particle surface and electrostatic stabilization.[92] 

In that respect, molecules containing carboxyl groups have also been 

employed. Examples include gluconic acid, tartaric acid or dimercaptosuccinic acid 

(DMSA).[93] Small organic molecules that contain sulfate or phosphate groups are 

also common.[94]  

Polymers, present the third category of IONP stabilisers. Typically 

employed polymers include polyethylene glycol (PEG), polyvinyl alcohol (PVA), 

polyvinyl pyrrolidone (PVP) or dextran (a polysaccharide made of many glucose 

molecules). They can be employed either during the particle formation or post 

synthesis.[95] The structures of PEG, PVA and PVP are shown in Figure 1.4. 

           

Figure 1.4: Structures of PEG, PVA and PVP. 

 

Polyethylene glycol (PEG) is often preferred due its hydrophilic nature, 

solubility, and biocompatibility.[95] The use of PEG derivatives as stabilisers has 

also been reported.[96-97] In addition, polyvinyl alcohol (PVA) or polyvinyl 

pyrrolidone (PVP) also offer good colloidal stability.[98] 
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The last category involves the stabilisation of IONPs through the use of 

proteins.[99] This is particularly important for medical applications of these 

nanocrystals. 

 

1.6 Characterisation Of Nanoparticles And Of Their Growth Solutions 

 

A variety of techniques can be employed to characterise nanomaterials, depending 

on the nature of the information that needs to be extracted, and quite often a 

combination of characterisation techniques is employed since each technique 

provides different information. Typically employed techniques include Ultraviolet-

Visible spectroscopy (UV-Vis), to study the optical properties of the nanoparticles; 

transmission electron microscopy (TEM), to obtain information on their 

morphology and size distribution; and X-ray diffraction (XRD), for identification 

of their crystallinity and phase. XRD on nanoparticles is often challenging since 

this technique requires long range order and nanoparticles may have very small 

sizes. Additionally, when the nanoparticles are prepared through colloidal 

chemistry, removal of the stabilisers and other organic substances is often difficult.  

Extended X-ray Absorption Fine Structure (EXAFS) analysis of nanoparticles has 

become popular for nanoparticle characterisation, providing valuable information 

about the coordination environment and the nature of the neighbouring ligands of 

the absorbing element. Many other techniques are also used to characterize 

nanoparticles, but a discussion on all of them is beyond the scope of this section.  

TEM is very useful for the ex situ characterisation of nanoparticles, but does 

not provide any direct information regarding the speciation of molecular precursors 

and their decomposition. UV-Vis is also useful for the characterisation of 

nanoparticles, however, where fingerprints of known precursors such as [AuCl4]
- 

can be readily identified,[100] it may also provide some insight on the speciation. As 

a result, the speciation of the reaction mixture may be probed ex situ prior to 

nanoparticle formation. However, the information extracted may be limited when 

an unknown system is under investigation and there is lack of published data on the 

subject. In addition, the speciation of [AuCl4]
- is usually altered in a reaction 

mixture, and, as this technique cannot provide direct information on the nature of 

changes occurring to the metal salt, its use for studies in the pre-nucleation stage is 

limited.  
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Improving the performance of nanoparticle synthesis is greatly desired, 

hence a lot of research nowadays is focused on understanding the mechanistic 

aspects of nanoparticle synthesis. Due to the time frame that changes occur in 

precursor decomposition and particle formation, use of already established 

techniques to acquire in situ data, or development of advanced techniques was 

imperative. For example, UV-Vis spectroscopy was the primary technique for 

monitoring growth kinetics in the synthesis of Au nanorods,[101,102] while more 

recently, new analytical techniques such as Small Angle X-ray scattering (SAXS) 

and XAS have also been implemented.[103,104] SAXS is a particularly powerful 

technique as it can provide real time information on the size and shape evolution of 

nanoparticles in the solution at any point during the reaction.[105] XAS has also been 

employed to monitor in situ nanoparticle synthesis while providing information on 

oxidation states changes.[106,107] A breakthrough on visual monitoring of the 

evolution of nanoparticles has been the liquid TEM cell demonstrated by Zheng et. 

al.[108]  

While many studies are available in the literature regarding the growth 

kinetics of nanoparticles, the speciation of molecular precursors in reaction 

mixtures is an aspect of nanoparticle synthesis that has not been given enough 

attention, even for well-known and established synthesis reactions. However, a few 

papers have identified, directly or indirectly, the impact of the speciation on the 

nanoparticles. An example of indirect identification of the effect of the speciation 

is demonstrated by Christophe Petit and colleagues.[109] They examined the effect 

of the order of addition of the capping agent during the synthesis of Pt nanoparticles, 

as well as the effect of the presence of dissolved gases on the structure of the final 

nanoparticles. They showed that in the synthesis of monometallic Pt nanoparticles, 

when the capping agent (octylamine) is added to the reaction mixture prior to the 

chemical reduction of the metal salt, the outcome of the reaction is mostly spherical 

particles. When octylamine is added after the reduction step, spherical and 

wormlike particles were observed. The results of their studies are likely to be due 

to the reaction between octylamine and Pt salts, a fact that has not been 

acknowledged in their work. An example of direct identification is the study on the 

influence of the speciation of aqueous [AuCl4]
- on the synthesis, structure and 

properties of Au colloids.[110]  
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To our knowledge, only a small amount of literature is devoted to the 

correlation between the speciation of the molecular precursor and the final outcome 

of the reaction. Indeed, the lack of information for the precursor transformation 

during the first stages of a nanoparticle formation reaction, was also noted in the 

work presented in 2016, by Giorgetti and colleagues,[111] where they studied the 

speciation in Au nanoparticles using XAS.  

 

1.7 Aims And Overview Of The Thesis 

 

The primary aim of this thesis is to understand the speciation of metal 

precursors used in the solution-phase synthesis of a variety of nanoparticles, mainly 

through the use of in situ and ex situ XAS. Reaction systems investigated include 

monometallic isotropic and anisotropic Au nanoparticles in aqueous media, Au 

nanoparticles in organic media, Au-Pd bimetallic nanoparticles and iron oxide 

nanocrystals. Although the number of studies devoted to nanoparticle synthesis and 

its applications is rapidly increasing, to our knowledge very few of studies have 

been conducted on this topic. Hence, the focus of this work is an aspect of chemical 

nanoparticle synthesis that is often overlooked. In addition to the focus on the 

speciation investigations, this thesis also aims to monitor the reactions via in situ 

XAS. The decomposition profiles of the precursors and the information derived 

from in situ XAS analysis results are valuable to obtain a deeper understanding of 

the synthesis of nanoparticles. This understanding is necessary for the optimization 

of the conditions of growth and synthesis of nanoparticles with desired properties. 

Moreover, since in situ XAS studies on solution phase systems present greater 

difficulty compared to studies on solid samples, this thesis also aims to develop 

methodologies for the successful monitoring of these reactions.  A main part of the 

methodology development is the design and manufacture of XAS cells that can 

accommodate solutions. These cells are not only used for ex situ measurements, but 

due to their ability to heat the solutions, they are valuable tools to monitor 

nanoparticle formation. The design and specifications of these cells are discussed 

in the related Chapters (Chapter 3 and Chapter 6). 

Chapter 1 aims to provide an overview of some important aspects of 

nanoparticle synthesis, while a background of Au nanoparticle synthesis is also 

given. In addition, important syntheses of IONPs are also discussed. 
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 Initially, a brief introduction to the historical milestone events that set the 

foundations to what is known today as nanotechnology is provided. In the following 

sections, the nanoparticle properties and synthesis strategies are also discussed, 

with particular emphasis given to those that were employed throughout this thesis. 

A background on the evolution of Au nanoparticle synthesis is presented, while a 

section is devoted to the evolution of the synthesis of anisotropic Au nanoparticles. 

An introduction to iron oxides as materials is also given, followed by a section that 

provides a background on their synthesis via the thermal decomposition approach 

and a small discussion of the stabilization techniques known to date. Finally, a 

section on nanoparticle characterisation techniques is given, aiming to provide a 

brief overview of the most commonly employed techniques. 

Chapter 2 discusses the techniques employed in this thesis. Since XAS is 

the main technique employed throughout this work, an overview of synchrotron 

radiation is first presented. Following this, a description of XAS along with a 

detailed data handling and analysis procedures is provided. XAS is the ideal 

technique to use in order to meet the purpose of our studies, due to its element 

specific nature. It provides a great understanding of the oxidation state and structure 

of the metal precursor, and it is an excellent tool to probe changes occurring on its 

ligand sphere.  

Finally, other complimentary techniques that were used for these studies are 

also described in Chapter 2.  

Chapter 3 focuses on speciation studies of aqueous seed-assisted syntheses 

of Au nanoparticles in [Br]- and [Cl]- containing surfactants. Detailed XAS studies 

discuss the changes that occur on the ligand environment of the Au precursor 

[AuCl4]
- in the growth solutions, and what effect each reagent has on its structure. 

Particularly, the effects of halides and AgNO3 are addressed. Speciation studies that 

were conducted on the Ag+ in order to probe changes occurring on the AgNO3 

precursor, are presented too.  

The primary aim in Chapter 4 is to monitor through in situ XAS the 

formation of Au nanoparticles in ethylene glycol (EG), in the presence and absence 

of PVP and to assess the role of EG and PVP in these syntheses. However, in the 

context of methodology development, the effects of the beam on the Au precursor 

are also presented and discussed. The importance of this study lies in the fact that 

the results from beam affected reactions vary significantly compared to 
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observations of the same processes taking place under laboratory conditions and, 

often, such effects go unnoticed. 

Chapter 5 deals with two sets Au-Pd bimetallic nanoparticles synthesised 

by the thermal decomposition of Au and Pd precursors in oleylamine/xylene. These 

nanoparticles are synthesised using the same source of Pd namely [Pd(acac)2] and 

a different Au source. In the first case, [AuCl4]
- is phase transferred from an aqueous 

solution to oleylamine, and in the second case a novel precursor Au-ethynyl-1-

cyclohexanol was employed. The latter is used for the first time in Au-Pd bimetallic 

nanoparticle synthesis. The advantage of this precursor is that it can directly 

dissolved in oleylamine without any phase-transfer step. Initially, a detailed 

characterisation of the resultant nanoparticles is provided. Subsequently, the results 

from the speciation investigations on [Pd(acac)2], [AuCl4]
- and Au-ethynyl-1-

cyclohexanol are presented and, finally, the formation of these Au-Pd nanoparticles 

was monitored in situ via XAS to gain an insight on the decomposition profiles of 

the reactions. 

Chapter 6 presents an in situ XAS investigation on the formation of IONPs 

synthesised by the thermal decomposition of [Fe(acac)3] in high boiling point 

organic solvents. An important part to successfully completing this study was the 

development of a cell that can sustain these temperatures and accommodate liquids 

at the same time, in order to allow for in situ XAS data acquisition. Notably, this 

research monitored the formation of IONPs in situ for the first time, and additionally 

it investigated the role of different solvents and the PVP stabiliser in the synthesis. 

For example, oleylamine was found to have an invasive role altering the structure 

of [Fe(acac)3], whereas when the process took place in a non-coordinating solvent 

(dodecane), nanoparticle formation didn’t take place. Studies also involved the 

decomposition [Fe(acac)3] in triethylene glycol (TEG), in the presence and absence 

of PVP.  
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Chapter 2. Characterisation Techniques And Analysis Procedure 

 

2.1 Chapter Overview 

 

This chapter focuses on the characterisation techniques that were employed to study 

the nanomaterials described in this work. In the first section, an overview of 

synchrotron radiation (SR) and SR sources is provided. As XAS is the main 

technique utilised in this thesis, a description of its fundamental theory is given, 

with a detailed description of the data analysis procedure.  In the second section, an 

overview of the basic theory of other complementary techniques that were used is 

provided.  

 

2.2 Introduction 

 

Characterisation of nanoparticles is essential to obtain information on their physical 

properties, morphology, size and crystallinity. As already mentioned in Section 1.6, 

TEM, UV-Vis spectroscopy and XRD are perhaps the most commonly employed 

techniques to study the composition, the structure and various properties of 

nanomaterials. However, as the information derived from laboratory based 

techniques can be limited, several synchrotron based advanced characterisation 

techniques have been developed over the past years. XAS is probably the most 

useful technique to study the structure and composition of nanoparticles since it is 

element specific, it is suitable for amorphous materials and it can also be applied to 

liquids. The latter being of a great advantage since the majority of nanoparticles are 

formed through colloidal preparations. It is also a valuable technique for real time 

studies, enabling the direct monitoring of the decomposition of metal precursors 

and the subsequent formation of nanoparticles. In situ studies allow for direct 

observation of changes in the oxidation state and ligand environment of the metal 

precursors as the reaction proceeds. Structural information about the growing 

particles is also given through analysis of the coordination number (CN) by EXAFS 

analysis of the in situ datasets. The nature of the technique also allows for 

evaluation of the effects of solvents, stabilisers and other reagents on the 
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coordination sphere of the probed element through comparison of their XAS spectra 

with reference materials. This information is inaccessible with common laboratory 

techniques.  

 

2.2.1 Synchrotron Radiation  

 

Synchrotron sources are particle accelerators that have a circular orbit and charged 

particles (usually electrons) are progressively accelerated to reach ultra-relativistic 

velocities (near 3 x 108 ms-1). When the accelerated electrons are forced to change 

direction under the influence of a strong magnetic field, electromagnetic radiation 

called synchrotron light or synchrotron radiation (SR), is emitted at the points of 

divergence. The direction of the synchrotron light is tangent to the circular orbit and 

its energy ranges from X-ray to infrared.[1]  The observation of this radiation was 

first reported by Frank Elder in 1947.[2]  

Initially, synchrotron radiation was considered to be an undesired product 

of the high-energy physics experiments that were performed in first generation 

synchrotrons.[3] It was not until the late 1950’s that the useful potential of this 

radiation was realised by Tomboulian and Hartman.[4] After this point, it took 

almost a decade for the first SR storage ring to be built at the University of 

Wisconsin, Madison.[3] Over time, the unique properties of this radiation were more 

and more recognized and nowadays third generation synchrotron sources are widely 

used by the scientific community worldwide. Scientific disciplines that perform 

studies using SR include physics,[5,6] materials science,[7–9] biology,[10,11] 

geology,[12,13] and medicine.[14] The importance and the impact of synchrotron 

sources to a variety of scientific disciplines is rapidly advancing, and gradually new 

sources are being built around the world, or major upgrades are being performed on 

the already existing sources. Currently, there are 47 sources spread around the 

world.[15] 

The acceleration of the charged particles takes place progressively, and 

several stages and different components of a synchrotron source are involved in 

order to achieve that. An illustration of the key components of a storage ring is 

depicted in Figure 2.1. First, electrons are produced by an electron gun under ultra-

high vacuum. This electron beam is passed into a linear accelerator (“LINAC” – 



Chapter 2 

29 
 

component 1) that serves the purpose of accelerating the electrons to high energies 

(MeV to GeV) prior to entering the booster ring (component 2). The booster ring is 

smaller than the storage ring and the transfer of electrons into this ring is referred 

to as injection. Upon entering the booster ring, the particles are accelerated up to 

near-light speeds, with energies typically within the range of 3-6 GeV.  

Subsequently electrons with ultra-relativistic velocities are transferred to the main 

accelerator, called the storage ring (component 3). The storage ring consists of a 

path that has straight sections angled together and, as the electrons travel around 

this path, synchrotron light is emitted at the bending points. The length of the 

storage ring may be up to 1400 m.[16] The synchrotron light is then collected, 

collimated and focused in the optics hutch (component 4), before it reaches the 

experimental hutch (component 5) where the sample and the experimental 

equipment are. It is important to have remote control of the reaction conditions of 

the experiment during the data acquisition, especially for in situ studies that often 

require the use of high temperatures or gases. The remote control is conveyed to the 

users in the control hutch (component 6) via a series of computers with relevant 

software that are interconnected to the equipment within the experimental hutch.  

 

Figure 2.1: Schematic diagram of Diamond Light Source with labelled 

components. Adapted from reference [17]. 

 

Since the electrons are travelling in the storage ring, a larger ring allows for 

more energy to be transferred to them. The ring is under ultra-high vacuum and the 

electrons are traveling in groups called bunches. The configuration of the storage 

ring is often drawn as a circle for simplicity. In reality, the storage ring consists of 

straight and curved sections that are connected to form a polygon. The electrons 
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travel through the straight sections, until they meet a bending magnet that diverts 

their path (which is the point of emission of SR radiation, as described 

previously).[1] The  bending magnets are put at the end of each straight section, 

causing the electrons to travel in an orbit. While the electrons undergo this process 

they suffer an energy loss, which is compensated for by the presence of 

radiofrequency cavities (known as RF cavities).[3] The beam is also maintained by 

timed re-injections of electrons into the storage ring.  

In third generation synchrotrons, apart from the bending magnets, insertion 

devices such as wigglers and undulators are also implemented at the straight 

sections of the ring,[18] providing additional SR sources. These devices consist of a 

linear periodic arrangement of magnets with opposing polarities that cause the 

electrons to periodically deflect from their original path when they travel through 

them. Essentially, there is only a small difference in the mechanical arrangement of 

the magnetic components between the two types of insertion devices – the main 

difference is the magnitude of angular deflection. A wiggler is an array of magnets 

with alternating polarities that causes a larger angular deflection compared to an 

undulator. The X-rays produced from wigglers are two orders of magnitude more 

brilliant than the ones produced by bending magnets.[19] When the beam passes 

through an undulator it is forced to follow an alternating curving path, but with 

smaller angular divergence. This results in emission of X-rays from each turn of the 

path that interfere constructively at certain points, dramatically enhancing the 

intensity (and, therefore, the brilliance). The brilliance of these X-rays can be four 

orders of magnitude higher than that of a bending magnet. The significant 

advantage of using these devices stems from the fact that the energy can be tuned 

to experimental needs, thus a wide range of experiments can be performed.[20] A 

comparison of the average brightness of the radiation produced from a bending 

magnet, a wiggler and an undulator is illustrated in Figure 2.2.  
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Figure 2.2: Comparison of radiation brightness produced from a bending magnet 

and the two types of insertion devices. Adapted from reference [21]. 

 

The electrons are accelerated in bunches within the storage ring in third 

generation sources. A result of this, third generation sources typically operate in 

‘bunch mode’, when the SR produced at the bending magnets and insertion devices 

comes in pulses. The time intervals between the pulses are very short thus, for the 

majority of experiments, SR is considered to be continuous.  

Fourth generation synchrotrons, that are currently emerging, produce 

ultrafast pulses due to the use of free electron laser technology, and the brilliance 

of the beam is many orders of magnitude higher compared to third generation 

synchrotrons. Schematic illustrations of the radiation emitted from bending 

magnets and insertion devices used at third generation synchrotrons, in comparison 

to the radiation produced in fourth generation synchrotrons, are shown in Figure 

2.3. XAS, however, is not compatible with free electron laser technology because 

the intensity of the beam is damaging to the samples.  

 



Chapter 2 

32 
 

 

Figure 2.3: Schematic illustrations of the radiation emitted from third and fourth 

generation synchrotrons. Adapted from reference [22]. 

 

 

2.2.2 Advantages Of Synchrotron Radiation 

 

The advantages of using synchrotron radiation over conventional laboratory X-ray 

sources are described below:[23]  

i) Broad and continuous spectral range. The energies provided vary from 

hard X-rays to microwaves and even infrared. 

ii) High intensity beams that allow for relatively dilute samples to be 

studied. Additionally, this SR property enables fast data collection 

which is very useful to probe in situ chemical processes. 

iii) Narrow angular collimation and small beam sizes. 

iv) High degree of polarisation. 

v) Pulsed time structure. 

vi) High brilliance (defined as the number of photons emitted per second, 

with a spectral bandwidth of 0.1%, into a unit solid angle). 

 

            There are definitely benefits in utilising X-rays at SR sources, especially for 

the development of in situ methods. The work undertaken in this thesis was 
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performed at various beamlines at third generation synchrotrons in the UK and 

France: Diamond Light Source (DLS) in Oxfordshire, UK and the European 

Synchrotron Radiation Facility (ESRF) in Grenoble, France. 

 

2.3 X-ray Absorption Spectroscopy (XAS) 

 

In 1913, Maurice De Broglie was the first researcher to measure an absorption edge, 

and seven years later Fricke observed what is known today as fine structure.[24,25] 

During the following fifty years remarkable efforts were made to give a proper 

explanation of the theory of EXAFS, with a lot of disagreement on whether the 

model of the theory should be based upon the assumption of long range order in the 

material.[26] It was not until 1971 that Stern, Sayers and Lytle demonstrated that 

long range order is not required,[27] setting the foundations of this technique and 

validating its use as a valuable tool for structure determination. Their later work, 

with the concomitant advancement of synchrotron radiation technology, has 

resulted in the establishment of the technique as a valuable characterisation tool for 

a variety of scientific disciplines today. As the existence of long range order in the 

samples is not a requirement, this technique can be applied to non-crystalline 

samples,[28,29] liquids[30] and nanoparticles.[31] Additionally, the benefits of 

performing time-resolved measurements and acquiring in situ data have made XAS 

an invaluable tool for fields such as catalysis and monitoring nanoparticle 

formation.[32,33] 

 

2.3.1 Basic Theory of XAS 

 

X-ray absorption is a synchrotron-based technique that provides information on the 

oxidation state, coordination number and bond distances of the neighbouring atoms 

of the probed element, due to the advantageous use of the powerful X-rays 

generated at synchrotron sources. The principle of XAS relies on the absorption of 

part of the incoming photons by the sample, which takes place according to Beer’s 

Law (equation 2.1). 

 

 



Chapter 2 

34 
 

Equation 2.1: Beer’s Law  

It = Io e
– μ(Ε)x  

 

It is the intensity of the transmitted X-ray, Io is the intensity of the incident 

X-ray, x is the sample thickness and μ(E) is the absorption coefficient. This process 

results in transmitted X-rays with decreased intensity. A representative diagram of 

the transmission of X-rays through a sample is illustrated in Figure 2.4. 

 

 

 

 

              

 

 

Figure 2.4: Schematic diagram illustrating the transmission of X-rays through a 

material taking place according to Beer’s Law.  

  

XAS is the measurement of the absorption coefficient of an element within 

a material as a function of incident photon energy. When the energy of the incident 

X-ray is equal to the binding energy of a core electron of the absorbing atom, a 

sharp increase in the absorption is observed, giving rise to the absorption edge. This 

is the result of the excitation of a core-electron to a vacant or partially occupied 

level. The element selective nature of this technique stems from the fact that the 

energy of this absorption is determined by the binding energy of the core level, 

which is unique for each element. An illustration of the excitation of a core-level 

electron, and absorption process is given in Figure 2.5. 
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Figure 2.5: X-ray absorption process and excitation of a core-level electron. 

Adapted directly from reference [34]. 

 

              Each absorption edge is labelled depending on the level from which the 

excitation of a core electron is taking place. For example, when the excitation is 

taking place from the 1s level, the absorption is called the “K-edge”, whereas, from 

the 2s, 2p1/2 or 2p3/2 levels, the edges are named L1, L2 or L3 absorption edges, 

respectively. Figure 2.6 below, adapted from reference,[35] depicts the excitations 

of core electrons from different levels, as a function of energy. 

 

 

 

 

Figure 2.6: Absorption coefficients of excitations from different core levels as a 

function of increasing photon energy, giving rise to K, L1, L2 and L3 edges 

respectively. Adapted from reference [35]. 

 

               Irrespective of the level of excitation, the fingerprint of an X-ray 

absorption spectrum consists of a small decrease in absorption before the excitation 

energy, an absorption edge at a characteristic energy and an oscillatory region above 
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the edge. The absorption spectrum of an Au foil at the Au L3-edge, with the 

corresponding characteristic regions, is shown in Figure 2.7. The region before the 

absorption edge is called the pre-edge, whereas the region ca 50 keV below the 

edge (noted as E0) and ca 100 keV above the edge is called the X-ray Absorption 

Near Edge Structure (XANES).   

The oscillatory structure above XANES contains structural information, 

such as the nature and number of the neighbours of the absorbing element and the 

interatomic distances. This higher-energy region is referred to as (EXAFS).  
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Figure 2.7: XAS absorption spectrum of Au foil measured at the L3-edge showing 

the pre-edge, the XANES and the EXAFS regions, as well as the observed 

absorption edge at E0: 11917 eV.  

 

 

2.3.2 XANES 

 

The XANES region is very sensitive to the chemical environment and oxidation 

state of the absorbing atom. The excitation that gives rise to the absorption edge is 

governed by the dipole selection rule ΔL = ±1, therefore transitions such as s  s 
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or s  d are not allowed.[36] As a result of this rule, allowed K-edge and L1-edge 

transitions are s  p and allowed L2/L3-edge transitions  are p  s and p  d.  

The sensitivity of XANES to the oxidation state is valuable when probing 

the decomposition of metal precursors of nanoparticles, as it provides very useful 

information on the changes of the chosen element throughout the reaction.[33,37,38] 

For example, as the reaction proceeds and the precursors decompose to become 

metallic nanoparticles, the in situ measurements will show a gradual shift of 

absorption edge energy. Even though the allowed transition is the same throughout 

the reaction, this edge shift occurs due to the fact that different energy is required 

for the same excitation under different oxidation states – i.e. different partial 

occupancies of the final states. As a general rule, higher oxidation states require 

more energy.[39]  

This dependency of the energy of the absorption edge on the oxidation state 

is very useful for identification of unknown oxidation states of compounds of 

interest. This information can be directly derived by the comparison of a series of 

reference materials with known oxidation states against the unknown. The 

sensitivity of XANES to the coordination environment is also important. For 

instance, the intensity of the XANES peak (also known as the “whiteline”) of a 

square planar compound of Au with a 3+ oxidation state is higher compared to the 

intensity of an Au compound with a 1+ oxidation state. Generally, compounds with 

higher coordination numbers have more pronounced whiteline intensities.[40] The 

coordination environment can also be indicated by the appearance of a weak pre-

edge feature, due to bound state transitions. The pre-edge peak observed in first row 

transition metals is a result of forbidden transitions such as 1s 3d and is observed 

due to p-d orbital mixing.[41] The dependence of the pre-edge feature from the 

coordination environment of the absorbing atom is clearly illustrated in Figure 2.8, 

where changes in the intensity of the pre-edge of Ti in a series of samples can be 

observed. Six-coordinate Ti presents weak pre-edge intensity while the four-

coordinate Ti presents the most pronounced pre-edge intensity. 
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Figure 2.8: Pre-edge peak intensity depending on the coordination environment 

of Ti in a series of samples. Adapted from reference.[40] 

 

Another valuable use of the XANES is to probe the speciation of a 

material.[42,43] This is due to the fact that XANES is sensitive to the chemical 

environment of the absorbing atom. It is worth noting that the theory behind 

XANES is not as developed as that for EXAFS.[44] As a result, analysis of XANES 

is mostly carried out in a qualitative way. However, accurate XANES calculations 

for complex structured materials can be performed using programmes such as 

FEFF9.[45]  

 

2.3.3 EXAFS 

 

The EXAFS is the post edge region of the absorption spectrum and is found 50 to 

1,000 eV above the absorption edge.[46] At energies greater than the energy of the 

absorption edge, the core-level electron can be ejected as a photoelectron. The 

ejected photoelectron can be envisaged as a wave. As it propagates out of the 

absorbing atom it gets scattered by the outer shell electrons of the neighbouring 

atoms of the absorbing species, creating interference patterns between the outgoing 

and the incoming scattered parts of the photoelectron wave. This process is 

illustrated in Figure 2.9. 
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Figure 2.9: Pictorial illustration of the outgoing and back-scattered 

photoelectron waves propagating.  

 

While XAS is best defined in terms of μ(E), EXAFS is defined as χ(k).  The 

χ(E) can be obtained according to equation 2.2. The theoretical spectrum of an 

isolated atom, μ0(E), is subtracted from the experimental spectrum, μ(E), and the 

resultant spectra is divided by the evaluated edge jump, Δμ0(E). 

 

Equation 2.2: Definition of the EXAFS function χ(E) from the absorption 

coefficient μ(E)  

 

 𝜒(𝐸) =
μ(E) − μ0(E)

Δμ0(E)
  

 

The conversion of energy (E) to k-space (Å-1) is possible through equation 

2.3, where E0 is the energy of the edge position and m is the mass of an electron. 
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Equation 2.3: Equation to obtain k (Å-1) from energy 

 

k =√(
2𝑚(𝐸−𝐸0

ℎ2 ) 

 

Therefore, when interpreting EXAFS data, it is common to convert energy 

to k (the wavenumber of the photoelectron). To amplify the oscillations, EXAFS 

data are often weighted by a factor of k, k2 or k3. The oscillations caused from the 

different neighbouring shells can be described by the EXAFS function, χ(k), which 

can be calculated through the EXAFS equation (equation 2.4).[34]  

 

Equation 2.4: EXAFS equation 

 

𝜒(𝑘) = ∑
𝑁𝑗𝑓𝑗(𝑘)𝑒−2𝜎𝑗

2 𝑘2

𝑘𝑅𝑗
2

𝑗

sin [(2𝑘𝑅𝑗 +  δj (𝑘)] 

 

In this equation, Nj is the number of scattering paths (coordination number) 

of the jth shell, Rj is the inter-atomic distance between the absorbing atom and the 

atoms in the jth shell and σ2 is the mean square displacement arising from disorder 

in the neighbor distances, also known as the Debye-Waller factor.[34] The 

photoelectron wavenumber is noted as k, whereas fj(k) and δj(k) are scattering 

properties of the atoms neighbouring the absorbing atom: fj(k) represents the back 

scattering amplitude and δj(k) represents the phase-shift.[34] These factors depend 

on the atomic number (Z) of the neighbouring atoms, resulting in the ability of 

EXAFS to distinguish between different species of neighbour in the same position. 

2.3.4 Decay Of An Excited State  

 

Upon absorption of X-rays by an atom, a vacancy known as a core-hole is created 

on the level from which the ejection of the core-electron took place; this is the 

excited state of the atom. Two possible mechanisms can take place in order to fill 

that vacancy: X-ray fluorescence or the Auger effect. In the first case, an electron 
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with higher energy from a higher orbital drops to fill the core-hole, resulting in the 

emission of well-defined energy that is characteristic for every atom. In the second 

case, when the inner vacancy is filled through the Auger emission process, the 

energy that is emitted from the drop of the electron is transferred to another electron, 

which is then emitted from the atom. Both of these mechanisms are used to measure 

absorption coefficients of materials. However fluorescence is more commonly 

employed due to the fact that the emitted energy can be found in the hard X-ray 

range (>2keV).[34] In the work presented in this thesis, only transmission and 

fluorescence modes of data acquisition were employed.  

 

2.3.5 Data Collection Modes 

 

XAS data acquisition is usually performed either in transmission or in fluorescence 

mode, however the simultaneous collection of data in both modes is also possible 

at some beamlines. The mode of data collection is primarily dictated by the nature 

of the sample. In every case, however, the absorption coefficient μ(E) is measured. 

For successful data collection the amount of sample needs to be calculated in 

advance, especially when the measurements are performed in transmission mode 

where an optimum edge jump is required. The value of this jump is typically 

between 0.2 – 2.  XAFSMass[47] software is routinely used to calculate the amount 

of sample needed for transmission measurements.  

 

2.3.5.1 Transmission Mode 

 

The most common geometry of XAS data acquisition is transmission mode. A 

schematic diagram of this set up is illustrated in Figure 2.10. The intensity of the 

incident and transmitted X-rays is measured by the two ionisation chambers (Io and 

It), which are located before and after the sample, and are used to measure the X-

ray photons before and after they have passed through the sample. The ionisation 

chambers are filled with an inert gas mixture (e.g. He, Ne, Ar and N2) and the 

mixing of the gases is adjusted to optimize the beam absorption. 
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Figure 2.10: Experimental set up for XAS data acquisition in transmission mode. 

 

The sample requirements for data acquisition in this mode are high 

concentration, homogeneity and appropriate thickness. The absorption coefficient, 

μ(E), for this case is given below (equation 2.5). Io is the incident X-ray intensity 

and It the transmitted X-ray intensity. 

 

Equation 2.5: Absorption coefficient in transmission mode 

 

μ(E) = log(I0/It) 

In this geometry a third ionisation chamber is often placed behind the It 

detector, acquiring data of the relevant foil for calibration purposes. During the first 

step of data processing this ‘reference’ scan is used to align the spectrum of the 

sample of interest. 

 

2.3.5.2 Fluorescence Mode 

 

In the case that the collection of transmission data is not possible, XAS data may 

be collected in fluorescence mode. The apparatus setup for fluorescence 

measurements is similar to that of the transmission setup, however the fluorescence 

detector is positioned at a 90o angle to the incident X-ray beam, and the sample is 

angled at a 45o angle. Fluorescence mode is very useful in cases where the 

concentration of the absorbing atom is low and cannot be increased to allow 

transmission data to be collected. The experimental setup for this geometry is 

depicted in Figure 2.11. 
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Figure 2.11: Experimental set up for XAS data acquisition in fluorescence mode. 

 

The absorption coefficient in this case is given by the equation below: 

 

Equation 2.6: Absorption coefficient in fluorescence mode 

 

µ(E) ∝ If /I0 

The data collected in fluorescence mode are generally noisier compared to 

transmission data, however this data acquisition mode is particularly beneficial for 

dilute samples, such as solutions, or thin films with low dopant concentrations. 

 

2.3.6 XAS Data Analysis  

 

2.3.6.1 Data Reduction  

 

The analysis of XAS data is typically carried out in two parts. In the first part, the 

raw data needs to be processed and in the second part, the processed χ(k) data are 

fitted based on a structural model. While several programs have been developed 

over the years to analyse XAS data, the most commonly used are VIPER[48] and 

Athena[49] for the initial processing, and EXCURVE98[50] and Artemis[49] for the 

EXAFS analysis. Athena and Artemis are in the same package, which was 

extensively used for the data analysis in this thesis. Both programs have advanced 

graphic tools for visual control and evaluation of the data during processing. 

Irrespective of the program of choice for data analysis, common steps are followed 
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for data reduction and fitting. These are detailed below (Figure 2.12), explained 

through the use of Athena and Artemis. 

 

 
 

 
 

 
 

Figure 2.12: Data analysis procedure shown on a gold foil. a) Selection of E0, b) 

background subtraction at the post edge, c) normalised data. 

(a) 

(b) 

(c) 
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In the first part, the raw data collected at the beamline are imported into 

Athena and are converted to energy vs absorption coefficient. Energy calibration is 

also performed at this stage if necessary, using a scan of a reference foil. An 

appropriate E0 value is then chosen – the most common selection point is usually the 

middle of the rising edge – although the choice of E0 is somewhat arbitrary. However, 

if the point is not correctly selected, during the EXAFS fitting the E0 parameter will 

have a large difference from that used for data reduction, indicating a poor choice of 

edge jump value during the data reduction process. This step is followed by 

background removal and normalisation of the data. The background is removed by 

fitting a polynomial function to the post-edge region and the EXAFS data χ(k) is 

obtained. The background subtraction needs to be handled with care so that the real 

oscillatory part remains intact. In the second part, the data is normalised with respect 

to the edge jump. Normalised plotting is beneficial for direct comparison of many 

datasets, or for plotting a sequence of data collected from in situ reactions.  

The data at this point can be interpreted as a function of the photoelectron 

wavenumber, k. At high k values the oscillations are usually attenuated, therefore 

the data is usually multiplied by a factor of k3 to give emphasis to this region. 

Common powers for the k-weight include k, k2 and k3, each one emphasising a 

different region of the spectrum. Figures 2.13 a-b show the difference in the 

oscillations between k and k3. Different k weighting is particularly useful to 

determine contributions from scatterers with different atomic numbers. Heavy 

atoms will have EXAFS contributions at high k values, whereas low Z scatterers 

will have contributions at low k values. The χ(k) data can also be converted to R-

space by a Fourier Transform (FT), which shows the contributions of the shells and 

the distances between absorbing and neighboring atoms (Figure 2.13 c).   
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Figure 2.13: (a) EXAFS k1-weighted, (b) EXAFS k3-weighted, c) FT of Au foil. 
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2.3.6.2 XANES Analysis 

 

 

XANES analysis in this thesis was utilized to ascertain oxidation states of 

compounds of interest, identify ligand changes on the metal centers and monitor the 

decomposition of metal precursors to form nanoparticles. This is mainly achieved 

through the use of reference materials, and through monitoring the edge shift of the 

absorption threshold as the reaction proceeds.  

The oxidation state of the probed element can be estimated by the position 

of the absorption edge when plotted against a series of standards with known 

oxidation states. For example, the absorption edge of a sample with mixed valency 

will be in the middle of the absorption edges of the reference compounds with the 

pure oxidation states. In addition, the intensity of the whiteline provides valuable 

information about the chemical state of the absorbing atom, as it is sensitive to the 

ligand environment and coordination geometry. Different ligands bound to the 

metal center promote changes in the intensity and shape of the whiteline. When this 

intensity appears diminished, it is indicative of a metallic state. Furthermore, the 

monitoring of the absorption threshold of the in situ data provides a valuable profile 

of the oxidation state of the element during reactions. 

 

2.3.6.3 Linear Combination Fitting (LCF) 

 

Linear combination fitting analysis (LCF) is performed on the XANES region of 

XAS spectra – typically 30 eV below and 50 eV above the absorption edge – using 

reference materials with known oxidation states and coordination environments. 

This type of analysis is beneficial when the absorber is in an unknown chemical 

environment and may exist in various forms. Thus the XANES spectrum of this 

sample is a mixture of species. The result of the LCF analysis shows the weight-

fraction of each reference compound that contributed to forming the environment 

of the absorbing atom. If a reference compound is not a constituent of the sample, 

then its weight-fraction will be zero. During the analysis, a graph shows the 

goodness of the fit – a good fit will overlay the XANES plot of the sample. 

 Ideally the standards used for this procedure should cover a wide variety of 

oxidation states and coordination environments in order to ascertain with 
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confidence the above information about the unknown sample. When model 

compounds are not accurately representing the species that are present, or there is a 

lack of standards, this maybe be misleading with respect to the real components of 

the system. LCF also finds beneficial use in time-resolved data, because the 

components of the sample can be quantified as the reaction progresses. In the work 

presented in this thesis, LCF is mainly applied on the XANES of in situ data sets. 

 

2.3.6.4 EXAFS Analysis 

 

Further EXAFS data processing is required to derive values for structural 

parameters from the measured samples, and this procedure was performed using 

Artemis throughout this thesis. Artemis employs the FEFF program to build the 

theoretical structural model required for the analysis.[49] 

Using Athena and Artemis packages is advantageous due to the fact that the 

normalised data in Athena can be imported directly into Artemis without further 

conversion. The interface of Artemis provides the appropriate tools for choosing 

the desired bond distance range (R range), k range and k weight for performing the 

fit. Fitting in multiple k weights is also an option.  

The first step in the analysis procedure is to determine the amplitude 

reduction factor, which is essentially a term added to the EXAFS equation to 

account for lower amplitude than theoretical values. This is usually derived from 

fitting a metal foil. The values of this factor present small variations for the 

reference foil of the same element when measured in different beamlines, and 

account for experimental variations that occur during the data acquisition due to 

different optics, for example. This factor remains set for the rest of the datasets.  

To initiate the fitting procedure, a structural model must be built in Artemis, 

containing information on the bond distances, coordination numbers and chemical 

identities of the scattering atoms. This structural model has to be close to the 

expected structure of the sample. If the compound is unknown then prior knowledge 

is valuable, as the model needs to be as close as possible to the structure of interest. 

There are two ways of generating the scattering paths for creating the structural 

model. The first one involves the use of crystallographic information files (CIF) 

that can be downloaded from various databases.[51,52] When the CIF file is imported 
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into Artemis, a calculation generates all the single and multiple scattering paths 

present in the structure. The plotting options in Artemis also allow for the evaluation 

of the contribution of each path to the FT peaks. The second one involves generating 

the scattering paths through a quick first fitting (QFS) mode. This mode is only 

valid for fitting the first coordination shell, and is particularly useful when the first 

shell consists of a mixture of species (sub-shells). Knowledge of the bond distance 

between the absorber and the scatter, and the nature of the scatter and the 

coordination number are prerequisites, since this information is manually inserted. 

Both of these modes of generating scattering paths were used in this work, as 

specified in the text. 

 Irrespective of how the model is built, the parameters that are refined during 

a fit are the edge energy (E0), the Debye-Waller factor (σ2), the bond distance 

variation between the measured data and the input value (ΔR) and the coordination 

number (CN) for every path used in the fit. Generally, acceptable values for E0 are 

± 10 eV and an acceptable value for the bond distance variation is up to 0.1 Å. 

Larger values indicate that the model may not be correct. The terms used for the 

EXAFS parameters are commonly used in literature and are accepted by the XAS 

community. The structural parameters and associated terms are shown in table 2.1. 

 

Table 2.1: EXAFS structural parameters and associated terms used during 

analysis procedure. 

 

EXAFS structural parameters Terms given 

 

N, coordination number 

 

CN 

 

S02, amplitude reduction factor  

 

amp 

 

E0 

 

enot 

 

ΔR, path length 

 

delr 

 

σ2, Debye-Waller factor  

 

ss 

 

The goodness of a fit is indicated by a parameter known as the R factor. This 

parameter shows the residual of the fit, which is the difference between the 

calculated and experimental data. Low R factor values indicate good fits. The upper 
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acceptable value is ca 0.05. This parameter is reported frequently in XAS based 

publications.  If the calculated and the experimental plots do not match, then the 

parameters need to be refined in order to obtain the best possible fit.  

 

2.3.7 Limitations of XAS 

 

XAS has undoubtedly been proven the technique of choice for obtaining 

information on the electronic structure (XANES) and chemical environment 

(EXAFS) of a wide range of samples. However, as with any technique, despite its 

great advantages it has intrinsic limitations and complementary techniques are often 

required to supplement the information derived from XAS data. These limitations 

are briefly discussed below: 

 

i) It is a bulk averaging technique, and this often poses a limitation when 

the sample of interest is comprised of many components.[53]  

ii) Accurate determination of the coordination number is often challenging 

due to strong correlations with the Debye-Waller factor, σ2. For the first 

coordination shell the accuracy is within 10-20 % error,[54] however, for 

disordered systems, this uncertainty can be greater.  

iii) Bond distances can be reliably extracted from EXAFS analysis, with a 

level of accuracy of around ± 0.01 Å. This value increases in the range 

of 0.1 – 0.2 Å when the selected kmax is set to a small value. This is a 

result of the strong dependence of R on kmax according to the ΔR ≥ π/2Δk 

function.[55] Often, data cannot be collected over a wide k-range, for 

instance when in situ data is acquired, and a careful consideration of the 

extracted structural parameters is required. 

iv) When the atomic numbers of scattering atoms are similar, it is difficult 

to decide on the nature of the backscatter without ambiguity.[56] This 

process is facilitated if the bond distances between the scattering atoms 

and the absorber are distinctly different. Examples of elements that 

present this difficulty during analysis include C, N, O, S, Cl, Mn and Fe. 
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2.4 Other Characterisation Techniques 

 

In the work presented in this thesis XAS is the main characterisation technique that 

is employed because the information derived from XAS could not be gained from 

other laboratory techniques. However complementary techniques had to be used in 

order to gain different information. In particular, transmission electron microscopy 

(TEM), X-ray diffraction (XRD) and Ultraviolet-Visible (UV-Vis) spectroscopy 

were used in the majority of chapters. 

 

2.4.1 Transmission Electron Microscopy (TEM)  

 

A transmission electron microscope uses a beam of electrons in order to visualize 

the sample material. The electrons are produced using a tungsten filament as an 

electron source in a vacuum chamber, and the generated beam of electrons passes 

down the microscope column while being focused through a series of apertures and 

lenses. When the beam reaches the sample some of the electrons undergo back 

scattering, depending on the electron density of the material, and some pass through 

the TEM grid without interacting with the sample. An image is formed from 

electrons that have interacted with the sample. An imaging device, such as a charge-

coupled device (CCD), detects and transfers this image to a digital screen to be 

further analysed. As heavier elements have more electrons they appear darker in the 

micrographs. Depending on the magnification levels and the resolution of the 

microscope, atomic resolution can be achieved. A major limitation of this technique 

is that a very small fraction of the sample is examined.  

 

2.4.2 X-Ray Diffraction (XRD) 

 

X-ray diffraction is commonly applied to crystalline materials (those with a 

regularly repeating lattice) in order to obtain information about their structure and 

crystallinity. When X-rays are incident on a sample they are scattered in all 

directions, irrespective of the physical state of the sample (gas, liquid, solid). When 
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the sample is crystalline the X-rays are scattered in a regular way. The X-rays 

typically interfere destructively, but when Bragg’s Law (equation 2.7) is satisfied 

constructive interference occurs, giving rise to diffraction patterns. In order for this 

to occur, the wavelength of the incident X-rays has to be similar to the interplanar 

spacing. A typical diffraction pattern is a plot of the intensity of the X-rays as a 

function of the diffraction angle.  

 

Equation 2.7: Bragg’s Law 

n  = 2d sin    

 

 Where n is an integer,  is the wavelength of the incident X-rays, d is the 

interplanar spacing between the ordered atoms and  is the diffraction angle. Figure 

2.14 illustrates how diffraction takes place.  

 

 

 

 

 

  

 

 

 

 

 

Figure 2.14: Diagram showing how the diffraction of X-rays takes place. 

 

Since the periodic rearrangement of atoms is a requirement for diffraction 

to occur, very small nanoparticles may not have enough long range order to produce 

a diffraction pattern. However, the size of the nanoparticles prepared in this thesis 

allowed for diffractograms to be obtained, enabling phase identification of the 

synthesized materials. 
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2.4.3 Ultraviolet – Visible (UV – Vis) Spectroscopy 

 

 

UV-Vis is a spectroscopic technique for probing the optical properties of 

nanoparticles, ligand changes on the environment of a metal precursor and 

monitoring the decomposition of precursors through the disappearance of the 

absorption bands. The underlying principle is based on the Beer-lambert absorption 

law that is shown in equation 2.8, where A is the absorbance and I0 and It are the 

intensities of the incident and transmitted light respectively. ε, L and c refer to the 

molar absorption coefficient, the path length the light has to travel (usually the 

length of the cuvette) and the concentration of the solution. 

 

Equation 2.8: Beer-Lambert Law 

 

A = log10 (I0/It) = εLc 

 

 Especially in the case of Au nanoparticles, the colour of the colloidal 

solutions is very distinctive and often indicative of their size and their shape.[57,58] 

The UV-Vis fingerprints of Au nanoparticles are called Surface Plasmon 

Resonance bands[59] and arise from the collective oscillation of the conduction 

electrons with the electric wave of the incident light, as already described in Chapter 

1 (Section 1.2).[59] Additionally, anisotropic Au nanoparticles often have additional 

features in the UV-Vis range compared to the spherical nanoparticles, thus making 

this technique a valuable tool for quick and easy identification of metallic Au and 

potential anisotropy of the nanoparticles.[60] UV-Vis however is not very reliable in 

evaluating the particle size when the system is polydisperse,[61] and it should be 

used in coordination with other laboratory or synchrotron based techniques such as 

TEM and SAXS. In this thesis, UV-Vis was also employed to study changes in the 

ligand environment of Au, Pd and Fe precursors. In Chapter 6 UV-Vis is also used 

to monitor the thermal decomposition of the metal precursors in the nanoparticle 

synthesis reactions. Therefore, the versatile character of this technique was 

exploited throughout this thesis. 
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Chapter 3.  X-ray Absorption Studies On The Speciation Of Au 

Precursor In Syntheses Of Au Nanoparticles  

 

 

 

3.1 Chapter Overview  

 

In this study, the speciation of the Au precursor during the pre-nucleation stage of 

the seed assisted synthesis of isotropic and anisotropic Au nanoparticles was 

investigated using XAS. To achieve this, ex situ XAS measurements were 

performed at the Au L3-edge during the sequential addition of surfactants, halides 

or small molecules, such as AgNO3, to aqueous [AuCl4]
- solutions. Studies on the 

speciation of Ag+ commonly added as a shape-directing agent to syntheses, were 

also performed at the Ag K-edge. In addition, the results from the characterisation 

of the resultant nanoparticles are also provided, employing XAS and 

complementary techniques such as, TEM and UV-Vis.  

 

3.2 Introduction  

 

The colloidal synthesis of Au nanostructures has been a subject of intense research 

in the past two decades. Nowadays, Au nanoparticles with various morphologies 

including rods, prisms, cubes and octahedra are routinely synthesised.[1] The 

widespread interest in these materials stems from their shape dependent properties, 

such as optical[2,3] and catalytic,[4] which are substantially different to those of Au 

spherical particles. Since their properties are size and shape dependent, a large 

amount of literature is devoted to establishing synthetic protocols with excellent 

control over their morphology and size distribution.[1,5] Among other synthetic 

routes, the seed-assisted approach has received considerable attention as it is the 

most efficient preparation method for controlling the morphology of Au 

nanocrystals, allowing access to Au nanoparticles with complex structures. The 

success of this method stems from the fact that the nucleation and growth stages are 

separated, allowing for greater control over the particle morphology.[6,7] Notably, 

the mechanisms of shaped nanoparticle formation are still unclear.[8–10]  
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As briefly described in Chapter 1 Section 1.4.1.a, a typical seed assisted 

synthesis involves two steps. In the first step, small Au nanoparticles, with 

diameters in the range of 1.5-6 nm,[11] are formed by the chemical reduction of an 

Au salt (usually [AuCl4]
-) by a strong reducing agent, such as NaBH4, in the 

presence of a capping agent.[ 7,12] In the second step, these seeds are then added to 

a growth solution that contains surfactants (commonly cetyltrimethylammonium 

bromide/chloride [(CH3)3N(CH2)15CH3]
+[Br/Cl]-, abbreviated as CTAB/CTAC), 

small molecules (such as AgNO3 or halides), additional [AuCl4]
- and a weak 

reducing agent (commonly ascorbic acid or hydroquinone).[12,13] The addition of 

seeds promotes nucleation, and all the aforementioned reagents then influence the 

final nanoparticle morphology. Remarkably, many growth solutions are 

surprisingly similar, and only a slight variation of the synthesis protocol is often 

enough to promote growth of particles with different morphologies. Consequently 

making the isolation and identification of the role of each reagent in the seed-

assisted synthesis of anisotropic Au nanoparticles especially difficult. Factors that 

have been under investigation concerning their effects on the nanocrystal shape 

include the nature and the size of the Au seeds, the concentrations of the reagents 

and the growth solution composition and the presence of halides.[1,8,9]  

Au nanorods were possibly the first anisotropic shape that was prepared, 

and the yield of this reaction was much improved upon the introduction of AgNO3 

in the growth solution.[9] Since then, numerous studies have attempted to elucidate 

its role, yet a definitive answer is still pending.  To date, the Ag+ has been proposed 

to react with CTAB and act as a capping agent,[14] undergoing Ag underpotential 

deposition (UPD) – resulting in a monolayer of Ag0 on the surfaces of nanorods as 

well as on other shapes[1,15] – or to influence the structure of the CTAB micelles, 

thus providing a rod-shaped template for the newly reduced atoms.[16] As the seed-

assisted synthesis further developed, syntheses of other shapes, such as Au concave 

cubes[17] or tetrahexahedra,[1] also employed AgNO3 as a shape directing agent.  

In addition to the non-elucidated role of Ag+, the role of halides was 

overlooked in the early era of shaped nanoparticle synthesis, and has only recently 

begun to be appreciated, making the efforts to understand the mechanisms of 

anisotropic growth even more complicated. Halides are intrinsically present in large 

amounts in the growth solutions, due to the use of excess of 

cetyltrimethylammonium halide salts. CTAB was employed in the early synthesis 
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of Au nanorods performed electrochemically.[18] During the development of the 

seed-assisted method, CTAB’s use was continued, as it was commonly believed to 

act as a soft templating-agent. This would direct the growth longitudinally, by 

stabilizing specific facets on the growing particle, thus directing the newly reduced 

Au0 atoms to the tips of the growing rods.[19] Upon the introduction of AgNO3 to 

the nanorod synthesis, CTAB was proposed to assist in the formation of rod-shaped 

micellar templates upon its interaction with the Ag,[6] or act as a stabilizing agent 

by forming a [CTA]+-Ag-Br complex.[14] Although later reports have also proposed 

that the presence of AgNO3 is more important to the formation of rods than 

CTAB,[9] studies over the past eight years have presented evidence that the contrary 

may apply in the Ag-assisted synthesis of nanorods, such that the presence of [Br]- 

is actually more important.[20–22] A remarkable example of these studies is presented 

by Garg et al.,[21] who effectively showed the critical role of [Br]- by preparing 

nanorods using a low concentration of CTAB, however this was done with addition 

of NaBr to provide extra [Br]-. This synthesis afforded a similar yield, in 

comparison to the synthesis where CTAB was added in excess. This study set the 

foundation for the role of [Br]- in Au nanorod synthesis, and in turn other studies 

evaluated the role of [Cl]- and [I]- in the seed assisted synthesis of various shapes. 

Notably, in the case of nanorods, traces of [I]- impurities in the reagents used, 

especially in the [CTA]+ source, can have a major impact on the final particle 

morphology. [I]- can even prohibit Au nanorod growth.[23] On the contrary, the 

deliberate addition of a controlled amount of [I]- to a CTAB containing growth 

solution favours the formation of Au plates and prisms.[24]  

Soon after the observation of the effects of halides on the particle shape, 

CTAC - the corresponding [Cl]- containing salt of CTAB - was also employed in 

the seed-assisted synthesis. As a result, additional shapes such as trisoctahedra 

became accessible by controlling the ratios of the halides in the growth solutions.[1] 

A key study presented in 2010 by Zhang et al.[17] showed that in two identical 

growth solutions, with the only difference being the halide of the surfactant, CTAB 

led to the formation of tetrahexahedra and CTAC to concave cubes. Two years later, 

Mirkin et al.[1] presented an extensive study on the use of different halides in the 

presence or absence of AgNO3 in the synthesis of shaped nanoparticles. This study 

further supports the significance of halides in this approach. The key findings of 

this study on the roles of halides in growth solutions were presented as follows: 
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halides may interact with the Au precursor prior to nucleation, can act as capping 

agents passivating surfaces of the Au particles and, when AgNO3 is present, have 

an effect on the Ag underpotential deposition (UPD).[1] It is important to note that 

these results may not be representative of other shaped nanoparticle syntheses, 

however they are very explanatory of the results of the specific reaction conditions 

employed in this particular work. A year later, halides were used to modulate the 

morphology of particles growing on citrate stabilized seeds.[25] The authors 

attributed this result to the different adsorption ability of halides and the likely 

modulation of the reduction potential of the Au precursor and subsequent growth 

rate of the particles. However, a study presented a year later, proposed that surface 

passivation by the halides cannot explain the anisotropy expressed, and that the 

rates of reduction and growth are the key factor.[26] Their mechanistic explanations, 

however, did not provide satisfactory elucidation of the role Ag ions. 

It is worth reporting that other chemical syntheses have been found to 

prepare anisotropic structures of Au nanocrystals not only in the absence of halides 

and the presence of Ag+,[27,28] but also in the absence of both halides and Ag+.[29] 

However, in the latter case, the product of the reaction is Au nanostars, which is 

known to be a result of an uncontrolled growth rate. 

So far, studies on the role of halides have revealed the possibility of them 

having multiple roles in the seeded synthesis of shaped Au nanoparticles, however 

a definitive explanation of their role is still pending. Contradicting results presented 

in the literature make the elucidation of their role a more difficult task. However, it 

is worth mentioning that the differences presented in the aforementioned studies 

may also be a result of the level of impurities in the reagents used in these syntheses. 

As this research topic is fairly recent, further studies are required to address these 

questions.   

 

 3.3 Aims And Objectives 

 

In the aforementioned studies presented in the literature report, a potential 

interaction between the halides and the Au precursor in the growth solutions is 

provided, but without direct structural information. In the study presented herein, 

through the use of XAS at the Au L3 and Ag K-edges, the structures of the Au and 

Ag species in a series of growth solutions are investigated. Due to the element 
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specific nature of this technique, it is possible to probe the oxidation state and 

coordination environment of the Au and Ag elements, thus identifying the chemical 

changes that these metal ions undergo upon addition of the reagents used in the 

seed-assisted approach.  Thus, the first aim of this study is to investigate the effects 

of halides and AgNO3 on the structure of [AuCl4]
-, employing XANES and EXAFS 

at the Au L3-edge. The second aim is to explore the speciation of AgNO3 when 

present in the growth solutions by XAS performed at the Ag K-edge, and 

particularly exploring the effects of halides on the structure of AgNO3. These 

studies will provide an understanding of the changes occurring on the ligand 

environment of Ag+ under the selected reaction conditions. To our knowledge, these 

aspects of the seed-assisted synthesis have not been studied, and, thus, the main aim 

is to gain an insight on the starting materials. In addition, ex situ characterisation, 

performed on the as-synthesized particles at both edges, will provide insight into 

the oxidation state and ligand environments of Au and Ag. Au is expected to be 

found in a metallic state, however the state of Ag in the final particles, which 

remains debated to date, will be probed and addressed through the use of XANES 

and EXAFS.  

 

3.4 Experimental  

 

Chemicals 

 

Hydrogen tetrachloroaurate (III) trihydrate (HAuCl4.3H2O) (41.22 wt.%) was 

produced by Alfa Aesar and was provided by Johnson Matthey. 

Cetyltrimethylammonium bromide (CTAB) (≥99%), ascorbic acid (≥99%), 

cetyltrimethylammonium chloride (CTAC) (25 wt.% in H2O), sodium bromide 

NaBr (99.9%), sodium iodide NaI (99.5%), sodium tetrachloroaurate(III) dihydrate 

(NaAuCl4.2H2O) (99%), hydrogen tetrabromoaurate (III) hydrate (HAuBr4.xH2O), 

silver nitrate (AgNO3) (≥99.0%), trisodium citrate dihydrate (≥99.0%) and 

hydrochloric acid (HCl) (37%) were purchased from Sigma Aldrich Ltd. The water 

used in the experiments was ultra-pure and was purchased from Severn Biotech Ltd. 

All the chemicals were used without further purification. The synthesis of Au 

nanoparticles was performed according to literature based synthetic protocols, 

however the concentration of [AuCl4]
- in our studies was significantly increased 
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compared to literature ones in order to allow for acquisition of good quality XAS 

data. It should be noted that measuring the yields of the reactions in Sections 

3.4.1.1-3.4.2.3 would be a challenging task due to the presence of the non-

stoichiometric amounts of particle stabilisers on the surface of the particles. 

However, the reactions were optimized to produce the targeted morphology to the 

maximum monodispersity. 

 

3.4.1 Aqueous Seed Assisted Syntheses Of Au Nanoparticles In Bromide 

Containing Surfactant 

 

 

3.4.1.1 Synthesis Of CTAB Stabilised Au Nanorods  

 

The synthesis of Au nanorods was performed according to the synthetic protocol of 

Mostafa A. El-Sayed and Babak Nikoobakht.[12] Au seeds were prepared by 

dissolving 0.3644 g of CTAB in 5 ml of ultrapure water and heating at 40 oC for 40 

min under vigorous stirring until complete dissolution of CTAB was observed. At 

28 oC, aqueous [AuCl4]
- (5 ml, 5x10-4 M) was added to the CTAB solution under 

stirring. Upon addition, the colour of the solution turned from pale yellow to orange. 

Addition of NaBH4 solution (0.6 ml, 0.01 M) resulted in the formation of Au 

nanoparticle seeds. A four-component growth solution was prepared at 28 oC, by 

adding aqueous [AuCl4]
- (2.5 ml, 0.02 M) and aqueous AgNO3 solution (0.4 ml, 

0.01 M) to an aqueous CTAB solution (5 ml, 0.2 M), followed by the addition of 

aqueous ascorbic acid solution (0.6 ml, 0.1 M). The nucleation process was initiated 

by the addition of 0.7 ml of the CTAB stabilised seed solution.  

 

3.4.1.2 Synthesis Of CTAB Stabilised Au Hexagonal/Triangular Nanoplates  

   

The seed assisted protocol of the synthesis of Au nanoplates was literature based,[24] 

but with a few modifications. The synthesis of Au nanoplates requires the 

preparation of citrate stabilised seeds. For the synthesis of citrate stabilised seeds, a 

10 ml aqueous solution containing [AuCl4]
-  (5x10-4 M) and trisodium citrate (5x10-

4 M) was prepared. To this solution, ice-cold aqueous NaBH4 (0.25 ml, 0.1 M) 

solution was quickly added under vigorous stirring. The solution was coloured red-

purple upon addition of NaBH4. The growth solution was prepared by the addition 

of aqueous [AuCl4]
- (of 2.5 ml, 0.02 M) and aqueous NaI solution (0.20 ml, 0.1 M) 



Chapter 3 

64 
 

to an aqueous CTAB solution (7.5 ml, 0.02 M) solution at 28 oC. Subsequently, 

aqueous ascorbic acid solution (1ml, 0.1 M) was added to the growth solution. The 

nanoparticle growth was initiated by the addition of 0.7 mL of the citrate-stabilized 

seed solution.  

3.4.1.3 Synthesis Of CTAB Stabilised Au Spheres  

 

For the formation of CTAB stabilised Au nanoparticles, a growth solution identical 

to the one described in 3.4.1.2 was prepared, except for the addition of NaI. The 

particle formation in this case was also initiated by the addition of 0.7 ml of the 

citrate-stabilized seed solution.  

 

3.4.2 Aqueous Seed Assisted Syntheses Of Au Nanoparticles In Chloride 

Containing Surfactant 

 

3.4.2.1 Synthesis Of CTAC Stabilised Au Concave Nanocubes  

 

The synthesis of CTAC-stabilised Au concave nanocubes was performed according 

to a literature based synthetic protocol.[1]  

For the preparation of CTAC stabilised Au nanoparticle seeds, freshly 

prepared ice-cold aqueous NaBH4 solution (0.6 ml, 0.01 M) was quickly injected 

into a solution containing aqueous [AuCl4]
- (5 ml, 5×10-4 M) and CTAC (5 ml, 0.2 

M). The colour of the solution turns from light yellow to red upon addition of 

NaBH4. A typical growth solution of Au concave nanocubes was prepared by 

consecutively adding reagents into an aqueous CTAC solution (5ml, 0.2M). Firstly, 

HCl solution (0.2 ml, 1M) was added. Then, aqueous [AuCl4]
- (2.5 ml, 0.02 M) was 

added and the color of the solution changed from colourless to bright yellow. 

Following this, aqueous AgNO3 (0.84 ml, 0.01 M) solution was added, followed by 

the addition of aqueous ascorbic acid solution (0.84 ml, 0.1 M). The particle 

formation was initiated by the addition of 0.1 ml of the CTAC stabilised Au 

nanoparticle seed solution. 

 

3.4.2.2 Synthesis Of CTAC Stabilised Au Nanorods  

 

The preparation of the CTAC stabilised Au nanoparticle seed solution took place 

as described in Section 3.4.2.1. For the formation of Au nanorods in CTAC 

surfactant, an identical growth solution to the one for Au concave nanocubes was 
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prepared, however NaBr (0.5 ml, 2 M) was added prior to the addition of AgNO3 

solution (0.6 ml, 0.01 M). The addition of NaBr changed the color of the solution 

from bright yellow to orange. Following this, aqueous ascorbic acid solution (0.84 

ml, 0.1 M) was added, and the nucleation was initiated by the addition of 0.1 ml of 

the CTAC stabilised Au nanoparticle seed solution.  

 

3.4.2.3 Synthesis Of CTAC Stabilised Au Spheres 

 

For the formation of CTAC stabilised Au spheres, a growth solution identical to the 

one described in Section 3.4.2.2 was prepared, except that 0.20 ml of aqueous NaI 

solution (0.1 M) was added instead of the NaBr solution. The particle formation in 

this case was also initiated by the addition of 0.1 ml of the CTAC stabilized seed 

solution. The colour of the solution turned purple upon addition of the seed solution. 

 

3.4.3 Characterisation Using Laboratory Techniques 

 

For TEM measurements, a drop of each nanoparticle solution was cast on a holey 

carbon coated Cu grid and the measurements were performed on a JEOL JEM 2100 

microscope, operating at 200kV. The UV-Vis spectra presented in this work were 

recorded with a PerkinElmer LAMBDA 950 spectrometer using quartz cuvettes. 

Background correction was performed using water. 

 

3.4.4 Cells 

 

The cell depicted in Figure 3.1 was provided by Johnson Matthey and was used for 

the speciation studies at the Au L3-edge.  

 
 

Figure 3.1: XAS transmission cell provided by Johnson Matthey. 

A 
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The cell consists of a long tube made of Teflon, with a 10 ml capacity. It is 

composed of two parts: the front, marked as A, and the back, which consists of a 

smaller tube and screws into the front, allowing for a controllable path length (from 

0.2 cm to 1.5 cm). In the studies presented herein, a path length of 1 cm was used. 

Both parts have Kapton windows (polyimide films of 0.01mm thickness Kapton 

HN® grade). These are attached to the tubes with the aid of O rings. The cell offers 

the possibility of accommodating large volumes of solution, and the top inlet allows 

for easy injection of liquids into the cell. The cell configuration only allows for data 

collection in transmission mode, therefore it could only be used for the speciation 

studies at the Au L3-edge. 

The low Ag+ concentration necessitated fluorescence data collection at the 

Ag K-edge. Thus for the Ag K-edge experiments, a bespoke XAS cell, shown on 

the top left in Figure 3.2, was designed by Professor Gopinathan Sankar.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Top: Synthesis cell (left) and cell components (right). Bottom: Plan 

view of the cell, showing the inlet and outlet (left), full assembly of the cell, 

including ceramic plates (right). 

 

The cell consists of a brass body that is equipped with a PEEK 

(Polyetheretherketone) ring spacer. The picture at the top left of Figure 3.2 is the 

brass liquid-sample holder. The spacer has an inlet and an outlet at 45o from the 
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vertical plane, allowing for easy injection of liquids into the cell, or for the 

connection of gas tubes, if required (Figure 3.2 bottom left). To seal the cell, a 

circular window (either Mica or Kapton) is first put on one side of it, followed by 

two PTFE (Teflon) ring spacers (1.5 mm thick, 25 mm diameter), an aluminium 

ring and a brass ring. This process is then repeated from the other side. The window 

components can be seen in the top right of Figure 3.2. The liquid phase samples can 

either be loaded from the open side before closing the cell or, preferably, injected 

carefully through the inlet. A heating block connected to the cell can be connected 

to a temperature controller to provide heating. On the bottom left of Figure 3.2 is 

the full assembly, with ceramic plates attached to the cell for better heat retention. 

The cell allows for XAS measurements to be performed in both transmission and 

fluorescence modes. 

 

3.4.5 Data Acquisition And Processing 

 

For the speciation studies, XAS data was acquired at the Au L3-edge at the BM23 

beamline[30] at the European Synchrotron Radiation Facility (ESRF), Grenoble, 

France, operating at a ring energy 6 GeV, using the cell shown in Figure 3.1. The 

energy was selected using an Si(111) monochromator at the Au L3-edge of Au foil 

(11919 eV). Data was collected over a k-range of 0-14 Å-1 in transmission mode. 

The growth solutions were freshly prepared at the beamline laboratory before 

transfer to the cell. For the XAS characterisation of the particles at the Au L3-edge 

and the Ag K-edge, as well as the speciation studies at the Ag K-edge, data was 

collected at the B18[31] beamline at Diamond Light Source (DLS) and the energy 

was calibrated to that of Au foil (11918 eV) or Ag foil (25514 eV) for each edge, 

as appropriate. For the ex situ characterisation of the nanoparticles, an aliquot of the 

as-synthesised solution was transferred to the cell, while the growth solutions were 

freshly prepared prior to transfer to the cell. Transmission and fluorescence 

measurements were made concurrently, over a k-range of 0-14 Å-1. For these 

studies, the cell depicted in Figure 3.2 was used. The data analysis was performed 

according to existing protocols. 

Where multiple spectra were acquired, they were merged in μ(Ε) prior to 

data processing. A similar procedure was followed for the speciation studies at Ag 

K-edge. The XAS spectra were analyzed using the IFEFFIT package that includes 
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Athena and Artemis.[32] These were used for the background subtraction and curve 

fitting analysis of EXAFS data respectively.  Various k- and R-ranges were 

employed in the analysis, and these are reported in Appendix 3, tables A3.1 and 

A3.2 respectively.  All fits were performed in R-space. Amplitude reduction factors, 

S0
2, were obtained from curve fitting of the Au and Ag foil reference materials, 

recorded at the start of each experiment.   

 

3.5 Results And Discussion 

 

3.5.1 XANES Of Au Nanostructures 

 

 

Figures 3.3 left to right show the Au L3-edge XANES spectra of the Au 

nanoparticles synthesised as described in Sections 3.4.1 and 3.4.2. The XANES of 

Au foil is plotted together with the XANES of the samples for reference.  

Au L3-edge probes the dipole allowed 2p3/2 to 5d transition that gives rise to 

the whiteline, which appears after the absorption edge.[33] The intensity of the 

whiteline is dependent on the oxidation state and coordination environment of Au. 

For lower oxidation states, a decrease in whiteline intensity is expected, while for 

higher oxidation states a sharp whiteline is expected. The electronic configuration 

of Au3+ (5d8 6s0) allows for the 2p3/2 to 5d transition to take place, and due to mixing 

of the 5d and 6s orbitals, Au+ and Au0 species can also be detected.[34] As Figure 3.3 

shows, the XANES of Au foil shows an absorption edge at 11919.7 eV (measured 

at a μ(Ε) = 0.6), followed by a whiteline with very low intensity. Above the 

absorption edge, a feature labelled as A was observed, located ca 15 eV above the 

absorption edge, and two prominent peaks (B and C) at 11945 eV and 11988 eV 

respectively.  It can be observed that the XANES of all six samples are identical in 

appearance to that of Au foil, presenting all the characteristic features. This 

indicates that Au is found in a metallic state in every sample, and that no 

contribution was observed from Au species with oxidation states higher than 0. This 

result shows that the Au precursor has been reduced completely under the selected 

reaction conditions and that the samples were composed solely of metallic Au. In 

addition, the edge position of all six samples was found at 11919.5 eV (measured 

at a μ(Ε)=0.6), which also confirms the presence of metallic Au. Additionally, there 

is almost no change observed in the intensity of peaks B and C of the samples 
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compared to the intensities observed for the Au foil. This suggests that the 

nanoparticle size range lies within values that appear bulk-like in terms of XANES. 

A decrease in the intensities of those peaks would signal a significant reduction in 

the coordination of the particles, thus smaller sizes. The XANES of the CTAB Au 

nanoplates deviates slightly from that of the Au foil, this observation is attributed 

to the level of noise observed in this sample. 

The nature of the transition at the Au L3-edge allows for probing the 

occupancy of the Au 5d states, and several studies have examined the effect of the 

size and the nature of the binding ligands/stabilizing agents on the intensity of the 

whiteline. The nature of the capping ligand of Au nanoparticles has an effect on the 

5d band occupation, and it is proposed that stabilizing ligands, such as thiolate and 

alkanethiolate,[35,36] withdraw some electron density from the Au nanoparticles, as 

evidenced from the intensity increase of the whiteline.  
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Figure 3.3: Left to right: XANES at the Au L3-edge of the CTAB and CTAC 

stabilised Au nanoparticles, plotted with Au foil as a reference. 

 

In our studies, the intensity of the whiteline of all six samples appears 

identical to that of Au foil, suggesting that the samples have a bulk-like 5d band 

occupancy. This observation may be attributed to the weakly-bonded behaviour of 

the cationic surfactant [CTA]+. Indeed, this result is in agreement with an XAS 

study reporting that CTAB stabilised Au nanoparticles, within the range of 1.5-5 

nm, have the same whiteline intensity as the Au foil.[37] However, it should be noted 

that the size regime of the particles investigated (~ 30-75 nm) may also prevent such 

an effect being evidenced. The TEM micrographs of the CTAB and CTAC 

stabilised Au nanoparticles can be seen in Figures 3.4 A-C and 3.4 D-F respectively. 
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Corresponding particle size histograms and high resolution TEM images of the 

particles can be found in Appendix 3 (Figures A3.4 - A3.11). The aspect ratios of 

CTAB and CTAC stabilised Au nanorods are 5.2 and 3.6 respectively.  

 

              

        

       

 

Figure 3.4: TEM micrographs of CTAB (A-C) and CTAC (D-F) stabilised Au 

nanoparticles.  

 

Some spherical particles can be observed in the case of CTAB and CTAC 

stabilised Au nanorods, however these are low percentage byproducts commonly 

observed in seed-mediated syntheses. 

A 

B 

C 

D 

E 

F 



Chapter 3 

71 
 

The UV-Vis of the CTAB and CTAC stabilised nanoparticles is displayed 

in Figure 3.5. CTAB nanorods present two absorption bands that are characteristic 

of Au nanorods, with maxima at 532 nm and 700 nm, while CTAB Au nanospheres 

present a single peak at 537 nm. The UV-Vis of CTAB Au nanoplates presents a 

peak located at the same position as the one of the CTAB spheres, but also a broad 

absorption signal can be observed in the range 700-900 nm. The CTAC stabilised 

Au concave nanocubes show an absorption at 582 nm, with a small broadening 

occurring at the base of this peak. The CTAC Au nanoparticles show one single 

absorption at 540 nm, while the CTAC Au nanorods present a doublet at 550 nm 

and 658 nm.  

 

450 600 750 900
0.0

0.5

1.0

1.5

2.0

537 nm

537 nm

532 nm

700 nm

A
b
s
o
rb

a
n

c
e

 (
a
.u

.)

Wavelength (nm)

 CTAB Au nanorods  

 CTAB Au nanospheres

 CTAB Au nanoplates 

400 600 800 1000
0.0

0.5

1.0

1.5

2.0

582 nm540 nm
658 nm

A
b

s
o

rb
a

n
c
e

 (
a

.u
.)

Wavelength (nm)

 CTAC Au nanocubes

 CTAC Au nanorods

 CTAC Au spheres

550 nm

 

 

Figure 3.5:  Left – Right: UV-Vis spectra of CTAB and CTAC stabilised Au 

nanoparticles, respectively. 

 

An Au-Ag alloy character would also have an impact on the whiteline 

intensity of the Au L3-edge and would also affect the intensity of feature A. The Au 

L3-edge XANES of Au-Ag bimetallic systems presents increased whiteline 

intensity, resulting from the depletion of the Au 5d electron band by Ag.[38] Since 

the XANES of the syntheses where Ag was utilized does not present such a trend, 

it can be speculated that a pronounced Au-Ag interaction is not taking place. 

However, it should also be noted that any interaction between Ag+ and Au may not 

be excluded as the amount of Ag+ may be too little, therefore it might not be possible 

to detect an Au-Ag interaction. 
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The Ag K-edge XANES of the CTAB stabilised Au nanorods and CTAC 

stabilised Au concave nanocubes, Au nanorods and Au nanospheres are displayed 

in Figure 3.6, plotted with the Ag foil for reference.  
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Figure 3.6: XANES at the Ag K-edge of the Au nanoparticles that contained Ag+ 

in their synthesis.  

 

The XANES of Ag foil shows an absorption edge at 25518.70 eV (measured at 

μ(E)=0.6), followed by a peak labelled as A and two other peaks (labelled as B and 

C) observed in the energy range 25500-25600 eV. Even though there is an increased 

signal/noise ratio observed, the appearance of the XANES of all four samples 

indicates that Ag is present primarily in metallic state. However, there is a 

difference in the XANES of the samples compared to the XANES of Ag foil: peak 

A in the samples appears slightly shifted towards lower energies. This observation 

may be attributed to Ag-Au character being present, as shown by very recent Ag K-

edge XANES studies performed on Au~98Ag~46(SR)60 nanoclusters.[39] In addition, 

the intensities of peaks B and C appear significantly reduced, indicating a severe 

reduction in the coordination environment of Ag. This observation suggests that Ag 

atoms are probably found near the surface of the Au particles and that Ag atoms are 

not embedded within the Au nanoparticle matrix. To our knowledge, this is the first 

report on the state of silver, not only on nanorods synthesized by the protocol 

introduced Mostafa A. El-Sayed and Babak Nikoobakht,[12] but also on other 
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samples such as concave nanocubes that are routinely synthesised employing Ag 

during the synthesis. 

 

Notably, our results are in good agreement with XAS studies on Au 

nanorods that are photo-chemically prepared in the presence of AgNO3, where 

under-coordinated Ag was also detected in a metallic state.[40,41] 

 

3.5.2 EXAFS Of Au Nanostructures 

 

The results from the curve fitting analysis of the Au L3-edge and Ag K-edge data 

belonging to the aforementioned nanoparticles are presented in table 3.1. 

 

Table 3.1: Results from the structural refinement of Au L3-edge and Ag K-

edge EXAFS data belonging to Au nanoparticles. 

Sample Edge Path CN  

 

REXAFS (Å) 

 

σ2 (Å2) 
R 

factor 

CTAB  

Au 

nanorods 

Au L3 Au-Au 11.8 (±0.2) 2.85 (±0.01) 0.009 (±0.001) 0.003 

Ag K  
Ag-Ag 2.0 (±0.6) 2.89 (±0.03) 0.009 (±0.001) 

0.007 
Ag-Au 3.5 (±0.6) 2.83 (±0.03) 0.008 (±0.001) 

CTAB  

Au 

nanoplates 

Au L3 Au-Au 11.8 (±0.7) 2.87 (±0.01) 0.007 (±0.001) 0.024 

CTAB  

Au 

spheres 

Au L3 Au-Au 11.8 (±0.3) 2.85 (±0.01) 0.008 (±0.001) 0.007 

CTAC  

Au 

concave 

cubes 

Au L3 Au-Au 11.8 (±0.2) 2.85 (±0.01) 0.008 (±0.001) 0.004 

CTAC 

 Au 

nanorods 

Au L3 Au-Au 11.7 (±0.4) 2.85 (±0.01) 0.007 (±0.002) 0.013 

CTAC  

Au 

spheres 

Au L3 Au-Au 11.7 (±0.3) 2.85 (±0.01) 0.008 (±0.002) 0.008 

 

 

Due to the level of noise observed in the Ag K-edge data, structural 

parameters could only be derived for the CTAB stabilised Au nanorods. Figure 3.7 
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(top) displays the Au L3-edge k3-weighted EXAFS data and associated FTs of the 

CTAB and CTAC Au stabilised nanoparticles. Figure 3.7 (bottom) shows the Ag 

K-edge k3-weighted EXAFS data and associated FT for CTAB Au nanorods. A 

doublet can be observed in the range 2.0-3.5 Å, which is characteristic of bimetallic 

character. 
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Figure 3.7: Top- Au L3-edge k3-weighted EXAFS data and associated FTs for 

CTAB and CTAC stabilised Au nanoparticles. Bottom: Ag K-edge k3-weighted 

EXAFS data and corresponding FT of CTAB stabilised Au nanorods.  

 

The values of the coordination number (CN) of the primary shell of all the 

samples are near-bulk (CNbulk = 12), indicating the presence of relatively large 

particles in the solutions. It is also observed that the RAu-Au values of the particles 

appear slightly smaller than the value of RAu-Au observed in the bulk, which is 2.88 
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Å.[42] This observation suggests the presence of nanoscale Au. Indeed, a relationship 

has been found between the value of the Au-Au bond distance and the size of 

spherical Au nanoparticles – as the size decreases, the bond distance also presents 

a decreasing trend.[42] For example, studies on Au clusters evaporated on substrates 

have shown an RAu-Au bond length contraction ranging 1.4-5.5%.[43,44] Notably, 

these studies are primarily performed on supported nanoparticles or nanoparticles 

placed on substrates, while other EXAFS studies on nanoparticles that are not 

isolated from their solution phase environment, have also reported to have a bond 

length contraction.[45]  Notably, no Au-Cl, Au-Br or Au-O contribution was detected 

during the EXAFS analysis. In addition to the differences observed in the values of 

CN and R for the primary Au-Au shell of the particles compared to the Au foil, it 

is also noteworthy that the Debye-Waller factors present relatively high values; 

higher than those expected for nanoparticle systems.  

The Ag K-edge curve fitting analysis of CTAB stabilised Au nanorods 

confirmed the bimetallic character detected in the Ag K-edge XANES. In the 

primary shell, an Ag-Ag path was detected at 2.89 Å, exhibiting severe under-

coordination (2.0±0.6). In addition, an Ag-Au path was also detected at 2.83 Å, with 

a coordination of 3.5±0.6. These values indicate that very small clusters of Ag are 

present, while the significant under-coordination is strong evidence of near-surface 

located atoms. The addition of an Ag-Br path during the curve fitting analysis of 

CTAB stabilised Au nanorods gave a negative Debye-Waller factor, demonstrating 

that an interaction of such kind could not be detected.  

 

3.5.3 XANES Speciation Studies At The Au L3-edge 

  

 

Figure 3.8 shows the Au L3-edge XANES of the speciation studies performed on 

the growth solutions of the syntheses described in Sections 3.4.1 and 3.4.2. 

The intensity and shape of the whiteline is directly related to the local 

environment of the absorbing Au,[36] therefore XANES constitutes an ideal method 

to probe the speciation of [AuCl4]
- in the growth solutions and potential changes 

that may occur on its structure upon sequential addition of the reagents used in the 

syntheses. 
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The XANES of aqueous [AuCl4]
- (Figure 3.8, black line) presents a sharp 

whiteline due to the allowed 2p3/2 to 5d transition, with a maximum of 1.18 at 11919 

eV, and a feature (labelled A) located 13 eV above the maximum of the whiteline. 

This feature is characteristic of the square planar geometry of [AuCl4]
- species.[46] 

When [AuCl4]
- dissolves in water, it is common for it to undergo hydrolysis and 

form mixed chloro-hydroxide Au species dependent on the temperature, pH and 

concentration of halides in the solution.[47–49] The concentration of [AuCl4]
- in the 

syntheses was higher than the one commonly used in laboratory based syntheses of 

Au nanoparticles. At this concentration, the hydrolysis phenomenon on the Au was 

not observed. In addition, an Au-OH environment of mixed [AuClxOHy]
- species 

would have a characteristic feature at 11945 eV,[50] which is absent in our case, 

making the XANES indicative of Au3+ with four [Cl]- ions. The presence of feature 

A can also be indirectly indicative of the oxidation state of Au, due to its correlation 

with [AuCl4]
-. Thus, its absence may suggest a different coordination of the Au 

centre (such as [AuCl2]
-) and, hence, a different oxidation state. For further 

validation of these observations of the XANES of aqueous [AuCl4]
-, the XANES 

of pelletised NaAuCl4 was measured for comparison and it showed an edge position 

and a whiteline at the same energy values as [AuCl4]
-, as well as an identical 

oscillatory structure, showing that [AuCl4]
- retains all of its [Cl]- ligands and 

oxidation state in an aqueous solution of this concentration.  

The preparation of all the growth solutions were performed according to the 

Sections 3.4.1.1-3 and 3.4.2.1-3. Upon addition of [AuCl4]
- to an aqueous CTAB 

solution, an immediate colour change was observed from pale yellow to orange due 

to a ligand exchange reaction that takes place on the [AuCl4]
-. The XANES of 

[AuCl4]
- – CTAB shows a reduction in whiteline intensity at 1.01 (Figure 3.8, light 

blue line) and a small edge shift towards higher energies. This drop in the intensity 

occurs due to the dependence of the whiteline on the charge transfer between the 

absorbing atom and the ligand.[33] The less prominent whiteline intensity and the 

slight edge shift are indicative of a less electronegative ligand coordinating on the 

Au centre, which is [Br]- in this case. The degree of substitution cannot be predicted 

directly from XANES, unless a series of standards with different degrees of 

substituted ligands can be reliably prepared and measured. However, CTAB was 

used in excess in these syntheses of Au nanoparticles so the inherent concentration 

of [Br]- is very high, thus complete [Cl]- replacement is expected under these 
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reaction conditions. Indeed, when the XANES of [AuCl4]
- – CTAB is plotted with 

the XANES of the [AuBr4]
-
 standard (Figure 3.8, orange line), the two XANES are 

almost identical, validating this expectation. 
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Figure 3.8: Au L3-edge XANES of the speciation study of [AuCl4]- in the bromide 

containing surfactant CTAB. 

 

The replacement reaction proceeds via the reaction shown in reaction 

scheme 3.1 and is known to take place very fast.[47] 

 

 Reaction Scheme 3.1: Ligand replacement reaction of [AuCl4]-. 

 

 [AuCl4]
-
 +  4Br -     [AuBr4]

- + 4[Cl]- 

 

The cation of the [AuBr4]
-
 species is reported to be the [CTA]+ group, 

originating from the surfactant[51] but no direct confirmation of this can be derived 

from the XANES analysis. Notably, upon addition of [AuCl4]
-
 into the aqueous 

CTAB solution, some precipitation was initially observed. However, upon stirring 

for a few minutes, these precipitates disappear and a clear solution is observed. This 

visual observation suggests that the [CTA]+ – [AuBr4]
-
 salt solubilizes under these 

experimental conditions forming  ‘metallomicelles’;[51] therefore, reaction scheme 

3.1 can now be expressed as: 

 

Reaction Scheme 3.2: Ligand replacement reaction of [AuCl4]- in CTAB. 

 

[AuCl4]
-
 +  4CTAB   

 [CTA]+ [AuBr4]
- + 3[CTA]+[Cl]-  + [Cl]- 
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Notably, the hydrolysis phenomenon has also been reported for [AuBr4]
-,[52] 

but at the selected experimental conditions it is unlikely to occur. 

Following the experimental procedure for Au nanorod synthesis in CTAB 

surfactant (Section 3.4.1.1), the potential effect on the speciation of Au of the 

addition of AgNO3 to the growth solution was investigated at the Au L3-edge. The 

XANES of the growth solution containing [CTA]+ – [AuBr4]
- – AgNO3 (Figure 3.8, 

green line) was identical to that of [CTA]+ – [AuBr4]
-, indicating that Ag+ has no 

impact on the speciation of [CTA]+ – [AuBr4]
-. However, it should be noted that the 

amount of Ag + may also be too little to be detected. The chemical environment of 

Ag+ was investigated at the Ag K-edge and it is discussed in Section 3.5.4. 

Following the experimental procedure for Au nanoplate synthesis (Section 

3.4.1.2), the effect of the addition of NaI was investigated.  The XANES of the 

growth solution containing [CTA]+ – [AuBr4]
-– NaI (Figure 3.8, blue line) presents 

changes compared to the appearance of the XANES of  [CTA]+ – [AuBr4]
-. The 

intensity of the whiteline appears decreased compared to the intensity of the 

XANES of [CTA]+ – [AuBr4]
-  (μ(Ε)=0.81 vs 1.01), demonstrating that filling of the 

5d states of Au has occurred. The position of the absorption edge appears slightly 

shifted to higher energies, whilst the rest of the XANES presents an oscillatory 

structure where peak A appears broadened. Generally, it is known that the addition 

of excess of [I]- to aqueous solutions of [AuCl4]
- and [AuBr4]

- results in complete 

reduction of Au3+ to Au0.[52] However, the addition of a small amount of [I]- in the 

presence of excess [AuCl4]
- may result in the partial reduction of Au3+ to Au+ and 

the subsequent formation of [AuX2]
+ species, where X is either [Cl]-, [Br]- or [I]-

.[53,47] Under the selected conditions, a partial reduction of some Au3+ species to Au+ 

could explain the reduction of the whiteline intensity as well as the small edge shift 

observed due to the presence of a mixture of the Au species with Au3+ and Au+ 

oxidation states. However, a reduction of some [AuCl4]
- species to Au0 could have 

a similar effect on the XANES of [CTA]+ – [AuBr4]
- – NaI; hence this scenario 

cannot be excluded with certainty, but a comparison of the XANES of [CTA]+ – 

[AuBr4]
-– NaI to the XANES of the Au foil shows that there are no significant 

similarities between them, particularly in the EXAFS region of the graph.  In 

addition, the absence of peak B, which is characteristic for Au metal, was noted in 
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the XANES of [CTA]+ – [AuBr4]
-– NaI , indicating that if there is any Au0 present 

in the solution its concentration and/or size is not high or large enough to be detected 

in the XANES.  

The exact chemical bonding environment of Au in the [CTA]+ – [AuBr4]
- – 

NaI, cannot be deduced from the XANES as multiple phenomena may occur upon 

addition of [I]-, therefore the EXAFS analysis that is presented in Section 3.5.5 is 

more informative.  

Figure 3.9 shows the XANES of the speciation studies performed on the 

growth solutions containing CTAC surfactant. The trends in the changes observed 

in the whiteline intensity upon sequential addition of reagents were similar to the 

ones observed in CTAB surfactant.  

Since the reaction protocol for the synthesis of Au concave nanocubes 

requires a specific amount of HCl to be added to the growth solution, the XANES 

of [AuCl4]
- in aqueous CTAC-HCl solution was measured (Figure 3.9 top, pink 

line). It can be observed that it is identical to that of [AuCl4]
- (Figure 3.9 top, black 

line), presenting an edge position at 11914.5 eV (measured at μ(Ε)=0.6) followed 

by a pronounced whiteline with a maximum at 1.14. In addition, the characteristic 

feature A at 11930 eV was also observed. Hence, the dissolution of [AuCl4]
- in 

CTAC-HCl does not affect its XANES fingerprint. This result is in agreement with 

the studies presented by Farges et al.,[46] on the effect of pH on the XANES of 

aqueous [AuCl4]
-. At low pH values, they observed a sharp whiteline followed by 

a feature in the same energy region as peak A in our experiments. According to the 

studies done by Farges et al.,[46] increased pH resulted in disappearance of this peak. 

Since potential hydrolysis is unlikely, due to the high concentration of [AuCl4]
- and 

the additional excess of [Cl]- present in the growth solution, and considering the 

similarity of the XANES, in particular peak A, it is suggested that the Au species 

are surrounded by four [Cl]- ligands in the [AuCl4]
- –CTAC – HCl sample. Notably, 

when [AuCl4]
-
 dissolves in an aqueous solution of CTAC, bright yellow crystals 

precipitate, indicating the formation of the metal-surfactant complex [CTA]+ – 

[AuCl4]
-. Upon stirring, these crystals dissolve in the surfactant micelles and the 

colour change upon dissolution of [AuCl4]
- in CTAC is less pronounced compared 

to the one observed in CTAB.  
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Figure 3.9: Top- Au L3-edge XANES of the speciation study of the [AuCl4]- in 

CTAC surfactant. Bottom: Magnification of the whiteline area.  

 

Moreover, the addition of NaBr to the growth solution composed of 

[AuCl4]
- –CTAC–HCl (Figure 3.9 top, green line) results in XANES identical to 

[AuCl4]
- – CTAB (Figure 3.8 light blue line). The whiteline intensity decreased 

from 1.2 to 1.0 μ(Ε), and a small edge shift towards higher energies is observed. As 

a result, a ligand replacement reaction was suggested to have taken place, similar 

to that of [AuCl4]
- and CTAB (Figure 3.8 light blue line). The addition of AgNO3 

to the [AuCl4]
- – CTAC – HCl – NaBr solution (Figure 3.9 top, light-pink line) 

presented the same XANES as the [AuCl4]
- – CTAC – HCl – NaBr solution, 

suggesting that its presence does not seem to have an effect on the Au speciation. 

Throughout the above studies, Au retained its 3+ oxidation state; changes were only 

induced in its ligand environment. 
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Following this, as a control experiment, NaI was added to the growth 

solution containing [AuCl4]
- – CTAC – HCl (Figure 3.9 top, light blue line). This 

addition resulted in a shift of the whiteline position as well as a decrease of its 

intensity (μ(Ε) = 1.00).  

The edge of [AuCl4]
- – CTAC – HCl – NaI shifted a total of 1.2 eV towards higher 

energies from the edge position of [AuCl4]
- – CTAC – HCl, and, as can be evidenced 

in Figure 3.9, the edge position is found at higher energy compared to the one of 

the [AuBr4]
- reference sample. Considering that the amount of [I]- is too little to 

replace all the [Cl]- ligands around the Au, an edge shift of this value suggested a 

reduction in the oxidation state of the some of the Au3+ species. As in the case of 

the addition of NaI to [AuCl4]
- – CTAB, the evaluation of the ligand environment 

of Au in this growth solution through the XANES is unlikely due to the several 

possible scenarios that may occur upon the addition of NaI. Notably, the whiteline 

intensity has a similar μ(Ε) value to the [AuBr4]
-. Since, as previously mentioned, 

there is not enough [I]- to replace all the [Cl]-,the filling of the 5d band may be 

explained by a reduction in the oxidation state. In addition, in the case of a partial 

ligand substitution of [Cl]- by [I]- on Au3+, the degree of decrease in the whiteline 

intensity would not be so pronounced. As in the case of CTAB, there is no 

indication of Au0 observed in the XANES (no peak B observed). The most plausible 

scenario, under the selected experimental conditions, suggests a mixture of [AuCl4]
- 

and [AuCl2]
- species being present in the growth solution. Unfortunately, XAS 

measurement of [AuX2]
- species presents experimental difficulty, due to their 

significant instability arising from their tendency to disproportionate,[54] and X-ray 

induced decomposition.[54] The addition of AgNO3 to the [AuCl4]
- – CTAC – HCl – 

NaI solution was found not to have have an impact on the speciation of Au in this 

case either (Figure 3.9 bottom, dark pink line). However, the lack of observation of 

any effect could also be due to the small amount of AgNO3. 

In the syntheses described in Sections 3.4.1 and 3.4.2, the last reagent added 

to the growth solutions was ascorbic acid. Its addition to the growth solution is 

reported to promote partial reduction of Au3+ to Au+,[55] thus forming [CTA]+ – 

[AuX2]
- species. Therefore, ascorbic acid is classified as a mild reducing agent 

under these reaction conditions. The partial reduction of the Au3+ was confirmed 

experimentally by the colour change observed from orange or bright yellow to 

colourless in aqueous CTAB and CTAC solutions, respectively. As a result, the 
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nucleation and growth of nanoparticles is withheld until the addition of the seeds to 

the growth solution. Generally, [AuBr2]
- species are reduced with greater difficulty 

compared to [AuCl2]
-,[56] and when these species are stabilised within the surfactant 

micelles they are expected to be more stable making their reduction more difficult. 

This is the proposed reason for the inability of ascorbic acid to fully reduce the Au3+ 

species under these reaction conditions.[55] When ascorbic acid (Figure 3.10 blue 

line) was added to the growth solution composed of [CTA]+ – [AuBr4]
- – AgNO3 its 

XANES presents many differences. Figure 3.10 shows the XANES of this growth 

solution plotted with Au foil and [CTA]+ – [AuBr4]
- – AgNO3 for comparison. The 

intensity of the whiteline has been considerably reduced, while the edge is much 

closer to that of Au0, than that of [CTA]+ – [AuBr4]
- – AgNO3. The rest of the 

XANES shows a broad peak with pronounced intensity at ~11940 eV, while the 

rest of the oscillatory structure shows two peaks at 11945 and 11967 eV 

respectively. These peaks are perfectly aligned to peaks B and C observed in the 

XANES of Au foil, thus suggesting that some metallic character is present in the 

sample.  This observation is in disagreement with the established process of 

reduction of [AuX4]
- to [AuX2]

- and not to metallic Au. Generally, the intensity of 

the whiteline of Au+ is expected to present a weaker signal compared to the intensity 

of the Au3+ species that are expected to have a sharp, intense whiteline,[57] and a 

stronger signal compared to Au0 that presents almost no whiteline; in our studies, it 

resembles almost metallic. The reason for this observation may be attributed to the 

low stability of gold dihalides that are known to be metastable and tend to 

disproportionate under ambient conditions,[54] combined with beam induced 

reduction that may occur. When the reaction is performed at the laboratory and it is 

left undisturbed at the step where ascorbic acid is added, the colourlessness of the 

solution disappears after a few minutes, and a sign of colour starts to appear, 

demonstrating the effects of the disproportionation reaction. Taking also into 

account the time required for XAS data acquisition, it is likely that this 

disproportionation reaction has occurred. Furthermore, when exposed to X-rays, Au 

dihalides undergo radiation damage which leads to metallic Au.[54] As a result, this 

XANES cannot be considered as an accurate representation of the laboratory 

reaction conditions. It is worth noting that an XAS study reported the formation of 

Au13 clusters upon addition of ascorbic acid to a growth solution comprised of 

[CTA]+ – [AuBr4]
- – AgNO3.

[33] However, in their studies, neither the 
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disproportionation reaction nor the radiation damage are taken into account. Indeed, 

this is the only report of the formation of small metallic clusters upon the addition 

of ascorbic acid, which point has also been noted elsewhere.[58] 
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Figure 3.10: Au L3-edge XANES of [AuCl4]- –CTAB – AgNO3,  [AuCl4]- –CTAB 

– AgNO3– Asc. acid and Au foil. 

 

3.5.5 EXAFS Speciation Studies At The Au L3-edge  

 

Figure 3.11 displays the FTs of the speciation study of the [AuCl4]
- in the 

[Br]- containing surfactant CTAB. The position and intensity of the first peak in the 

FTs at ca 2.2 Å, remains unchanged for [AuCl4]
- and NaAuCl4. At higher shells, 

there is a second peak observed at ca 4 Å, corresponding to a second shell Au-Cl 

path. The [AuBr4]
- material shows a reduction in the intensity of the primary shell, 

while a peak shift towards higher R values was also observed compared to [AuCl4]
-

. The first shell peak is found at ca 2.5 Å, indicating a longer Au-halide bond 

distance compared to the [AuCl4]
-. The FTs of [CTA]+ – [AuBr4]

- and [CTA]+ – 

[AuBr4]
- – AgNO3 appear broad and present a similar peak magnitude to that of 

[AuBr4]
-. A comparison of the shape of these FTs shows that they are similar to 

each other, while they are also similar to the FT of [AuBr4]
-. The FT of [CTA]+ – 

[AuBr4]
- – NaI appears sharp, while a reduction in its intensity is also observed, 

compared to the [AuCl4]
-. The FT of the Au foil presents a doublet in the first shell, 

located at ca 2-4 Å.  
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Figure 3.11: Au L3-edge FTs of the speciation study of [AuCl4]- in the bromide 

containing surfactant CTAB. 

 

Figure 3.12 shows the FT of [CTA]+ – [AuBr4]
- – AgNO3 – Asc. Acid plotted 

with the FTs of [CTA]+ – [AuBr4]
- – AgNO3 and the Au foil reference.   
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Figure 3.12: Au L3-edge FT upon addition of ascorbic acid to a growth solution 

containing [AuCl4]- – CTAB – AgNO3. The FTs of [AuCl4]- – CTAB – AgNO3 

and Au foil are also plotted for reference.  

 

The FT of this sample shows a primary shell signal in the form of a triplet, 

with a severe degree of reduction in the magnitude of the peak, compared to the FTs 

of [CTA]+ – [AuBr4]
- – AgNO3 and Au foil. In addition, the position of the FT was 

observed to be ca 3 Å, indicating a very close match to metallic species. This 

observation is in agreement with the edge shift observed in the XANES of this 
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sample, towards the energy of Au foil. However, it is worth noting that the first 

peak of the triplet of the FT presents increased intensity, when compared to the 

magnitude of the first peak observed in the FT of the Au foil. This observation 

suggests that Au halide species may still be present in the solution. In addition, the 

intensity of the other two peaks of the FT appear decreased in magnitude compared 

to the ones of Au foil, suggesting that the metallic clusters that are formed under 

these reaction conditions exhibit reduced coordination. The results from the curve 

fitting analysis, for each sample, are displayed in table 3.2.  

 

Table 3.2: EXAFS structural parameters derived from curve fitting analysis 

for the speciation studies of the [AuCl4]- in the bromide containing surfactant 

CTAB. 

Sample Path CN  REXAFS (Å) σ2 (Å2) 
R 

factor 

[AuCl4]
-   Au-Cl 4.0 (±0.1) 2.27 (±0.01) 0.001(±0.001) 0.003 

NaAuCl4 Au-Cl   3.9 (±0.2) 2.28 (±0.01) 0.002 (±0.001) 0.003 

[AuBr4]
-   Au-Br 4.3 (±0.3) 2.42 (±0.01) 0.002 (±0.001) 0.003 

[AuCl4]
-  – 

CTAB 
Au-Br 4.3 (±0.3) 2.41 (±0.01) 0.003 (±0.001) 0.001 

[AuCl4]
-  – 

CTAB–AgNO3 
Au-Br 4.2 (±0.2) 2.41 (±0.01) 0.003(±0.001) 0.001 

[AuCl4]
-  – 

CTAB–NaI 
Au-Br 3.1 (±0.1) 2.40 (±0.01) 0.003(±0.001) 0.021 

[AuCl4]
-  – 

CTAB–AgNO3 

– Asc. Acid 

Au-Au 10.9 (±0.7) 2.82 (±0.01) 0.010(±0.001) 0.034 

 

 

The EXAFS analysis of [AuCl4]
-  and NaAuCl4 showed that Au is 

surrounded by four [Cl]- ligands in its first coordination sphere, at bond distances 

of 2.27 Å and 2.28 Å respectively. This structure is in agreement with the crystal 

structure of square planar [AuCl4]
-, where four Au-Cl bond distances are detected 

in the range 2.272 (6) – 2.281 (8) Å.[59] The EXAFS analysis of the [AuBr4]
- 

reference material revealed an Au centre with four [Br]- ligands. The average Au-

Br bond distance detected was 2.43 Å, and this result is in very good agreement 
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with the reported crystal structure of this compound, where Au-Br bond distances 

in the range 2.4096 (15) - 2.4146 (15) were observed.[60] The EXAFS analysis of 

[AuCl4]
-
 – CTAB showed similar results to the [AuBr4]

- reference material. Four 

[Br]- ligands were detected in the first coordination sphere of Au, at a bond distance 

of 2.42 Å. From this analysis, it is suggested that CTAB does not induce any 

obvious structural deformation on the Au precursor, as no significant bond length 

elongation/contraction has been observed in the curve fitting analysis. No Au-Cl 

path was detected during the analysis, indicating a complete replacement as 

expected.  

The EXAFS of CTAB – [AuCl4]
- – AgNO3 showed that the structure of the 

[AuBr4]
- precursor remains intact, while the Au-Br distance was found to be 2.41 Å 

and the Au centre had four [Br]- ligands. This result suggests that the speciation of 

the probed element was not affected by the addition of Ag+ to the solution, in the 

case where this amount of Ag+ is detectable.  

EXAFS analysis of the [AuCl4]
- – CTAB – NaI solution, revealed that the 

coordination number of the Au-Br path had dropped to 3.1, indicating that Au 

species with coordination lower than 4 were present in the solution. This suggests 

that [AuBr4]
-  and [AuBr2]

-  species coexist in that solution. No Au-Au path was 

detected during the analysis and the Au-Br bond distance was 2.40 Å. The curve 

fitting analysis of [AuCl4]
-  – CTAB–AgNO3 – Asc. Acid showed that only an Au-

Au metallic path was present with coordination number 10.9. The Au-Au bond 

distance was 2.82 Å, which is contracted compared to bulk Au (2.88 Å), while the 

value of the Debye-Waller factor is significantly increased, suggesting a lot of 

disorder in the system. The detection of an Au-Cl path was not fruitful, possibly 

because of the very low percentage of Au-Cl species still present in solution. 

However, their existence cannot be ruled out with certainty.  

The best fits obtained from the refinement of EXAFS data belonging to the 

speciation study of [AuCl4]
- in CTAB are displayed in Figure 3.13, where the k3-

weighted EXAFS and FTs can be seen. 
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Figure 3.13: k3-weighted EXAFS and corresponding FTs of the speciation 

studies of the [AuCl4]- in the bromide containing surfactant CTAB. 

 

It is worth noting that during the analysis of [CTA]+ – [AuBr4]
- – NaI, an 

Au-I path was also introduced as a potential candidate path. However, even though 

a good fit within accepted parameter values could be detected, the error of the CN 

of the Au-I was higher than the value. As a result, it was concluded that this is not 

the optimum fitting model for this sample and, considering the current knowledge 

about the addition of small amounts [I]- to [AuX4]
-
 aqueous solutions, this fitting 

model was discarded. In the EXAFS analysis of [CTA]+ – [AuBr4]
- – AgNO3 – Asc. 

Acid, a bimetallic path of Au-Ag character was also introduced to investigate a 

potential interaction between metallic Au species and – if any – Ag0 under these 

conditions. Notably, no such interaction was detected upon addition of the ascorbic 

acid.  

 Figure 3.14 displays the phase corrected FTs of the speciation studies 

performed in the CTAC surfactant plotted with the FTs of Au foil, [AuCl4]
- and 

[AuBr4]
-  for reference, and table 3.3 shows the structural parameters derived from 

the curve fitting analysis of the data. The FT of CTAC – HCl – [AuCl4]
- has similar 

shape and intensity to the FT of the reference material [AuCl4]
-, and both are located 

at ca 2.2 Å. The EXAFS analysis of CTAC – HCl – [AuCl4]
- revealed a square 

planar Au3+ centre with four [Cl]- ligands at an average bond distance of 2.26 Å, 

which is in very good agreement with the crystal structure of [AuCl4]
-.[59] Apart 
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from the primary Au-Cl shell observed in the FT of CTAC – HCl – [AuCl4]
-, no 

other dominant feature is observed. No effect from the presence of the cationic 

group [CTA]+ could be evidenced.  

Addition of NaBr to the growth solution comprised of CTAC – HCl - 

[AuCl4]
- results in a significant decrease in the intensity of the FT (Figure 3.14, 

light green line), while broadening and shifting of the peak at higher radial distance 

values is also observed. The FT peak can now be observed at ca 2.4 Å, and its 

appearance resembles, to a large degree, the FT of the reference material [AuBr4]
- 

(Figure 3.14 grey line). In addition, the FT of the growth solution containing CTAC 

– HCl – [AuCl4]
- – NaBr – AgNO3, presents a similar peak position and intensity to 

the [AuBr4]
-, suggesting that Ag+ causes no significant effect on the speciation 

under these conditions (assuming its detection its possible). EXAFS analysis of 

CTAC – HCl – [AuCl4]
- – NaBr and CTAC – HCl – [AuCl4]

- – NaBr – AgNO3 

revealed that the ligation sphere of the primary shell of Au, in both cases, is 

comprised of four [Br]- ligands with Au-Br bond distances of 2.41 Å. These results 

are in accordance with the formation of a square planar [AuBr4]
- complex, while its 

formation within the metallomicelles was found to have no effect on the EXAFS 

parameters. The magnitude of the FTs of the samples of CTAC – HCl – [AuCl4]
- – 

NaI and CTA – HCl – [AuCl4]
- –  NaI – AgNO3 (Figure 3.14, orange and pink line 

respectively) appears lower than the FT of [AuCl4]
-, while the peaks appear at ca 

2.2 Å – similar to the [AuCl4]
-. EXAFS analysis revealed that, in both cases, the 

Au-Cl coordination number is 3.1. This value is evidence of the presence of Au 

species with oxidation states lower than 3+. Since the known stable oxidation states 

of Au are 3+ and 1+, it can be proposed that a percentage of [AuCl2]
- is present in 

these growth solutions. The Au-Cl bond distances are 2.27 Å and 2.26 Å, 

respectively. The amount of Ag+ added didn’t alter the speciation of Au. The best 

fits obtained from the refinement of the EXAFS data belonging to the speciation 

study of [AuCl4]
- in CTAC are displayed in Figure 3.15, where the k3-weighted 

EXAFS and corresponding FTs can be seen. 
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Figure 3.14: Au L3-edge FTs of the speciation study of [AuCl4]- in the chloride 

containing surfactant CTAC. 

 

Table 3.3: EXAFS structural parameters derived from curve fitting analysis 

for the speciation studies of the [AuCl4]- in the chloride containing surfactant 

CTAC. 

 

Sample Path CN REXAFS (Å) σ2 (Å2) R factor 

CTAC-HCl-

[AuCl4]
- 

Au-Cl 4.0 (±0.6) 2.26 (±0.01) 0.002 (±0.001) 0.021 

CTAC-HCl-

[AuCl4]
- 

NaBr 

Au-Br 4.3 (±0.4) 2.41 (±0.01) 0.003 (±0.001)      0.003 

CTAC-HCl-

[AuCl4]
-  

NaBr-

AgNO3 

Au-Br 4.0 (±0.1) 2.41 (±0.02) 0.004 (±0.001)      0.030 

CTAC-HCl-

[AuCl4]
- NaI 

Au-Cl 3.1 (±0.2) 2.27 (±0.01) 0.002 (±0.001) 0.007 

CTAC-HCl-

[AuCl4]
- 

NaI-AgNO3 

Au-Cl 3.1 (±0.1) 2.26 (±0.01) 0.001 (±0.001) 0.011 
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Figure 3.15: k3-weighted EXAFS and corresponding FTs of the speciation 

studies of the [AuCl4]- in the chloride containing surfactant CTAC. 

 

3.5.4 XANES Speciation Studies at the Ag K-edge 

 

In order to investigate the speciation of Ag in the growth solutions, studies were 

performed at the Ag K-edge. Figure 3.16 displays the XANES spectra of the 

reference materials AgCl, AgBr, AgI and AgNO3, plotted with the XANES of the 

Ag containing growth solutions in CTAC and CTAB surfactants respectively.  

XANES spectra can be observed in the region between ∼25500-25600 eV. The Ag 

K-edge XANES of AgNO3 (Figure 3.16 top, pink line) shows an absorption edge 

position at 25518.8 eV (measured at μ(E)=0.6), followed by a XANES peak with 

pronounced intensity and a maximum located at 25525.1 eV. Another prominent 

peak was observed at 25554.9 eV, followed by an almost featureless EXAFS 

region. The XANES of the AgCl and AgI present absorption edges at 22517.9 eV 

and 22519.2 eV respectively, while the first XANES peak of AgCl has a decreased 

intensity compared to the intensity of the first XANES peak observed for AgNO3, 

and it is located at 25523.6 eV. In the rest of the XANES, a peak can be seen at 

25539.4 eV and some low intensity features appear above ca 25550.0 eV.  

The intensity of the first XANES peak of AgI appears dramatically reduced, 

and was located at 25525.6 eV. Another peak can also be identified at 25547.0 eV, 

followed by a broad feature in the energy range 25575-25585 eV. It can be seen 

that the XANES of the growth solutions CTAC – HCl – AgNO3 and CTAC – HCl – 

[AuCl4]
- – AgNO3 are identical to the XANES of AgCl, showing the speciation of 
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AgNO3 has been altered in the growth solutions. Similarly, the XANES of CTAC – 

HCl – [AuCl4]
- – NaI – AgNO3 appears identical to AgI, indicating the structure of 

the precursor has been modified in this case too.  

Figure 3.16 (bottom) shows the XANES of AgBr plotted with the XANES 

of CTAC – HCl – [AuCl4]
- – NaBr – AgNO3 and CTAB – [AuCl4]

- – AgNO3. The 

XANES of AgBr shows an absorption edge at 25516.3 eV, followed by a XANES 

peak with medium intensity located at 2552.3 eV. Above the XANES peak, there 

is no oscillatory structure observed. The XANES of the growth solutions CTAB – 

AuCl4 – AgNO3 and CTAC – HCl – [AuCl4]
- – NaBr – AgNO3 are almost identical 

to the XANES of AgBr, and, similarly, no oscillatory structure is observed in these 

cases. In addition, an increased level of noise is apparent.   
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Figure 3.16: Top-Bottom: Ag K-edge XANES of the speciation studies in CTAC 

and CTAB surfactants respectively.  
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Overall, the XANES speciation studies at the Ag K-edge, showed that the 

AgNO3 species do not maintain their structure in the CTAB containing growth 

solutions, and it is suggested that the nature of the halide present controls the 

speciation of Ag in every case. Even though Ag has 1+ oxidation state in all the 

XANES presented in Figure 3. 16, subtle differences can be observed in the energy 

position of the absorption edge, following the trend AgCl < AgBr < AgI.  

Figure 3.17 presents the FTs of the CTAC speciation studies at the Ag K-

edge. The FT of the AgCl reference material presents a sharp peak located at ca 2.5 

Å (Figure 3.17, black line), while the FTs of CTAC – HCl – AgNO3 and CTAC – 

HCl –[AuCl4]
- –AgNO3 (Figure 3.17, orange and green lines respectively) present 

peaks of a similar intensity to AgCl, located at a similar radial distance. This 

observation suggests that the speciation of Ag+ in these growth solutions has been 

altered from AgNO3 to a structure closely matching that of AgCl. The FT of AgNO3 

(Figure 3.17, blue line) displays a low intensity peak at a distance of ca 2.2 Å, while 

the FTs of these two growth solutions do not show any contribution around that 

distance. The FT of AgI (Figure 3.17, red line) shows a doublet, with peak maxima 

at ca 2.2 and 3.0 Å, while the intensity of the second peak is very pronounced. 

CTAC – HCl –[AuCl4]
- – NaI- AgNO3 shows a similar FT to of AgI, indicating 

that, in this case too, the ligation sphere of Ag+  has changed. 
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Figure 3.17: Ag K-edge FTs of the Au nanoparticles that required Ag+ in their 

synthesis. 
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Unfortunately, an investigation of the trends of the FTs of the speciation 

studies at the Ag K-edge in the [Br]- surfactant was not possible, due to the 

increased level of noise in the data, and due to other reasons provided in the 

following section. 

 

3.5.5 EXAFS Speciation Studies At The Ag K-edge 

 

In order to probe the coordination environment of Ag, structural parameters were 

derived from the studies performed at the Ag K-edge. Curve fitting analysis could 

not be performed on the CTAB – [AuCl4]
-
 – AgNO3 and CTAC – HCl –[AuCl4]

- – 

NaBr – AgNO3 systems due to the level of noise observed in the data, the lack of 

oscillatory structure and the anharmonicity exhibited by AgBr, which leads to  

unrealistic bond distances and coordination numbers, usually much shorter than 

reality.[61] As a result, for these growth solutions, the XANES profile will be the 

most informative technique on the nature of the ligands around Ag. However, a 

curve fitting analysis of the pelletised AgBr was still possible, and the results 

showed an Ag primary shell surrounded by six bromide ligands, at a distance of 

2.83 Å. 

The EXAFS analysis of Ag foil showed a 12 coordinate Ag-Ag primary 

shell at 2.86 Å. Notably, the value of the Debye-Waller factor is 0.009 Å2, which is 

quite elevated compared to the traditionally expected values for foils. The EXAFS 

of AgNO3 showed a first shell consisting of four oxygens at an average bond 

distance of 2.44 Å , a value which is somewhat lower than the one expected from 

the crystal structure (3 oxygens at 2.48 Å and 1 oxygen at 2.52 Å for the primary 

shell).[62] Curve fitting analysis of AgCl revealed a six coordinate first shell around 

Ag+ consisting only of [Cl]- ligands, at a bond distance of 2.72 Å, which is also 

shorter than expected from the corresponding crystal structure (2.77 Å).[63] The 

observed discrepancies in the bond distance values and/or CN of the silver 

compounds, particularly AgCl and AgNO3, are due to the increased disorder that 

they exhibit.[64] The EXAFS analysis of CTAC – HCl – AgNO3 and CTAC – HCl – 

[AuCl4]
- – NaI – AgNO3 showed an Ag-Cl path with a coordination of ca 6 and a 

bond distance of 2.72 Å, confirming the XANES observations. No Ag-O was 

detected during the analysis of these samples, indicating that the structure of AgNO3 
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has changed. The presence of [AuCl4]
- in these growth solutions was found not to 

have any pronounced effect on the speciation of Ag+. 

The first shell fitting EXAFS analysis of AgI, showed a four coordinate Ag-

I path at 2.80 Å, which is in very good agreement with the literature reported value 

(2.814 ± 0.004).[65] As anticipated, the EXAFS parameters of the growth solution 

CTAC –HCl–[AuCl4]
- – NaI – AgNO3 were similar to the AgI reference material, 

with a bond length contraction observed, while no apparent justification can be 

provided for the observed bond length difference, the level of data noise of the 

sample may have a significant contribution to the observed bond length variations.  

Notably, the Debye-Waller factors for all the silver containing materials 

are very high.  

 

Table 3.4: EXAFS structural parameters derived from curve fitting analysis 

for the speciation studies of the Ag+. 

Sample Path CN  REXAFS (Å) σ2 (Å2) 
R 

factor 

Ag foil Ag-Ag 12 (±0.5) 2.86 (±0.01) 0.009 (±0.001) 0.002 

AgNO3 Ag-O 3.9 (±0.2) 2.44 (±0.02) 0.015 (±0.001) 0.013 

AgCl Ag-Cl 5.7 (±0.5) 2.72 (±0.02) 0.023(±0.001) 0.015 

AgBr Ag-Br 5.9 (±0.5) 2.83 (±0.02) 0.019 (±0.001) 0.025 

AgI Ag-I 4.0 (±0.2) 2.80 (±0.01) 0.012 (±0.001) 0.006 

CTAC–HCl–

AgNO3 
Ag-Cl 5.8 (±0.3) 2.72 (±0.01) 0.021 (±0.001) 0.006 

CTAC –HCl–

[AuCl4]
- – 

AgNO3 

Ag-Cl 5.8 (±0.5) 2.72 (±0.02) 0.022 (±0.001) 0.018 

CTAC –HCl–

[AuCl4]
- – 

NaI–AgNO3 

Ag-I 4.0 (±0.2) 2.77 (±0.01) 0.013 (±0.001) 0.009 

 

 

The best fits obtained from the refinement of the EXAFS data of the 

speciation study of AgNO3 are displayed in Figure 3.18, where the k3-weighted 

EXAFS and FTs can be seen. 
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Figure 3.18: k3-weighted EXAFS and corresponding FTs of the speciation 

studies of AgNO3. 

 

3.6 Conclusions 

 

These studies, aimed to elucidate only a small aspect of seed-assisted Au 

nanoparticle synthesis - the structure of the species present in the growth solutions 

prior to nucleation. 

The results showed that the amounts of CTAB used in the syntheses are 

capable of replacing all the [Cl]- ligands on the Au3+ with [Br]-, which was found to 

be necessary for the formation of Au nanorods. This was verified by the addition of 

[Br]- to the growth solution containing CTAC from an external source. In addition, 

it is proposed that when the reaction is performed under laboratory conditions and 

lower Au concentrations are used, the CTAB is capable of replacing potential [OH]- 

ligands on the Au, resulting from the hydrolysis effects that tends to happen easily 

at low [AuCl4]
- concentrations. In this case, it can be proposed that the reduction 

potential of the Au precursor may have a major impact on the outcome of the 

reaction, which is nanorods in this case, in collaboration with other factors. 

However, in the case of the addition of [I]-, a ligand replacement was not observed. 

As a result, it was found that [Br]- is an important coordinating ligand for the 

synthesis of Au nanorods, while in the case of [I]- no coordination was observed, 

which is an indication that its effect on the final outcome of the reaction may 
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primarily originate from the selective facet stabilization of the growing particles, 

rather than the coordination effect.  In the case of NaI added to the growth solution, 

the results also showed the presence of Au species with oxidation state lower than 

3+. The results at the Au L3-edge also suggested that Ag+ does not cause changes 

to the speciation of Au, assuming its detection at these amounts its likely.  

The results from these studies suggest that Ag+ may not be reduced at the 

step of ascorbic acid addition, since no Au-Ag character was revealed in the EXAFS 

analysis, but reduction of Ag+ to Ag0 during the seed addition step seems more 

likely. In addition, Ag does not seem to influence the Au speciation. At present the 

role of Ag+ in shaped Au nanoparticle synthesis remains unclear. In the nanorod 

and nanocubed-shaped syntheses, however, Ag was needed to achieve high shape 

selectivity. EXAFS analysis of the Ag K-edge data of the formed nanoparticles 

showed that Ag is present in the nanoparticles, revealing significant Ag-Au 

interactions with reduced CN, indicating that Ag is found at near surface regions. 

In addition, the structure of AgNO3 was found to be altered in the presence of 

halides in the growth solutions at the pre-nucleation step, and as expected, the 

resultant alterations on the structure were dependent on the nature of the halide.  

Conclusively, the above studies elucidated the structure of the two metal 

precursors present in the growth solutions, and provided an insight on the actual 

starting materials of those syntheses.  
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Chapter 4. In situ XAS Studies On The Formation Of Au 

Nanoparticles In Organic Media 

 

 

4.1 Chapter Overview 

 

 

This study discusses the results obtained from the in situ XAS investigations of the 

formation of Au nanoparticles in ethylene glycol (EG), in the presence and absence 

of the particle stabiliser polyvinylpyrrolidone (PVP).  

The results of these two reactions are discussed in a comparative way where 

applicable, and the XANES and EXAFS analyses shown herein provide insight into 

the changes in the electronic structure and chemical environment of the Au during 

the reactions. Typically, EG serves as a solvent and a reducing agent and can also 

act as a protecting ligand, preventing the aggregation of the particles. This process 

is the popular polyol method. In the polyol method, temperatures in excess of 140 

OC need to be achieved to allow EG to act as a reducing agent.[1] However, in the 

studies presented herein, the XAS results showed that the precursor decomposition 

took place at lower temperatures. 

This was observed in both reaction systems studies herein.  This observation 

is attributed to the interaction of the beam with the EG, and not with the Au 

precursor [AuCl4]
-, since studies on the stability of [AuCl4]

- upon exposure to the 

synchrotron X-rays were carried out prior to any XAS measurements on the 

reactions of interest, to ensure its structural integrity. These stability studies are also 

presented here. Indeed, a recently filed patent has reported that complicated free 

radical reactions take place when a reaction mixture containing [AuCl4]
- in 

polyethylene glycol (PEG) and a polymer (Au3+/PEG-polymer) is exposed to the 

hard X-rays of the SR beam.[2] As a result, this interaction may accelerate the 

reduction process and favour the decomposition at lower temperatures. As already 

mentioned, the decomposition of the [AuCl4]
- in the presence of PVP also took place 

at lower-than-expected temperature, while the time of decomposition was found to 

be longer.  
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4.2 Introduction 

 

Au nanoparticles can be synthesized by chemical reduction of Au3+ ions using a 

variety of capping/reducing agents, such as NaBH4,
[3] ascorbic acid,[4] citric acid,[5] 

and alcohol,[6,7] however the number of systems that have been studied in situ at 

synchrotron sources is limited. Examples of in situ XAS studies include the popular 

Brust-Shiffrin method that was investigated by quick XAFS,[8] the classical citrate 

reduction, which was monitored using coupled SAXS and EXAFS at selected time 

intervals,[9] the reduction of AuCl3 using NaBH4 in toluene in the presence of 

different ligands, studied by time-resolved XANES and SAXS,[10] and other 

interesting studies, such as in situ monitoring of the photoreduction of an Au salt 

and its subsequent deposition on colloidal titania.[11] A modification of the 

Turkevich method of preparing Au nanoparticles with well-defined sizes has also 

been studied by in situ SAXS, XAS and UV-Vis.[12]  

Notably, bombardment of liquid phase Au precursors, particularly [AuCl4]
-

, with hard X-rays often leads to radiation induced nucleation.[13–15] Ohkubo et al.[15] 

provide a summary of X-ray induced formation of Au or other metal nanoparticles, 

obtained both intentionally and unintentionally. The reduction of [AuCl4]
- to 

metallic nanoparticles has also been achieved by sonochemical methods[16] and by 

γ- and UV- irradiation.[17,18] In general, radiation induced syntheses form small 

nanoparticles. 

Polyols such as EG are attractive due to the multifunctional character that 

they exhibit as either a viscous solvent, a reducing agent or a tailorable stabiliser. 

Ethylene and polyethylene glycols have been used in the high temperature polyol 

synthesis (160-210 oC) for the thermal reduction of various metal salts in the 

presence of polymers such as PVP.[19–22] In order for the EG to be used as a reducing 

agent, high temperatures need to be achieved. Alternatively Au nanoparticles in EG 

can be prepared at room temperature, either by employing photoreduction of the 

Au3+ ions in the presence of PVP,[23,24] or by microwave irradiation of the Au salt, 

with glycerol as a reducing agent.[25] The addition of PVP was found to be crucial 

for the formation of nanoparticles below 100 nm in diameter. Only at the highest 

concentration of PVP were the nanoparticle diameters in the 17-59 nm range. 

Polyvinyl alcohol (PVA), has also been utilized in the microwave synthesis as a 
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reducing agent.[26] Under different synthetic conditions, derivatives of PEG based 

ligands with sulfur groups have been used as stabilizers to prepare Au nanoparticles 

with diameters in the region of 10 nm.[27,28] The general rule that applies for the 

formation of small metal nanoparticles via solution phase chemical reduction is that 

a high molar ratio of particle stabiliser to precursor must be employed.[29–31] An 

exception to this general rule has been found in the synthesis of CoPt3 alloy 

nanoparticles where their size increases with an increase in the amount of 1-

adamantanecarboxylic acid, which was employed as protective ligand.[32] In those 

studies, the precursors were strongly stabilised by the large amount of the protective 

agents, decreasing the nucleation rate. However, the affinity of the stabilizing 

ligands towards Au also affects the size of the nanoparticles. It is well established 

that ligands with thiols or cyano groups have great affinity for Au, resulting in 

monodisperse nanoparticle populations.[33]   

Although ex situ characterisation of nanoparticles provides information on 

their structure, morphology and properties, in situ monitoring of their synthesis is 

greatly desired in order to understand their formation pathways. The nucleation and 

growth stages of nanoparticle synthesis take place quickly, which limits the 

laboratory based techniques that can be employed for in situ investigations. Thus 

synchrotron based techniques have become valuable tools for such studies and the 

development of advanced characterization methods using synchrotron X-rays has 

enabled the collection of real-time information on the formation processes of 

nanoparticles.  

 

4.3 Aims And Objectives 

 

The first aim of this study is to investigate the reduction process of [AuCl4]
- in EG 

by employing in situ XAS and to monitor the subsequent formation of Au 

nanoparticles in this media. The second aim is to investigate the effects of PVP on 

the decomposition profile of [AuCl4]
- in EG and on the evolution of the structural 

parameters and growth of the nanoparticles. Since the stability of [AuCl4]
- in the X-

ray beam was assured prior to the experiments, the reduction is proposed to proceed 

via interaction of the X-rays with the EG, aided by mild heating. To our knowledge, 

this is the first study where the reduction of the [AuCl4]
- is promoted in such a 
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manner, even though other sources of radiation have been investigated as reduction 

promoters for this or similar reaction systems. The substantial difference between 

this and previous XAS studies is that the [AuCl4]
- does not get affected by the X-

rays - as a result its reduction is a direct effect of the interaction of the beam with 

the heated reaction media. Notably, in previously reported XAS studies on these 

systems, the reduction is attempted photochemically while monitored using XAS. 

However, formation of radicals due to the interaction of the X-ray with the EG 

would clearly have an impact on the decomposition profile of the [AuCl4]
-, and 

these are overlooked. In our studies mild heating was applied instead of a 

photochemical approach and, even though the role of the mild temperature cannot 

be addressed with the current experimental conditions, a potential contribution in 

the form of accelerating the reduction process is presumed. For clarity, the results 

will be presented as a function of the reaction time. 

 

4.4 Experimental  

 

Chemicals 

 

HAuCl4.3H2O (41.22 wt.%) was produced by Alfa Aesar Chemicals and was 

provided by Johnson Matthey. Ethylene glycol (≥98%) was purchased from VWR 

BDH Prolabo. Polyvinylpyrrolidone (Mw ~55,000) was obtained from Sigma-

Aldrich and used without further purification. The colour of the as-purchased PVP 

was white, and remained as such throughout the duration of the experiments. Ultra-

pure water was used and was purchased from Severn Biotech Ltd. Polyimide films 

of 0.05mm thickness (Kapton HN® grade) were purchased from GoodFellow and 

were utilized as windows for XAS measurements. 

 

4.4.1 Data Acquisition And Processing 

 

In situ XAFS measurements were performed on the Au L3-edge (11918 eV) in 

transmission mode at the B18 core-EXAFS beamline, Diamond Light Source.[34] 

The storage ring was operated at 3GeV energy. The beam was focused to a size 200 

µm (horizontal) x 250 µm (vertical). The data collected was analysed according to 
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existing protocols. Pre-edge and post edge background subtraction, as well as 

normalization, was performed using the Athena[35] software package and EXAFS 

analysis was performed using the Artemis software package.[35] EXAFS analysis 

was performed over a k-range of 3.5 to 10 Å−1 and an R-range between 1.5 to 3.5 Å. 

The value of the S0
2 parameter (amplitude reduction factor) was derived from the 

Au foil measured at the start of the experiment and was set throughout the analysis.  

 

4.4.2 Cell And Sample Preparation  

 

The in situ synthesis cell used for these measurements was described in detail in 

Section 3.4.4 in Chapter 3. For the in situ measurements, an aliquot of the reaction 

mixture was transferred to the cell and sealed between two Kapton windows, 

creating an X-ray pathlength through the solution of 4 mm. The cell configuration 

on the sample stage of the B18 beamline[34] is shown in Figure 4.1. The cell was 

placed at an angle to the incident X-rays, thus allowing for XAS data acquisition 

both in transmission and fluorescence mode as required. High concentrations of the 

Au chloride precursor were used in order to obtain good quality XAS data. For the 

synthesis of Au nanoparticles in EG, freshly made aqueous [AuCl4]
- (0.02 M, 0.2 

ml) was mixed with EG (0.4 ml) and transferred to the cell. The cell was connected 

to a temperature controller that was programmed to heat at 5 oC/min up to 100 oC. 

For the synthesis of Au nanoparticles in EG/PVP, freshly prepared aqueous 

[AuCl4]
- (0.02 M, 0.2 ml) and a solution of PVP in EG (5.4 M, 0.1 ml) were mixed 

with EG (0.4 ml) and transferred to the cell. For the dissolution of PVP, PVP was 

slowly added to EG under stirring at 60 oC and heating was maintained until the 

PVP had fully dissolved. The heating rate of the experiment was 5 oC/min and the 

temperature setpoint was 120 oC. 

 

http://en.wikipedia.org/wiki/%C3%85
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Figure 4.1: Left to right: view of the beamline stage and the in situ synthesis cell 

prepared for data collection.  

 

4.4.3 Other Characterization 

 

High-resolution transmission electron microscopy (HRTEM) was employed to 

characterize the morphology of the Au nanoparticles using a JEOL microscope 

operated at 200 keV. The sample preparation involved casting drops of the sample 

retrieved from the in situ reaction onto a carbon-coated copper grid. The grid was 

left at room temperature under air to allow for solvent evaporation.  

 

4.5 Results And Discussion 

 

4.5.1 Beam Effects On The Gold Precursor  

 

Research on the stability of the Au precursor upon exposure to the X-rays was 

performed prior to investigating the reactions of interest to ensure that [AuCl4]
- 

would not be susceptible to beam-induced reduction. Aqueous [AuCl4]
- (20 mM), 

displaying its characteristic yellow colour, was transferred to the in situ synthesis 

cell and XAS data was collected at room temperature as a function of time. The 

normalized XANES and EXAFS, as well as the LCF plot resulting from this study, 

are shown in Figure 4.2. 
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Figure 4.2: A) Normalised XANES and B) non phase-corrected FT plots of 

[AuCl4]- under exposure to the X-rays. C) Results of the LCF analysis of the 

XANES data. The error bars are too small to be visible on this plot. 

 

It is obvious that, even within the first 8 minutes of irradiation, the whiteline 

intensity (which corresponds to the 2p3/2  5d transition) decreases. This decrease 

suggests reduction of the oxidation state of the Au3+ upon exposure. After 32 

minutes of irradiation, the value of the normalised whiteline intensity has decreased 

from 1.07 to 0.9. This is a dramatic decrease considering that the whiteline intensity 

for the Au foil is 0.76. During the irradiation the edge shifts towards higher energy, 

indicative of a reduction in the oxidation state of Au. These observations verify the 

reduction process of Au3+ to Au0 upon exposure. Additionally, the area around 

11945.7 eV in the Au L3-edge XANES of [AuCl4]
-, which is initially featureless, 

displays an increase in intensity upon prolonged exposure. A peak in this energy 

region is characteristic of Au0. Overall, these observations show that a substantial 

percentage of the Au precursor reduces to Au0 during the first 32 minutes of 

A) B) 

C) 
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exposure. This beam-induced reduction could easily be mistaken for the reaction of 

interest during in situ decomposition studies of [AuCl4]
-. Notably, this effect is 

particularly prevalent in Energy Dispersive XAS (EDXAS) since undulators are 

used as insertion devices, resulting in much greater X-ray intensity.[36] This study 

shows that this effect is observed at beamlines with bending magnets too, therefore 

it is particularly important to ensure the integrity of the sample under the X-rays 

prior to conducting any synchrotron based experiment.   

 The FT of the irradiation study is shown in Figure 4.2 B. The decrease 

previously observed in the whiteline intensity is mirrored in the progressive 

reduction of the peak at ~ 2 Å that arises from the Au-Cl scattering path. This 

gradual disappearance, combined with the subsequent appearance of a doublet in 

the area of 2-3 Å, characteristic of the Au-Au scattering path, further supports the 

XANES observations.  

LCF analysis was performed on the XANES over a range from 30 eV before 

the edge to 50 eV after, using as reference materials Au foil and the initial scan of 

[AuCl4]
- in water, which is regarded as a non-irradiated reference sample. The 

evolution of the phase fractions of the species involved are depicted in Figure 4.2 

C. The phase fraction of [AuCl4]
-
 shows a gradual decrease throughout the entire 

irradiation experiment. Initially its phase fraction is ca 90%, by the end of the 

experiment this value has decreased to 45%. The phase fraction of metallic Au 

increases concomitantly, indicating that the Au precursor becomes metallic upon 

exposure to the X-ray beam. It is worth noting that the colour of the solution remains 

yellow until the end of the experiment, rather than the red that would indicate 

nanoparticle formation. This suggests that the detected Au0 is due to the deposition 

of Au on the windows of the cell, and the rest of the solution is not reduced under 

these conditions. However, this amount of reduced Au in the path of the beam is 

enough to cause these apparently dramatic changes in the XAS data.  

To avoid this unwanted effect from the beam, fresh [AuCl4]
- (20 mM) was 

transferred to the cell with new windows, and an exposure study was performed 

with a 500 micron thick sheet of Al foil placed between the beam and the cell. The 

solution was then left under irradiation for almost an hour. The XANES plot, which 

is shown in Figure 4.3 A, presents a very stable profile. The plots of all the scans 



Chapter 4 

 

109 
 
 

overlay one another. No additional peaks were observed in the region of 11945.7 

eV and the whiteline intensity remained intact. Thus the introduction of the Al foil 

was shown to successfully prevent beam-induced reduction of [AuCl4]
-.  

 

 

11900 11925 11950
0.0

0.4

0.8

1.2

 4 min

 8 min

 12 min

 16 min

 20 min

 24 min

 28 min

 32 min

 36 min

 40 min

 44 min

 48 min

 52 min

N
o

rm
a

lis
e

d
 x


(E
)

Energy (eV)

2p3/2-5p

  

0 1 2 3 4
0

5

10

15

20

Au-Au|
(R

)|
 (
Å

-4
)

Radial distance (Å) 

 4 min

 8 min

 12 min

 16 min

 20 min

 24 min

 28 min

 32 min

 36 min

 40 min

 44 min

 48 min

 52 min

Au-Cl

 

 

0 9 18 27 36 45

0.0

1.0

P
h
a
s
e

 F
ra

c
ti
o
n
 

Time (minutes)

 [AuCl
4
]
-

 Au foil

 

 

Figure 4.3: A) Normalised XANES and B) non phase-corrected FTs of [AuCl4]- 

under exposure to the X-ray beam attenuated by 500 micron thickness Al foil. C) 

Corresponding LCF analysis of the XANES using, as reference materials, 

[AuCl4]- (blue line) and Au foil (black line). 

 

LCF analysis was performed on the XANES in the same eV range as used 

previously (-30 eV to 50 eV), employing the same set of reference materials, in 

order to verify whether there was any transformation of Au3+ species to Au0. The 

phase fraction of [AuCl4]
- 

 remains stable around 100%, with discrepancies being 

within the estimated uncertainty and the fraction of Au0 remains close to zero 

throughout the study (Figure 4.3 C). The colour of the solution remained yellow at 

the end of the experiment. Indeed, the FT (presented in Figure 4.3 B) shows no 

A) 

C) 

B) 
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significant changes with the presence of the protecting Al foil and most importantly 

there is no doublet observed around 2-3 Å, which would indicate an Au-Au bond 

distance.  

 Following from the stability studies, a temperature study was also 

performed to ensure that the precursor stays unaffected upon heating under 

exposure to the Al foil attenuated X-ray beam. The results are shown in Figure 4.4.  
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Figure 4.4: A) Normalised XANES and B) corresponding FTs of [AuCl4]- as a 

function of temperature under exposure to the Al foil attenuated X-ray beam. C) 

LCF analysis of the XANES using as reference materials [AuCl4]- (blue line), and 

Au foil (black line). The error bars are too small to be visible on this plot. 

 

A fresh aqueous solution of [AuCl4]
- (20 mM) was placed inside the cell and 

the temperature was raised to 100 oC. The XANES of the temperature study (Figure 

4.4 A) confirms that there were no significant changes to the [AuCl4]
- upon heating 

as the spectra overlay.  The appearance and intensity of the whiteline are consistent 

with Au3+ throughout the experiment and the FTs of this study show no contribution 

A) 

C) 

B) 
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in the region of 2-3 Å from the metallic species’ peak. The phase fractions of 

[AuCl4]
- and Au-Au remain close to 100% and 0% respectively throughout this 

experiment. 

 

4.5.2 In situ XAS Data Collection On The Synthesis Of Au Nanoparticles In 

Ethylene Glycol   

 

4.5.2.1 XANES Analysis 

 

For the in situ XAS measurements, the reaction mixture was transferred into the 

cell and XAS scans were recorded every 4 minutes. The first 4 scans were acquired 

at room temperature and after this heating was applied. At the end of the reaction, 

the cell was allowed to cool and the scans acquired during the cooling period are 

coloured blue on the time-resolved XANES plot (Figure 4.5 A). These scans 

correspond to the 128th, 132nd and 136th minutes of the reaction. Figures 4.5 A-B 

show the normalized in situ Au L3-edge XANES measured from 11850 eV to 12070 

eV as a function of time (Figure 4.5 A), and an overlay of the XANES recorded 

during the first 40 minutes of the reaction (Figure 4.5 B).  

The XANES of [AuCl4]
- presents the characteristic sharp whiteline due to 

transitions from the 2p2/3 states to the unoccupied 5d orbitals.
[37] During the room 

temperature scans (minutes 4-16) the intensity of the whiteline has slightly 

decreased from a value of 1.13 to 1.12 μ(E). From 16 minutes onwards, the 

temperature was raised and the intensity of the whiteline starts to decrease, 

indicating that an Au-Cl bond cleavage process starts relatively quickly under the 

studied conditions. Figure 4.5 B gives some insight into the process taking place up 

to this temperature. During the period 4-40 minutes, peak B at energy ~11945 eV, 

corresponding to elemental Au, presents no increase in its intensity – showing that 

Au-Au bonds do not form in parallel with the gradual decomposition of a 

percentage of the [AuCl4]
- species. The reduced intensity of the whiteline suggests 

that the 5d orbitals have become more occupied, but still does not resemble that of 

Au foil because a pronounced peak is still visible, thus suggesting that a partial 

reduction of the Au3+ species has occurred. This observation may be attributed to 
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low-valence Aux+ (x = 0-3) ions that form upon sequential breaking of Au-Cl bonds, 

which has also been confirmed in the literature.[8,14,38] Therefore, it is possible that 

species with intermediate oxidation states are present. Possible structures that could 

co-exist during the 4-40 minute period include Au species with three oxidation 

states: 3+ [AuCl4]
-, 2+ [AuCl3]

- and 1+ [AuCl2]
-. From these, the oxidation states 

of Au that are known to be stable are 3+ and 1+. [AuCl3]
-, with oxidation state 2+, 

is known to be an unstable intermediate with a very short lifetime, particularly in 

the photoreduction process.[39,40]  
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Figure 4.5: A) 3D plot of in situ XANES at the Au L3-edge as a function of 

reaction time and B) Magnified whiteline during the first 40 minutes of the 

reaction. C) Normalised XANES at selected time variations and D) plot of edge 

shift as a function of time measured from the edge position at μ(E)=0.6. 

 

Up to the 40 minute point (Figure 4. 5 B), no isosbestic points are observed 

in the XANES, therefore the existence of at least one species with an intermediate 

C) 

A) B) 

D) 
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oxidation state between 3+ and 0 is proposed, since the direct reduction of Au3+ to 

Au0 is not favoured, as reported in other studies.[41] This result is in agreement with 

the studies of Ma et al.[14] on the formation of Au nanoparticles by bombardment of 

the ionic liquid 1-butyl-3-methylimidazolium tetrachloroaurate [BMIM][AuCl4] 

with synchrotron hard X-rays at 50 oC. They propose the existence of a low-valence 

Au species resulting from progressive Au-Cl bond breaking that takes place prior 

to nucleation and, similarly to our observations, the intensity of the whiteline 

decreases significantly prior to any observation of metallic character. However, our 

results are in contrast to the studies reported by Wei et al.[42] where they proposed 

that the breaking of an Au-Cl bond is accompanied by the formation of an Au-Au 

bond between ionic Au centres, to form dimers such as -[AuCl3]—[AuCl3]
- during 

the reduction of [AuCl4]
- by citric acid in the presence of PVP. They also observed 

a concomitant increase of the intensity of the peak at 11946 eV, marked as B in 

Figure 4.5 C. Figure 4.5 C shows the XANES at selected times during the reaction 

that correspond to key steps of the reduction process. At 44 minutes, the intensity 

of the whiteline presents a significant drop, from a value of 1.13 to 0.86. This is 

accompanied by a small edge shift towards higher energies (0.3 eV), indicating that 

a certain degree of reduction of the trivalent oxidation state of Au is taking place. 

Due to the instability of AuCl in the X-ray beam and the general instability 

of [AuCl2]
-, experimental XANES of Au in 1+ oxidation state could not be reliably 

obtained. As a result, to probe the oxidation state of Au at 44 minutes, an Au-Cl 

standard from the Hephaestus standards library, was used (this is part of the XAS 

analysis software package Demeter).[35] As seen in  Figure 4.6, there is a 

resemblance between the 44th minute and the XANES of AuCl; the edge position 

of the XANES at the 44th minute is found at the same energy as the one of the Au-

Cl standard.  
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Figure 4.6: Left: XANES of [AuCl4]-, the Au-Cl library standard and the XANES 

at the 44th minute of the reaction. Right: Normalised XANES of minutes 44-136 

of the reaction. 

 

This observation indicates that the prevalent species at this time interval 

have a 1+ oxidation state. Taking into account the experimental conditions, it is 

likely that the structure of these species is in the form of [AuCl2]
-, however species 

with oxidation states such as 3+ and 2+ may also exist in small amounts. 

Figure 4.5 C shows that peak B first appears at the 44th minute. This is the 

first indication of Au-Au species. This observation suggests an induction period is 

taking place before the onset of Au-Au formation, as reported by other 

researchers.[43,44] From the 40th minute onwards, the whiteline intensity declines 

further and becomes fully suppressed by the end of the reaction (136 min), showing 

that elemental Au has been formed. Meanwhile, peak A has disappeared and peak 

B shows a gradual increase, indicating that particle growth is occurring throughout 

this time. An isosbestic point is observed in the XANES (Figure 4.6, right) from 40 

minutes to 136 minutes, which is an indication that the nanoparticles grow via direct 

reduction of [AuCl2]
- to Au0. Additionally, peak A at ~11933 eV broadens and 

becomes less prominent, indicating that a transformation to metallic Au is occurring 

(Figure 4.5 C). 

The edge position profile shown in Figure 4.5 D shows that the edge position 

remains at 11918.1 eV from 4-20 minutes. From the 40 minute point onwards, a 

gradual shift towards higher energies is observed and from the 136th minute until 
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the end of the reaction the edge position seems to be stabilized at a value of 11919.5 

eV. 

The comparison of the XANES at 136 minutes and the Au foil (Figure 4.7) 

shows that they are almost identical in shape, indicating that complete reduction of 

the [AuCl4]
- has occurred.  
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Figure 4.7: XANES of the 136th minute of reaction (pink line) and Au foil (black 

line).  

 

The only difference is the slightly more pronounced whiteline observed in 

the XANES of the 136th minute, while the oscillatory part of the spectrum appears 

similar to that of the Au foil. This increase in intensity suggests that Au atoms in 

the nanoparticle sample have less populated 5d states. This observation is consistent 

with other XANES studies on Au nanoparticles that are stabilised by weakly bound 

ligands, such as EG.[45] 

Figure 4.8 shows the LCF analysis of the XANES that was performed to 

determine the phase fractions of the species present throughout the reaction. As 

standards, [AuCl4]
- in EG and Au foil were used. For the first 28 minutes of 

exposure, the phase fractions of [AuCl4]
- and Au are in the regions of 90-100% and 

0-10% respectively, showing very small variations during this time. Following this, 

the phase fraction of [AuCl4]
- rapidly reduces between the 32nd-52nd minutes of the 

reaction, and its value at 52 minutes is found to be 37%. Alongside this, the phase 

fraction of Au-Au increases rapidly to 63% at the 52nd minute. From this point until 

the end of reaction, the Au-Au component continues to increase gradually to reach 
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a final value of 95%. This increase is accompanied by a gradual decrease of the 

phase fraction of [AuCl4]
- to a final value of 5%.  
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Figure 4.8: LCF analysis of the in situ XANES. The error bars are too small to 

be visible on this plot. 

 

4.5.2.2 EXAFS Analysis 

 

The region between 1-4 Å of the in situ FTs (Figure 4.9 A) demonstrates the 

evolution of the local structure around the absorbing Au atom, and the changes in 

the intensities of the peaks show the evolution of the CNs of the Au-Cl and Au-Au 

scattering paths. To understand the changes to the local structure around Au, the FT 

of the EXAFS of the reaction at selected time intervals is shown in Figure 4.9 B, 

while EXAFS best fit parameters are shown in table 4.1. A full table of the derived 

structural parameters can be found in Appendix 4 (table A4.1).  

At the beginning of the reaction (4-16 minutes), only one peak was observed 

around 2 Å and this is attributed to the Au-Cl in the first coordination sphere of 

Au3+. The CN of Au-Cl during this time is close to 4 and the Au-Cl bond distance 

is 2.27 Å (table 4.1) - this is in good agreement with literature values for pure 

[AuCl4]
- species where four Au-Cl bond distances are detected in the range 2.272 

(6) – 2.281 (8) Å.[38] No contribution from Au-O paths was detected. 
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Figure 4.9: A) In situ EXAFS as a function of reaction time (blue indicates 

cooling period). B) In situ FTs measured at selected reaction times. C) k3-

weighted EXAFS spectra at the selected time intervals. 

 

Notably, based on the XANES analysis, the edge shows a prevalent 

oxidation state of 1+ at around 40 minutes. Taking into account that the proposed 

stable species for this valence is [AuCl2]
-, the CN of the Au-Cl path should be close 

to 2. EXAFS fitting analysis showed that this is not the case (table 4.1), thus species 

with other oxidation states may contribute to this scattering path. As the reaction 

time proceeds, the intensity of the Au-Cl peak diminishes and at 48 minutes a 

doublet emerges in the region of 2-3.5 Å, corresponding to the Au-Au path of the 

metallic phase. 

In the XANES, the first increase in the intensity of peak B is observed at 44 

minutes.  In the EXAFS analysis, metallic species were first detected at the 48th 

minute of the reaction. This is potentially due to the fact that very small Au nuclei 

remain undetected during the initial stage of their formation as a result of their 

A) 

B) C) 



Chapter 4 

 

118 
 
 

size.[42] EXAFS analysis shows that the Au-Cl CN drops from 4.2 to 3.1 at 48 

minutes, while the Au-Cl bond distance remains 2.27 Å (table 4.1). The value of 

the CN of the Au-Cl path shows that Au-Cl bond breaking takes place prior to any 

Au-Au formation, further providing evidence of the presence of low valence 

species, Aux+ (x= 0-3). For the Au-Au path, a CN of 0.6 was obtained and the bond 

distance was 2.88 Å. A bond distance at this value is similar to that of bulk Au (2.88 

Å).[46] Remarkably, the Au-Au bond distances observed around 48-80 minutes are 

found in the range of 2.88-2.91 Å. These values show that within the first few 

minutes of particle formation/growth the Au-Au bond distance increases up to 1.7 

% compared to bulk. This observation is in agreement with the results presented by 

Wei et al.,[42] where an initial expansion of 1.7% is also observed in the citrate 

reduction of [AuCl4]
- in the presence of PVP. However, in their studies,[42] this Au-

Au expansion is attributed to the formation of trimers/dimers forming instead of 

Au0 clusters, and ab initio calculations of the XANES were carried out, taking into 

account multiple-scattering, to support this argument. The studies presented by 

Harada[38] also support the scenario of Au-Au bond length expansion during the 

early stages of Au nanoparticle formation by photoreduction of an aqueous−ethanol 

solution of [AuCl4]
- in the presence of PVP, but no attribution of this observation 

was made to the polymeric species.  

Notably, the formation of bimolecular species such as –Cl-Au+—Au+-Cl– 

has previously been proposed in the photochemical reduction of [AuCl4]-.
[24] One 

would expect that distances between two Au+ atoms and even Au3+ and Au+ centres 

would present an aurophilic character. Indeed, the aurophilic interaction between 

two Au+ ionic centres presents the strongest attraction in the range of 2.85-3.10 

Å.[47] However, due to the lack of appropriate standards, the averaging character of 

the XAS and the fact that the increase in peak B is a well known indicator of metallic 

character, it is challenging to attribute such behaviour in this case. 
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Table 4.1: Structural parameters at selected time intervals derived from curve 

fitting of the in situ XAS of the synthesis of Au nanoparticles in EG.  

Time (min) 
Scattering 

Path 
CN  REXAFS (Å) σ2 (Å2) 

                 R       

                factor 

4 Au-Cl 4.2 (±0.2) 2.27 (±0.01) 0.002 (±0.001) 
 

0.019 

16 Au-Cl 3.9 (±0.2) 2.27 (±0.01) 0.002 (±0.001) 
 

0.016 

36 Au-Cl 3.4 (±0.1) 2.27 (±0.01) 0.002 (±0.001) 0.009 

40 Au-Cl 3.1 (±0.1) 2.27 (±0.01) 0.002 (±0.001) 0.007 

44 Au-Cl 2.8 (±0.1) 2.27 (±0.01) 0.002 (±0.001) 0.013 

48 
Au-Cl 3.1 (±0.1) 2.27 (±0.01) 0.004 (±0.001) 

 

0.010 

Au-Au 0.6 (±0.3) 2.88 (±0.03)   0.002 (set)  

52 
Au-Cl 2.5 (±0.1) 2.27 (±0.01) 0.002 (±0.001) 

 

0.004 

Au-Au 0.6 (±0.1) 2.88 (±0.02) 0.003 (±0.002)  

56 Au-Cl 2.4 (±0.1) 2.26 (±0.01) 0.003 (±0.001) 
 

0.018 

 Au-Au 1.6 (±0.4) 2.91 (±0.01) 0.003 (±0.002)  

60 Au-Cl 2.3 (±0.1) 2.27 (±0.01) 0.003 (±0.001) 
 

0.017 

 Au-Au 1.9 (0.3) 2.88 (±0.01) 0.002 (±0.001)  

64 Au-Cl 1.7 (±0.1) 2.24 (±0.01) 0.001 (±0.001) 
 

0.020 

 Au-Au 3.5 (±0.6) 2.88 (±0.01) 0.008 (±0.001)  

68 
Au-Cl 1.8 (±0.1) 2.25 (±0.01) 0.004 (±0.001) 

 

0.029 

Au-Au 3.8 (0.7) 2.90 (±0.01) 0.008 (±0.001)  

72 Au-Cl 1.9 (±0.1) 2.27 (±0.01) 0.004 (±0.001) 
 

0.019 

 Au-Au 4.3 (±0.5) 2.90 (±0.01) 0.008 (±0.001)  

76 Au-Cl 1.7 (±0.1) 2.24 (±0.01) 0.005 (±0.001) 
0.023 

 Au-Au 5.8 (±0.6) 2.88 (±0.01) 0.008 (±0.001) 

80 
Au-Cl 1.5 (±0.1) 2.25 (±0.01) 0.002 (±0.001) 

0.034 
Au-Au 5.9 (±0.8) 2.89(±0.01) 0.009 (±0.001) 

84 
Au-Cl 1.6 (±0.2) 2.22 (±0.01) 0.002 (±0.001) 

0.037 
Au-Au 4.2 (±0.4) 2.85 (±0.01) 0.004 (±0.001) 

      104 
Au-Cl 1.1 (±0.2) 2.23 (±0.01) 0.005 (±0.002) 

    0.020 
Au-Au 6.9 (±0.4) 2.86 (±0.01) 0.006 (±0.001) 

      136 Au-Au 10.5(±0.9) 2.85 (±0.01) 0.007 (±0.001)     0.047 
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 During the 48-80 minute period, the Au-Cl peak in the FT (figure 4.9 A) 

decreases further and by the end of the reaction has disappeared completely, 

whereas the Au-Au peak presents an increasing intensity throughout this time. The 

CN of Au-Cl continues to decrease until it can no longer be detected, while the bond 

distance appears shortened from 2.27 to 2.22 Å prior to its disappearance. The CN 

of Au-Au increases as the particles grow, whereas the Au-Au bond distance 

shortens compared to the initial values to reach a final value of 2.85 Å. The k3-

weighted EXAFS and corresponding FTs at selected times are presented in figure 

4.10. 
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Figure 4.10: k3-weighted EXAFS and corresponding FTs at selected times. 
 

 The trends in the CN and bond distance for Au-Cl and Au-Au respectively are 

plotted as a function of time in Figure 4.11.  
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Figure 4.11: Evolution of the coordination number (left) and bond distance 

(right) for [AuCl4]- (top) and Au-Au (bottom). 

 

 The decreasing trend of both these parameters for Au-Cl can be observed. 

Interestingly, the Au-Cl bond distance retains its value up to the 52nd minute of the 

reaction, while the coordination has dropped to 2.5 at that point. For the Au-Au 

scattering path it is clear that a continuous rise is observed for the CN, while the 

bond distance starts from near bulk values, showing some increase and then a small 

decrease to reach a final value of 2.85 Å with CN 10.5. As evidenced in Figure 4.11 

the initial bond distances for Au-Au display a large error due to the very small size 

of the metallic Au clusters. In regards to the final Au-Au CN, a value smaller than 

12 indicates particles with many surface atoms. In this case, the CN is close to 10.5, 

which is close to bulk values. The FT of the 136th minute of the reaction shows 

reduced amplitude when compared to the FT of the Au foil, indicative of CN of less 

than 12, as was confirmed by EXAFS analysis (Figure 4.12 bottom right). 

                    TEM images of the particles (Figure 4.12 top) show that they are 

spherical and that some have aggregated, an indication of the weakness of EG’s 

stabilising properties, while the particle average parameter is 4.61 ± 0.67 nm 

(Figure 4.12 bottom left).  
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Figure 4.12: Top: TEM images of Au nanoparticles in EG. Bottom: Particle 

diameter histogram and FT of the 136th minute, with the Ft of Au foil plotted for 

comparison.  

 

4.5.3 In situ XAS Synthesis of Au Nanoparticles In Ethylene Glycol In The 

Presence Of PVP  

 

4.5.3.1 XANES Analysis 

 

 

The chemical changes of [AuCl4]
- occurring during its reduction to elemental state 

in the presence of EG and PVP were probed with in situ XAFS at the Au L3-edge. 

The time-dependent XANES is shown in Figure 4.13. Scans were recorded every 4 

minutes and the scans of the cooling period towards the end of the reaction are 
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plotted in blue. The cooling period scans corresponding to the 184th, 180th, 176th, 

172th and 168th minutes.   

 Initially, the whiteline is one of the most prominent features (Figure 4.13 A) 

along with the characteristic peak A at 11933 eV (Figure 4.13 B). At room 

temperature, the peak intensity is very strong in the 4-20 minutes period, and its 

intensity is 1.13 μ(E). Upon increasing the heating to 120 oC at a rate of 5 oC/min, 

a very small drop in the intensity is observed. In the period between 20-80 minutes, 

the whiteline drops from 1.10 to 0.97 μ(E). This drop is accompanied by a gradual 

shift towards higher energies from 11918.2 to 11918.7 eV, suggesting that 

reduction of Au3+ species occurs, probably resulting from an Au-Cl bond cleavage 

process taking place during this time. From the early stages of the reaction up to the 

80th minute, peak B presents a small and gradual rise (Figure 4.13 B). Such subtle 

change at this energy might suggest the formation of very small Au nuclei. 

 In the EXAFS presented in Section 4.5.3.b below, there is no Au-Au 

scattering path that can be curve fitted prior to the 84th minute of the reaction. The 

process of Au-Cl bond dissociation, observed by the decline in the whiteline 

intensity, is happening in parallel with the increase in the intensity of peak B for a 

period prior to the detection of any Au-Au paths in the EXAFS (Figure 4. 13 B). 

This observation is different to the system studied in Section 4.5.2, where PVP is 

absent, but it is relatable to Wei’s studies[42] where the Au-Au growth and the Au-

Cl breaking process proceed concomitantly, even though in this case this 

observation is supported mainly by the changes on the peak intensities in the 

XANES. The lack of detection of Au-Au in the EXAFS may be due to the fact that 

only a very small amount of the precursor is reduced into the metallic state, hence 

the size of those Au clusters is too small to be detectable by EXAFS.[38,48] 

 The lack of isosbestic points in the XANES between the 4th-80th minutes of 

reaction indicates that more than two species may be present. At 84-88 minutes, 

peak B appears more pronounced and the whiteline intensity has dropped to 0.90 

μ(E). As time proceeds from the 88th minute to the end of the reaction (184 minutes) 

the expected changes for transformation of ionic Au species to metallic occur in the 

XANES. The whiteline intensity declines dramatically, and its final peak position 
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is found at 0.78. Peak A has become almost featureless while peak B has increased 

in intensity, indicating Au nanoparticle growth.  
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Figure 4.13: A) 3D plot of in situ XANES as a function of reaction time and B) 

magnified whiteline peak during the first 40 minutes of reaction. C) Normalized 

XANES at selected time intervals and D) energy shift in edge position (edge 

position measured at μ(E)= 0.6). 

 

As already mentioned in the introduction, PVP is commonly used to prevent 

particle aggregation during the polyol synthesis and the effect of the molar ratio of 

PVP/metal precursor has been the studied by several researchers.[49–51] For example, 

an increase in the size of Au nanoparticles has been observed for low PVP/[AuCl4]- 

ratios.[52] Low PVP/Au precursor ratios lead to polyhedral particles and structures 

with plate morphology, with diameters that can be as large as the micrometre 

range.[53] Generally, large amounts of PVP are required to obtain a monodisperse 

Au nanoparticle population with particle sizes in the nanoscale. It was found that 

A) B) 

C) D) 
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high PVP/Au precursor ratios increase the nucleation rate, while favouring 

spherical shapes.[53] In addition, PVP has been reported by researchers to have a 

slightly reducing character,[54,55] while thermal decomposition of PVP may lead to 

the formation of radicals originating from impurities commonly present in all 

commercial grades of PVP.[53]  

A comparison of the XANES of the two reaction systems studied herein 

shows that in the presence of PVP the reaction proceeds in a slower, and perhaps 

more controlled way. At present there is no obvious explanation for the retarding 

effect of PVP on the particle growth rate that was observed under these reaction 

conditions. One possible reason could be the amount of PVP used in the synthesis 

is larger compared to the amounts used in the literature studies, thus significantly 

reducing the diffusion of monomers and slowing down the nucleation and particle 

growth stages. The reduction of the Au precursor in our studies could take place 

through the formation of radicals forming from the interaction of the beam with the 

EG and/or interaction of the beam with the PVP, possibly aided in both cases by 

the mild heating.   

If the beam-EG radical formation process is the main contributing path 

towards the reduction of the Au, PVP may act as a ‘protective agent’, inhibiting the 

interaction of the beam with the EG, thus interfering with that process. This, could 

be another possible explanation of the retarding role of PVP that is observed in our 

studies.  

The metallic character observed in peak B (Figure 4.13 C) increases in a 

smooth manner as a function of time in the presence of PVP, whereas a sudden rise 

is observed in that area in the absence of PVP. The profile of the energy position as 

a function of time (Figure 4.13 D) shows no edge shift during the period 4-20 

minutes. From 24 minutes onwards the edge gradually shifts to higher energies and 

by the last 34 minutes of the reaction it has stabilized at 11919.9 eV.  

Similarly to the XANES analysis in the absence of PVP, a sequential Au-Cl 

bond-breaking process is observed in the presence of PVP that suggests the 

formation of Au species with oxidation states ranging from 3+ to 0. From the 

comparison of the XANES recorded at 80 minutes with the AuCl library standard 

(Figure 4.14 top) it is evident that, in this case too, the edge position matches the 
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standard, showing that the majority of species have a 1+ oxidation state. A clear 

isosbestic point is observed from the 84th minute until the end of the reaction, 

showing that the reduction of the Au+ species (possibly [AuCl2]
-) proceeds directly 

to the elemental state (Figure 4.14 bottom). 
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Figure 4.14: Top: XANES of [AuCl4]-, Au-Cl standard and of the 80th minute of 

the reaction. Bottom: Normalised XANES of the reaction from 84th-184th 

minutes. 

 

The XANES of the Au nanoparticles at 184 minutes presents an edge 

position slightly shifted towards lower energy when compared to the XANES of 

the Au foil, suggesting that the Au in the reaction mixture is not fully metallic in 

character. The whiteline shows a very small but sharp peak, confirming 
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contributions from species other than Au0 (Figure 4.15). The rest of the plot shows 

features that resemble, to a large extent, the appearance of the Au foil.  
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Figure 4.15: XANES plot at 184 minutes (orange line) and Au foil (black line).  

 

For small, PVP stabilised Au nanoparticles, the whiteline has been reported 

to exhibit a lower intensity than that of Au foil due to the strong protecting character 

of PVP.[45] In this study, due to the contribution of Au+ species, this effect cannot 

be evaluated with certainty.  

LCF analysis of the XANES showed that the phase fractions of [AuCl4]
- and 

Au-Au decreased and increased respectively, during the course of the reaction 

(Figure 4.16). In the early room temperature scans the proportion of [AuCl4]
- is 

100%, up to the first 32 minutes, and the proportion of Au-Au is 0%. From 32 

minutes onwards, the proportion of [AuCl4]
- decreases and at 104 minutes it is 

found to be 50%. Between 32-116 minutes, the graph shows relatively fast changes, 

but after this the changes are much slower and smoother. The final values of the 

[AuCl4]
- and Au-Au fractions are 17% and 83% respectively, which suggests an 

incomplete reaction. 
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Figure 4.16: LCF analysis. The error are bars too small to be visible on this plot. 

 

4.5.3.2 EXAFS Analysis 

 

The in situ EXAFS (Figure 4.17 A) provides a good understanding of the time-

dependent changes of the Au-Cl and Au-Au shells. At the beginning of the reaction 

only the contribution from the Au-Cl shell located at 2 Å is observed. EXAFS 

analysis shows an Au-Cl first shell with a CN of 3.8 and a bond distance of 2.27 Å.  

Upon increasing the reaction time, the intensity of the Au-Cl shell diminishes 

slowly. Closer observation of the selected FTs actually shows a shift of the Au-Cl 

peak towards lower radial distances as a function of time. Up to 80 minutes there 

are no other significant changes observed in the spectra. In the corresponding FT, 

the amplitude of the Au-Cl peak appears significantly decreased at that time. At 84 

minutes, the second peak of the doublet in the range 2.5-3.5 Å presents an increase, 

indicating an increase of the CN of the Au-Au character. It is challenging to 

attribute the appearance of this peak in the FTs to Au-Au character, in this case, due 

to the fact that a doublet with suppressed intensities already existed in the previous 

scans. This could possibly be attributed to the increase in the intensity of peak B in 

the XANES observed in the period up to 84 minutes. After 84 minutes, the Au-Cl 

peak decreases further while the Au-Au peak continues to increase. In the last 

minute of the reaction (minute 186) an Au-Cl contribution can still be observed. 

The k3-weighted spectra of the selected time intervals are shown in Figure 4.17 C 



Chapter 4 

 

129 
 
 

and the structural parameters derived from EXAFS analysis are shown in table 4. 

2. A full list of the parameters can be found in table A4.2 in Appendix 4.  
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Figure 4.17: Top: In situ FTs of the reduction of [AuCl4]-
 by EG, in the presence 

of PVP. Bottom, left to right: In situ EXAFS and FT at selected reaction times. 

 

The EXAFS analysis showed that the Au-Cl path has retained a CN close to 

4 and a bond distance of 2.27 Å up to 40 minutes into the reaction. By the 80th 

minute of the reaction, the Au-Cl CN is found to be 3.0, and 4 minutes later this 

value drops to 2.6 and an Au-Au path with CN 2.0 is observed. A CN value lower 

than 3.0 was also observed when the first indication of metallic Au was detected in 

the absence of PVP. As the reaction proceeds, the Au-Cl CN decreases further, as 

expected, while the CN of Au-Au rises. In the EXAFS, the time of the first detection 

of metallic species is observed to be almost double the time in the absence of PVP. 

Notably, a bond length expansion up to 1.4% is also observed during the early 

A) 

B) C) 
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stages of the increase of the CN, reaching a final value of 2.85 Å at 186 minutes. 

The Au-Cl bond distance has decreased to 2.24 Å by the end of the reaction, and 

the remaining contribution from the Au-Cl peak in the FT corresponds to a CN of 

0.9. The k3-weighted EXAFS and corresponding FTs of the selected times are 

presented in Figure 4.18. It should be noted, that the data is considerably noisy 

particularly in the 144th – 186th minutes. 
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Figure 4.18: Left to right: In situ EXAFS and FTs at selected reaction times. 

 

The trends of the CNs and bond distances of the Au-Cl and Au-Au paths are 

shown in Figure 4.19. The CN of the Au-Cl presents a plateau during the first 44 

minutes followed by a gradual decrease. Au-Au paths begin to show a non-zero CN 

in the 84th minute and, as evidenced from the graph (Figure 4.19 bottom left), a rise 

in CN is observed following a slow increasing trend. During the entire reaction the 

Au-Cl bond distance appears to decrease from 2.27 to 2.24 Å. The Au-Au bond 

distances observed display somewhat large error bars during the early stages, a 

result that stems from the very small size of the nuclei.   
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Table 4.2: Structural parameters at selected time intervals derived from curve 

fitting of the in situ XAS of the synthesis of Au nanoparticles in EG/PVP.  

 

Time (min) Path CN  REXAFS (Å) σ2 (Å2) 
                 R       

                factor 

4 Au-Cl 3.8 (±0.1) 2.27 (±0.01) 0.001 (±0.001)    0.009 

40  Au-Cl 3.8 (±0.1) 2.27 (±0.01) 0.002 (±0.001)    0.006 

80 Au-Cl 3.0 (±0.1) 2.26 (±0.01) 0.002 (±0.001)    0.019 

84 
Au-Cl 2.6 (±0.3) 2.26 (±0.02) 0.003 (±0.003) 

    0.038 
Au-Au 2.0 (±0.9) 2.85 (±0.04)  0.003 (set) 

88 
Au-Cl 3.0 (±0.3) 2.27 (±0.01) 0.002 (±0.001) 

 

0.030 

Au-Au 1.2(±0.9) 2.87 (±0.05)   0.003 (set)  

102 

 

Au-Cl 2.7 (±0.1) 2.25 (±0.01) 0.003 (±0.001) 
 

0.011 

Au-Au 1.7 (±0.5) 2.88 (±0.02) 0.007 (±0.003)  

106 Au-Cl 2.6 (±0.1) 2.25 (±0.01) 0.002 (±0.001) 
 

0.014 

 Au-Au 1.2 (±0.4) 2.88 (±0.02)   0.003 (set)  

114 Au-Cl 2.3 (±0.1) 2.26 (±0.01) 0.002 (±0.001) 
 

0.016 

 Au-Au 2.3 (±0.5) 2.90 (±0.01) 0.006 (±0.002)  

118 Au-Cl 2.2 (±0.1) 2.24 (±0.01) 0.002 (±0.001) 
 

0.011 

 Au-Au 3.3 (±0.4) 2.88 (±0.01) 0.005 (±0.001)  

122 

 

Au-Cl 2.4 (±0.1) 2.26 (±0.01) 0.004 (±0.001) 
 

0.020 

Au-Au 2.4 (±0.3) 2.89 (±0.01) 0.003 (±0.001)  

130 Au-Cl 1.5 (±0.1) 2.25 (±0.01) 0.003 (±0.001) 
 

0.020 

 Au-Au 7.5 (±0.9) 2.89 (±0.01) 0.015 (±0.001)  

144 

 

Au-Cl 1.3 (±0.1) 2.24 (±0.01) 0.002 (±0.001)  

0.031 

 Au-Au 7.5 (±0.9) 2.85 (±0.01) 0.011 (±0.001) 

184 

 

Au-Cl   0.9 (±0.1) 2.24 (±0.01) 0.001 (±0.001)  

0.014 

 Au-Au 7.0 (±0.4) 2.85 (±0.01) 0.007 (±0.001) 

 

Comparing the Au-Au CN profiles of the two reactions of interest (figure 

4.19), in the absence and presence of PVP, there is a clear increasing trend as the 
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reaction progresses in both cases. In the presence of PVP, a slow increase is 

observed from 84-120 minutes and subsequently the CN almost plateaus close to 7. 

The latter observation can probably be attributed to the limited growth of 

nanoparticles due to the presence of the particle stabiliser (PVP).  
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Figure 4.19: Top to bottom: Evolution of the coordination number and bond 

distance for [AuCl4]- and Au-Au respectively. 

 

TEMs and a particle diameter histogram of the Au nanoparticles are shown 

in Figure 4.20. The darker circular area is possibly EG/PVP and the spherical 

particles primarily seem to be prevalent around that area with an average diameter 

of 2.73 ± 0.65 nm. The FT of the particles (Figure 4.20, bottom right) shows a 

significantly reduced amplitude, which is anticipated since the curve fitting analysis 

detected an Au-Au CN with CN 7. This suggests a significant proportion of Au 

surface atoms. The scattering path of Au-Au is located in the range of 2.5-3.5 Å 

while the appearance of the triplet in the FT can be explained by the small 

contribution of an Au-Cl path (the peak arising at 2 Å) originating from unreacted 

Au+ species.  



Chapter 4 

 

133 
 
 

   

2 3 4 5
0

5

10

15

mean size 2.73 ± 0.65 nm 

 

 

F
re

q
u
e
n

c
y

Particle diameter (nm)

 Au nanoparticles

             in EG/PVP

0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

|
(R

)|
 (

Å
-3

)

Radial Distance (Å) 

 Au foil

 Au nanoparticles in EG/PVP

 
 

Figure 4.20: Top: TEM micrographs of the Au nanoparticles in EG/PVP. 

Bottom: Particle diameter histogram and FT of the 184th minute with the FT of 

Au foil plotted for comparison.  

 

 

4.6 Conclusions 

 

Initially, these studies demonstrated that the effect of beam induced reduction of 

the [AuCl4]
- is not only observed in Quick EXAFS beamlines, but it is also observed 

in beamlines using bending magnets. The introduction of an Al foil was proven to 

be effective in preventing this phenomenon, and this approach lead to the successful 

monitoring the reactions of interest. In addition, these studies showed that, at the 

energy regime investigated, X-rays, apart from promoting beam induced 

nucleation, can also affect the outcome of the reaction by interacting with the 

reaction media – EG in this case – enabling the formation of radicals. The radical 

effect may be responsible for the observed decomposition temperature of [AuCl4]
- 
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in EG, which is significantly lower compared to the expected temperature of the 

standard polyol process.  

The results from the in situ XANES profile of this reaction indicated that it 

is possible for species with intermediate oxidation states to be present during the 

decomposition process of [AuCl4]
-. In addition, at the 40th minute of reaction, it is 

likely that the prevalent species are Au+, as it can be suggested from the comparison 

of the XANES of that minute with the XANES of the AuCl standard. An isosbestic 

point is also observed from that minute onwards until the end of the decomposition, 

suggesting that only two species are involved at that stage of the reaction. These are 

most likely Au+ and Au0.  EXAFS analysis of this reaction revealed an Au-Au bond 

length expansion during the initial stage of Au nanoparticle formation in EG.  

From the XANES analysis of the reduction of [AuCl4]
- in the presence of 

EG/PVP it was shown that, overall, the profile of the reduction followed similar 

trends to the reaction in the presence of EG only, but several differences were 

observed. The XANES data of both reactions suggest the possibility of an Au-Cl 

bond cleavage process taking place, leading to the formation of Au species with 

oxidation state intermediate between 3+ and 1+. However, in the presence of PVP, 

peak B in the XANES, which corresponds to Au metallic character, presented a 

gradual increase during the Au-Cl cleavage stage.  This constitutes the first 

difference compared to the reaction system in the absence of PVP, where peak B 

rose suddenly, indicating the lack of induction period in the absence of PVP.  

Another significant difference observed is that the first indication of 

metallic Au was detected in the EXAFS analysis at almost double the time 

compared to the time observed in the absence of PVP. This suggests that PVP has 

an effect on the overall process. A possible explanation of this observation maybe 

that the small Au nuclei that are formed at the initial stages are stabilised strongly 

by PVP, thus the growth phase during which larger particles form is not an 

especially favoured process. If the sizes of the Au nuclei do not allow for their 

detection, then a delay on the detection in the EXAFS analysis will be observed. 

However, since PVP has been reported to have a slightly reducing character and 

interacts with the beam, this reaction could be anticipated to take place more quickly 

compared to the first one (absence of PVP). As a result, another possible 
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explanation for the delay could be the amount of PVP utilized in the reaction, which 

may slow down the diffusion of Au resulting in EXAFS detection of Au-Au at a 

later stage of the reaction.  In addition, in an effort to rationalise the retardation 

effect induced by PVP, it was proposed that in the case where the principal 

reduction pathway is through the interaction of the X-rays with the EG, the presence 

of PVP may block the formation of radicals. 

Similarly to the first reaction, an isosbestic point was also observed in the 

XANES recorded in the presence of PVP from the 84th minute until the end of the 

reaction. This indicates that only two species were involved from that minute 

onwards. An initial Au-Au bond length expansion was also observed in this case 

too, but the CN of the final particles appears smaller compared to the CN of the Au 

particles observed in the first reaction (10.5 vs 7.0). This is expected taking into 

account the presence of the particle stabiliser PVP in the latter case.  

Because the effects of the mild temperature on the decomposition process 

cannot be addressed with this reaction set up, its role in these syntheses remains 

elusive. However it is obvious that the expected temperatures for the polyol process 

were not achieved. A possible scenario could be that the mild temperature that was 

applied facilitates the radical formation process, perhaps by accelerating it. A 

different contribution to the process may also be possible, but since the beam has 

an impact on the solvent and the particle stabiliser, this effect cannot be probed with 

this reaction mixture and the experiment performed. 
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Chapter 5. X-ray Absorption Spectroscopic Investigations 

On The Synthesis And Structure Of Au-Pd Bimetallic 

Nanoparticles 

 

 

5.1 Chapter Overview  

 

 

This chapter discusses the results obtained from two sets of studies on the syntheses 

and structure of Au-Pd bimetallic nanoparticles prepared in oleylamine/xylene 

(oleyl/xyl) media. The two sets of nanoparticles were synthesized by solution-phase 

thermal decomposition of [Pd(acac)2] and Au(ethynyl-1-cyclohexanol) in oleyl/xyl, 

and [Pd(acac)2] and aqueous [AuCl4]
- phase-transferred into oleyl/xyl. 

First, a detailed structural investigation of two sets of Au-Pd bimetallic 

nanoparticles is shown. The first set of nanoparticles was prepared using [Pd(acac)2] 

and Au(ethynyl-1-cyclohexanol) (noted as Au(I) in this chapter) and will be 

referred as Au(I)-Pd. This Au precursor is used for the first time in Au-Pd 

nanoparticle synthesis. Both these precursors are soluble in oleylamine and their 

thermally induced decomposition produces Au-Pd bimetallic nanoparticles. The 

second set of bimetallic nanoparticles is prepared by phase transferring aqueous 

[AuCl4]
- (noted as Au(III) in this chapter) to oleyl/xyl and subsequently heating the 

organic layer upon addition of [Pd(acac)2]. The nanoparticles in this case will be 

referred as Au(III)-Pd. The latter Au precursor is a popular choice as an Au metal 

source in nanoparticle synthesis. The ex situ studies allowed for determination of 

the degree of the alloy character in the two sets of nanoparticles through use of 

multi-edge EXAFS analysis, TEM, UV-Vis, and XRD techniques. The suitability 

of the two Au precursors for formation of bimetallic nanoparticles is evaluated.  

Following, the results from the speciation studies of the precursors 

[Pd(acac)2], Au(ethynyl-1-cyclohexanol) and [AuCl4]
- are presented. These studies 

revealed the impact of the amount of oleylamine used on the speciation of 

[Pd(acac)2], and identified that oleylamine is not only coordinating on the Pd center, 

but also one (acac)- ligand may transform into a carbon bonded state when increased 
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amounts of oleylamine are used. The UV-Vis and XAS studies on the speciation of 

the Au precursors are also presented.  

Finally, the in situ XAS results on monitoring the progressive changes on 

the oxidation state and composition of metals upon formation of the bimetallic 

nanoparticles are shown. The decomposition profiles of the precursors are discussed 

in a comparative way through XANES, LCF and EXAFS analysis. 

 

5.2 Introduction 

 

 

Au-Pd bimetallic nanoparticles are extensively researched due to their ability to 

catalyze a number of reactions including hydrogenation of hydrocarbons,[1–3]  low 

temperature CO oxidation,[4–6] acetylene trimerization,[7,8] and hydrodechlorination 

of trichloroethane,[9] among others. Additionally, they are industrially very 

important materials: in the United States, these catalysts are used to produce 4.8 

million tons of vinyl acetate per year.[10] Other uses of these materials include 

hydrogen peroxide production from hydrogen and oxygen.[11,12]  

Depending on how the two metals are distributed in the particles, these 

nanoparticles can be classified either as alloys or core-shells. For example, if a 

nanoparticle comprises of two metals M1 and M2, when the metallic core consists 

solely of M1 and M2 forms a shell surrounding M1, then the nanoparticle is 

classified as a core-shell (Figure 5.1 a). Some interaction at the interface between 

the two metals may occur. If M1 and M2 are intermixed, then the nanoparticle is 

classified as an alloy. Depending on the degree of mixing of the metals, alloy 

structures can be either formed from alternate arrays of metals (Figure 5.1 c left) or 

from random rearrangements of the metals (Figure 5.1 c right). Poor mixing may 

even lead to phase separated particles (Figure 5.1 b).[13]  Nanoparticles can also be 

comprised of more than two metals, for example forming a three-shell type of 

structure (Figure 5.1 d). Schematic illustrations of the possible structures mentioned 

are shown in Figure 5.1. Au-Pd bimetallic nanoparticles are routinely synthesized 

through colloidal chemistry. This approach is advantageous because the 

nanoparticles are easily manipulated post-synthesis. The two main approaches to 

synthesize Au-Pd nanocrystals involve co-reduction[14–23] and sequential 

reduction[19,24–26] of the metal precursors. Depending on the experimental 
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conditions, the outcome of the reaction can be either Au-Pd alloy or Au-Pd/Pd-Au 

core-shell nanoparticles. 

 Commonly used reducing agents include polyols[24,27,28] and 

borohydride.[17,19,20,23,29] Polyols are weak reducing agents and often result in the 

formation of Au-Pd core-shell particles.[14–16,18] This is because the Au precursor 

gets reduced more easily and forms monometallic nanoparticles that later act as 

seeds for the reduction of the palladium. Both the sizes of the core and the shell can 

be tuned through varying the ratio of the metals.[30]  

 

 

 

 

Figure 5.1: Schematic representation of possible mixing of metals in 

nanoparticles: (a) core-shell, (b) nanoparticle with separated phases, (c) mixed 

and (d) three-shell. Adapted from reference [13]. 

 

Borohydride however, is a strong reducing agent and favors the formation 

of alloy particles.[17,23,29] Interestingly, Au-Pd core-shells have also been 

synthesized using borohydride as reducing agent.[20] Synthesis of Au-Pd 

nanoparticles in oleylamine has also been reported. Oleylamine has been employed 

as a versatile reagent that can act as a solvent, reducing agent, or stabilizer. Often, 

it has more than one role when employed, and it can also be used with additional 

co-reducing agents or co-surfactants. When it acts as a surfactant and a solvent, an 

external reducing agent such as borane-morpholine is added to the solution.[31,32]  

Sequential reduction is mostly preferred for the preparation of core-shells, 

as it offers better control over the formation of the shell. In this case, preformed Au 

(a) 

(b) 

(c) 

(d) 
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nanoparticles are used as cores, and the Pd salt is reduced with the aid of a mild 

reducing agent on the surface of the Au seeds, forming the metal shell. Commonly 

employed reducing agents include ascorbic acid,[26] and citrate.[33] The choice of an 

appropriate reducing agent is crucial in this case too, since strong reducing agents 

can also favour the formation of monometallic particles of the second metal instead 

of favouring the shell growth. Nevertheless, sequential reduction of Pd2+ and Au3+ 

at high temperatures (100-190 oC) has been reported to promote alloy Au-Pd 

particles.[24] The high temperature is the critical factor for the formation of an alloy 

structure instead of a core-shell one. It is worth noting that the Au-Pd core-shell 

nanoparticles produced through the sequential reduction approach are often 

‘precursors’ to supported Au-Pd alloy nanoparticles; this transformation occurs 

upon undergoing calcination treatment.[34]  

The majority of XAS based publications on these bimetallic systems are 

devoted to in situ catalysis studies,[35,36] while in situ studies on the formation of 

these composite nanomaterials are rare. Indeed, the lack of reports on this matter 

has also been noted in a recent review on Au-Pd bimetallic systems.[37] This is 

probably due to unavailability of appropriate equipment, since performing XAS on 

liquids requires more sophisticated cells to accommodate and heat the solutions. To 

our knowledge only one in situ XAS study has investigated the formation of Pd-Au 

clusters in a water-oil emulsion system.[38] However, another synchrotron based 

study used in situ XRD to show the formation of Au-Pd particles from the 

thermolysis of a single source precursor.[39] Additionally, earlier publications that 

employed XAS to characterize supported bimetallic nanoparticles were concerned 

either with the ex situ determination of the structural rearrangement of the metals 

or the evolution of the degree of alloying upon heating the supported bimetallic 

nanoparticles.[40,33] Indeed, structural characterization is of high importance in order 

to ascribe catalytic performances to structure configurations, and conclude on 

structure-function relationships. However, since their structure depends on the 

experimental conditions, the in situ investigation and understanding of the 

formation reactions is imperative for the efficient synthesis of bimetallic 

nanoparticles with desired properties.  
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5.3 Aims And Objectives 

 

The first aim of this study is to characterize in detail two sets of nanoparticles, 

synthesized using Au(ethynyl-1-cyclohexanol)/[Pd(acac)2], and [AuCl4]
- 

/[Pd(acac)2] precursors respectively. This will show the effect of the Au precursors 

on the composition of the final particles and evaluate the suitability of Au(ethynyl 

1-cyclohexanol) precursor in the preparation of bimetallic nanoparticles, which is 

employed in nanoparticle synthesis for the first time. Additionally, these studies 

will allow for indirect comparison between the novel precursor and the commonly 

employed [AuCl4]
-. The main advantage of using the Au(ethynyl 1-cyclohexanol) 

is that it can be directly dissolved in oleylamine, thus an additional phase transfer 

step is not required. 

The second aim of this study is to investigate the speciation of the 

[Pd(acac)2], Au(ethynyl-1-cyclohexanol) and [AuCl4]
- precursors that are used for 

the synthesis of Au-Pd nanoparticles in oleylamine as the reaction medium. 

Generally, oleylamine is suggested to interact in various ways with metal 

precursors, especially with [Pd(acac)2] and [AuCl4]
-, but to our knowledge the 

nature of these interactions has not been identified. Therefore this study aims to 

elucidate the structural changes that occur on the metal precursors upon dissolution 

in oleylamine.  

The third aim is to employ in situ XAS to monitor the formation of the two 

sets of nanoparticles. This will reveal the dynamic changes of the metals during the 

reactions and will provide an insight on the decomposition profiles of the starting 

materials. 

 

5.4 Experimental 

 

Chemicals 

All chemicals were used as purchased without further purification. HAuCl4.3H2O 

(41.22 wt. %) and [Pd(acac)2] were Alfa Aesar chemicals and provided by Johnson 

Matthey. The Au(ethynyl-1-cyclohexanol) precursor was synthesized and provided 

by Johnson Matthey. Dodecane (≥99%), oleylamine (technical grade 70%, primary 

amines > 98 %), xylene (≥98.5%) and chloroform ( ≥99.5%) were purchased from 
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Sigma Aldrich Ltd. The water used was ultra pure and was purchased from Severn 

Biotech Ltd. 

5.4.1 Synthesis Of Au-Pd Bimetallic Nanoparticles By Thermally Induced 

Decomposition Of [Pd(acac)2] And Au(ethynyl-1-cyclohexanol) 

 

[Pd(acac)2] (0.228 g, 7.5x10-4 mol) and Au(ethynyl-1-cyclohexanol) (0.319 g, 10-3 

mol) were dissolved in a mixture of oleylamine (3 ml) and xylene (2 ml) and the 

reaction mixture was heated to 160 oC. Stirring was continued at this temperature 

for 30 minutes before allowing it to cool to room temperature.  The resulting 

solution is coloured dark brown.  

 

5.4.2 Synthesis Of Au-Pd Bimetallic Nanoparticles By Thermally Induced 

Decomposition Of [Pd(acac)2] And [AuCl4]- 

 

A 10 ml aqueous solution of [AuCl4]
- (0.0477 g, 10-4 mol) was added dropwise 

under stirring to a solution comprised of oleylamine (4 ml) and xylene (6 ml). The 

colour of the yellow aqueous [AuCl4]
-
 solution turns orange upon mixing with 

oleyl/xyl. The reaction mixture was stirred vigorously for 2 hours and the colour of 

the solution turns transparent. The organic phase was separated and [Pd(acac)2] 

(0.0304 g, 10-4 mol) was added to it. The mixture was stirred at room temperature 

to allow for dissolution of the Pd salt and then was heated to 185 oC. Stirring was 

continued at this temperature for 30 minutes before allowing it to cool to room 

temperature. Upon heating the solution is initially coloured wine-red and then 

becomes brown over the course of time. 

 

5.4.3 Characterization  

 

For the TEM measurements, a few drops of each nanoparticle suspension were cast 

on a holey carbon coated Cu grid and the measurements were performed on a JEOL 

Microscope (JEM 2100) at an operating accelerating voltage of 200 kV.  

The UV-Vis spectra presented in this work were recorded with a 

PerkinElmer LAMBDA 950 spectrometer using quartz cuvettes. Background 

correction was performed using the solvent or the mixture of solvents that the 
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samples were dissolved in. For the speciation studies, a stock solution of [Pd(acac)2] 

in xylene was made, and an appropriate amount of this solution was mixed with the 

desired amount of oleylamine to adjust the ratio of [Pd(acac)2] to oleylamine. The 

background was recorded using the same mixture of oleylamine/xylene as used for 

each sample being measured. The same way of recording the spectra was applied 

to the speciation studies when both metal salt precursors were present. Because of 

the very poor solubility of Au(ethynyl-1-cyclohexanol) in xylene, dodecane, and 

hexane, the precursor had to be dissolved in oleylamine to perform the speciation 

studies. The stock solution of [AuCl4]
- was the organic layer of phase transferred 

aqueous [AuCl4]
- to oleylamine. Aliquots of this solution, where mixed with 

appropriate amounts of oleyl/xyl, and the background was recorded accordingly.  

For the XRD measurements, the Au-Pd nanoparticle solutions were 

centrifuged at 4000 rpm for 20 minutes in acetone, and the precipitate was re-

dispersed in CH2Cl2. XRD patterns were measured on a Bruker AXS D4 

diffractometer using CuKα1 radiation and the diffraction patterns of the samples 

were compared to database standards.  

 

5.4.4 Multi-Edge EXAFS Analysis 

 

In earlier XAS studies on bimetallic systems, EXAFS analysis of data collected on 

more than one absorption edge (for the same sample) was performed on each edge 

separately. Nowadays, improvements to the analysis packages means it is possible 

to perform multi-edge analysis which improves significantly the quality of the 

fitting model. Multi-edge analysis is advantageous because all the EXAFS data 

collected on different edges on the same sample can have their common structural 

parameters fitted simultaneously. Thus, the determination of the model is more 

accurate. For example, while fitting simultaneously the Au L3-edge and the Pd K-

edge of an Au-Pd bimetallic system, the scattering path of the alloy character, 

labelled as Au-Pd and Pd-Au at the corresponding edges, will be refined with the 

same bond distances (RAuPd = RPdAu) and possibly the same Debye-Waller factor. 

The Artemis[41] analysis package offers the possibility of multi-edge analysis, thus 

it was employed in this chapter.  
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5.4.5 In situ Synthesis Cell 

 

The in situ synthesis cell used for the measurements was described in detail in 

Section 3.4.4 in Chapter 3. The cell configuration at the sample stage of BM23 

beamline is shown in Figure 5.2. The cell is at an angle of ~20o thus, allowing for 

XAS data acquisition both in transmission and fluorescence mode where applicable.  

 

 

 
 

Figure 5.2: Configuration of the synthesis cell at the BM23 beamline stage. 

 

For the ex situ measurements, an aliquot of the as-synthesized nanoparticles 

was transferred to the cell and was sealed between two Kapton windows (polyimide 

films of 0.05mm thickness - Kapton HN® grade, purchased from GoodFellow) and 

utilized as windows for XAS measurements. For in situ measurements on the 

synthesis of Au-Pd alloy nanoparticles, a PEEK spacer (4 mm pathlength) was used 

and an aliquot of the starting solution was transferred from the beamline lab to the 

cell and was sealed between two mica windows. The window of choice was mica 

due to its higher thermal stability compared to Kapton. The cell was connected to a 

temperature controller that was programmed accordingly, and each scan was 

acquired after the temperature had reached the designated value.  

5.4.6 Data Acquisition And Processing  

 

XAS data was acquired at the BM23 beamline[42] at the ESRF, operating at a ring 

energy of 6 GeV. The desired energy was obtained using a double Si(111) crystal 

calibrated to the Pd K-edge (24350 eV) of Pd foil or Au L3-edge (11919 eV) of Au 

Incident X-rays 

Transmitted  

X-rays 

In situ synthesis cell 
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foil,  and ion chambers were used to measure incident and transmitted beam 

intensities (I0 and It). Fluorescence was measured using a 13 element germanium 

(Ge) solid state detector. Data for the speciation studies of the Au precursors and 

the ex situ characterization of the Au-Pd nanoparticle solutions prepared by 

[Pd(acac)2] and [AuCl4]
- were acquired on the Spanish CRG Beamline SpLine, 

BM25[43] at the ESRF. Ion chambers and a 13 element germanium (Ge) solid state 

detector were employed for data acquisition in transmission and fluorescence mode 

respectively. A detailed table of the acquisition mode and k- and R- range fitting 

parameters for each sample can be found in Appendix 5 (table A5.1). All data was 

processed for background removal and normalization using Athena,[41] and 

structural parameters were derived using Artemis,[41] in a multi-edge mode of fitting 

where applicable. The fitting paths for pure Au, pure Pd and for the alloy character 

(Au-Pd and Pd-Au at Au L3-edge and Pd K-edge respectively), path were generated 

using quick first shell path generation mode (QFS) at bond distances 2.88 Å, 2.74 

Å and 2.81 Å. Amplitude reduction factors were derived from reference foil data 

for each edge.  

 

5.5 Results And Discussion 

 

The results from the ex situ characterisation of the resultant nanoparticles from the 

two decompositions described in Sections 5.4.1. and 5.4.2 is presented below.    

  

5.5.1 XANES And Multi-Edge EXAFS Analysis 

 

5.5.1.1 XANES Analysis 

 

The Au-Pd nanoparticles were prepared as described in Sections 5.4.1 and 5.4.2 and 

were characterized at the Pd K-edge and Au L3-edge. Au L3-edge probes the 2p3/2 

 5d5/2 electronic transition, which gives rise to an absorption edge followed by a 

whiteline peak. Its intensity reflects the density of the d states. For Au3+ compounds, 

the whiteline intensity is high and becomes suppressed as the formal oxidation state 

of Au is reduced.[44]  Figure 5.3 shows the XANES of Au(I)-Pd and Au(III)-Pd 

nanoparticles, together with Au foil as a reference. The foil shows an absorption 



Chapter 5 

148 
 

 

edge at 11919 eV followed by a whiteline peak with small intensity, indicating 

almost fully occupied 5d states in bulk Au0.  Beyond the whiteline peak, the foil 

consists of a feature (labelled as A) at 11934 eV, followed by an oscillatory 

structure in the energy range 11940 -11990 eV. The absorption edges of the Au(I)-

Pd and Au(III)-Pd particles are at the same energy as the foil, indicating that only 

metallic Au is present. The intensities of their whitelines appears slightly 

suppressed, as is shown on the right of Figure 5.3. This observation can be attributed 

to size and alloy effects.[45]  

 

11920 11960 12000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
a

lis
e

d
 x


(E
)

B C
A

2p3/2 - 5d

Energy (eV)

 Au foil

 Au(I)-Pd 

 Au(III)-Pd 

 

11920 11922 11924 11926
0.68

0.72

0.76

0.80

N
o

rm
a
lis

e
d
 x


(E
)

Energy (eV)

 Au foil

 Au(I)-Pd 

 Au(III)-Pd 

 

 

Figure 5.3 : Left: XANES of the Au(I)-Pd (blue line) and Au(III)-Pd (pink line) 

nanoparticles at Au L3-edge. Right: Whiteline peak magnified. 

 

Experimental and theoretical studies have shown dependency of the 

whiteline intensity on the size of the nanoparticles, as well as on the palladium 

content in the case of AuPd bimetallic systems.[45–48] Nanosized monometallic Au 

particles may have suppressed whiteline intensity, and the magnitude of 

suppression has been found to be size dependent.[48] This is a result of slightly 

increased occupancy of the 5d states that nanoparticles exhibit in these cases, 

compared to bulk Au. Upon alloying, a further decrease in the intensity is 

observed,[45] and theoretical calculations support a stronger dependence of the 

whiteline intensity on the Pd content compared to the size factor.[49] Decreased 

whiteline intensity is a result of less 5d holes, therefore Au gains some electron 

density upon alloying with Pd.[45] The origin of this is somewhat unclear, but a 

possible explanation is charge transfer from the 6s and 6p states of Pd to the 5d 
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states of Au.[45] Consequently, the suppressed whiteline intensity of Au(I)-Pd and 

Au(III)-Pd, probably results from a combination of these two effects. 

It is worth noting that for monometallic Au nanoparticles stabilized by 

weakly bound ligands such as PVP and dendrimers, the intensity of the whiteline is 

lower than the bulk, and shows a decreasing trend with decreasing particle size.[50,51] 

However, a decrease in whiteline intensity is not always observed with decreasing 

nanoparticle size. The XANES of thiol-capped Au nanocrystals presents an 

increasing whiteline intensity as the size decreases, indicative of reduced occupancy 

in the d band.[52] This difference stems from the nature of the stabilizing ligands.  

Feature A in the XANES structure of both Au(I)-Pd and Au(III)-Pd appears 

significantly pronounced, it is attributed to Au-Pd alloy character being present.[45] 

Increasing amounts of Pd have been reported to enhance the intensity of this 

feature.[53] Peaks B and C of the Au foil are observed at 11946 eV and 11969 eV.  

In the Au(I)-Pd and Au(III)-Pd XANES, the positions of these peaks appears 

shifted to higher energies by values of 2 and 1 eV respectively. Additionally, their 

intensities appear slightly lower in the Au(I)-Pd sample compared to Au(III)-Pd, 

indicating that Au(I)-Pd contains small particles.  

Figure 5.4 shows the Pd K-edge XANES of Au(I)-Pd and Au(III)-Pd plotted, 

together with Pd foil for reference. Pd K-edge probes the 1s5p transition,[54] 

resulting in an absorption edge at 24350 eV for Pd foil.  
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Figure 5.4: XANES of the Au(I)-Pd (blue line) and Au(III)-Pd (pink line) 

nanoparticles at Pd K-edge. 



Chapter 5 

150 
 

 

The XANES of the Pd foil shows a peak at 24361 eV and two peaks with 

pronounced intensity in the EXAFS region with maxima at 24382 eV (labeled as 

peak A) and 24432 eV (labeled as peak B). The intensity of the first peak for Au(I)-

Pd is similar to that of Pd foil, but it appears less intense for the Au(III)-Pd - possibly 

due to Pd being smaller in this case. Peaks A and B appear broadened with reduced 

intensity, with a small shift towards lower energies for both samples. These 

observations are characteristic of Au-Pd bimetallic systems.[45] 

 

5.5.1.2 EXAFS Analysis 

 

The coordination numbers (CNs) and the bond distances derived from EXAFS 

analysis on bimetallic systems are very informative on the distribution of metals in 

the nanoparticles. The theoretical bulk CN of both Au and Pd is 12. For small 

monometallic Au and Pd nanoparticles, the CN is lower than 12 due to the fact that 

a large fraction of atoms are found on the surface.[49] For bimetallic particles, the 

CNAu-Au number indicates the number of Au-Au neighbours in the particles and the 

CNAu-Pd the average number of Au-Pd neighbours. The general rule that applies is 

that when the ratio of CNAu-Au to CNAu-Pd is the same as the molar ratio of Au and 

Pd used in the synthesis, then a homogeneous alloy is formed. The structural 

parameters derived from multi-edge analysis of the Au(I)-Pd and Au(III)-Pd 

nanoparticles are reproduced in table 5.1. The Au(I)-Pd sample showed that CNPd-

Au > CNAu-Pd  (5.9±0.6 > 2.3±0.4), CNAu-Au = 5.0±1.1 and CNPd-Pd at 2.1 ±0.3. These 

values show that the majority of Pd is surrounded by Au atoms, while having few 

Pd neighbors. The large value of CNAu-Au suggests that Au is mostly associated with 

Au, suggesting Au rich areas within the particles. Figure 5.5 shows the TEM 

micrographs of the Au(I)-Pd nanoparticles and their particle diameter histogram. 

The nanocrystals have spherical shape and average particle size 4.0 nm ± 0.7 nm. 

Visually separate structures, such as core-shells, cannot be observed and the atoms 

of both metals seem to be located within the particles.  
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Table 5.1: Structural parameters derived from multi-edge EXAFS analysis at 

the Pd K-edge and Au L3-edge for Au-Pd alloy nanoparticles.  

 

Sample 

 

 

Edge Path      CN  

 

REXAFS (Å) 

 

σ2 (Å2) 
R 

factor 

Au(I)-

Pd 

 

 

Au L3 
Au-Au 5.0 (±1.1) 2.80 (±0.01) 0.009 (±0.002) 

  

0.006 

Au-Pd 2.3 (±0.4) 2.77 (±0.01) 0.008 (±0.001) 

 Pd-Pd 2.1 (±0.3) 2.76 (±0.01) 0.008 (±0.001) 

Pd K Pd-Au 5.9 (±0.6) 2.77 (±0.01) 0.008 (±0.001) 

 

Au 

(III)-Pd  

 

 

Au L3 
Au-Au 11.6 (±1.0) 2.83(±0.01) 0.008 (±0.004) 

  

0.016 

Au-Pd 1.9 (±0.3) 2.77 (±0.02) 0.005 (±0.001) 

 Pd-Pd 4.3 (±0.1) 2.76 (±0.01) 0.005 (±0.001) 

Pd K Pd-Au 2.0 (±0.3) 2.77 (±0.02)  0.005 (±0.001) 
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Figure 5.5: Top - Low and high resolution TEM micrographs of Au(I)-Pd 

nanoparticles. Bottom- Particle diameter histogram.  

 



Chapter 5 

152 
 

 

Concerning the bond distances in Au-Pd alloys, the RAu-Pd falls within the 

bond length range set from pure Au-Au (2.88 Å)[48] and pure Pd-Pd (2.74 Å),[37] 

while RAu-Au is usually decreased and the RPd-Pd expanded. The RAu-Pd of Au(I)-Pd is 

found at 2.77 Å, a value that is between the Au-Au and Pd-Pd, confirming an alloy 

character being present. The RAu-Au appears contracted (2.1% when compared to 

bulk), whereas the RPd-Pd is slightly expanded, having a value of 2.76 Å.  The k3-

weighted EXAFS and FT of the Au(I)-Pd at both edges is presented in Figure 5.6. 

The FT at the Pd K-edge (Figure 5.6 top) presents a doublet in the region 2-3.5 Å. 

Additionally, this doublet can also be seen at the Au L3-edge in the region 2-4 Å 

(Figure 5.6 bottom).  
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Figure 5.6: Top left to right:  k3-weighted EXAFS and FT of the Au(I)-Pd at the 

Pd K-edge. Bottom left to right: k3-weighted EXAFS and FT of the Au(I)-Pd at 

the Au L3-edge.  

 

The structural parameters of Au(III)-Pd where found to be different 

compared to Au(I)-Pd. For the Au(III)-Pd sample, the CNAu-Au is close to bulk Au 

(11.6 ±1.0) and CNPd-Pd is 4.3±0.1. Since both the Au-Au and Pd-Pd paths appear 

dominant at both edges, this is strong evidence of segregated Au and Pd phases in 
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these particles. The RAu-Au shows 1.05% contraction (RAu-Au = 2.83 Å) and the RPd-

Pd is expanded compared bulk Pd (RPd-Pd = 2.77Å respectively, corresponding to 

1.09 % expansion). CNPd-Au has approximately the same value as CNAu-Pd, around 

2±0.3, and both values are quite low; showing that Au-Pd alloying is unfavoured. 

The RAu-Pd is found expanded at 2.77 Å. The corresponding k3-weighted EXAFS 

and associated FTs can be seen in Figure 5.7. The characteristic doublet which can 

be seen clearly at the Au L3-edge appears less pronounced at the Pd K-edge. 
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Figure 5.7: Top to bottom- Pd K-edge and Au L3-edge k3-weighted EXAFS (left) 

and associated FT (right) of Au(III)-Pd nanoparticles.  

 

 

The XRD pattern of the Au(I)-Pd nanoparticles is presented in Figure 5.8. 

The reference diffraction profiles of pure Au and Pd metals, as well as of the Au:Pd 

1:1 alloy are also shown for comparison.[55–57] The XRD shows four diffraction 

peaks in the range of 30ο< 2θ < 90ο which can be indexed to diffraction from the 

(111), (200), (220) and (311) of the fcc structure of metallic Au and/or Pd. For 
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various AuPd alloy compositions the peaks are shifted towards the metal that is in 

the richest phase.  

In the Au(I)-Pd sample, the (111) peak is clearly shifted from the Au (111) 

peak almost to the (111) peak for Au-Pd alloy. The rest of the diffraction peaks 

appear slightly shifted too, however due to the level of noise and broadening of the 

peaks is it difficult to assign their positions.   

 

 
 

 

Figure 5.8: Normalised XRD patterns of Au(I)-Pd nanoparticles. The diffraction 

profiles of pure Au and Pd metals as well as the Au:Pd alloy are also shown for 

comparison.[55–57] 

 

The HRTEM of Au(III)-Pd nanoparticles (Figure 5.9) shows that these 

particles are spherical with size 7.2 nm ± 0.7, which confirms the observations in 

the XANES. The low resolution TEM shows that apart from the Au spherical 

particles there are networks of Pd and their width is ~3 nm. This indicates that under 

these reaction conditions monometallic Pd is also formed. TEMs also show that 

some spherical particles have a distinct contrast between their central part and their 

near surface areas, showing that some of the Pd is reduced on the surface of the 

particles (indicated by arrows in bottom of Figure 5.9). This may explain the 

amount of Pd-Au character detected in the EXAFS. However, the existence of small 
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alloyed regions cannot be excluded. Overall, the trends of the CNs, the bond 

distances and TEMs indicate that most of the Pd is not found in an alloy form; some 

particles have segregated metallic phases with some fraction of the Pd on the 

surface of the Au particles and monometallic Pd also exists.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Top-Low resolution TEM micrographs of Au(III)-Pd. Bottom- High 

resolution TEM micrograph of Au(III)-Pd and corresponding particle diameter 

histogram.  

 

 

The XRD of the Au(III)-Pd shows that the major crystalline element of the 

composition is Au. The (111) peak is slightly shifted from pure Au, indicating some 

Au-Pd character, but the shift is not as pronounced as in the case of Au(I)-Pd, 

whereas the (200) peak seems to be perfectly aligned with Au standard. Overall, it 

can be evidenced that the Au(III)-Pd has a more Au rich phase.  

In alloys consisting of metals with the same crystal structure and similar 

atomic sizes, Vegard’s law[58] can be applied to find the metal composition through 

the lattice parameter since a linear relationship between the two has been observed 
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at room temperature. The XRD data quality of the nanoparticles investigated herein 

have a certain level of noise that renders the lattice spacing derivation not reliable. 

However, these attempts can be found in Appendix 5. 

 
 

Figure 5.10: Normalised XRD patterns of Au(III)-Pd nanoparticles. The 

diffraction profiles of pure Au and Pd metals as well as the Au:Pd alloy are also 

shown for comparison.[55–57] 

 

UV-Vis of the as-synthesized nanoparticles are shown in Figure 5.11.  

 

 

Figure 5.11: UV-Vis of the Au(I)-Pd (pink line) and Au(III)-Pd (dark yellow line) 

nanoparticles. 
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For Au monometallic particles, an SPR in the region 510-540 nm depending 

on their size is observed, whereas for monometallic Pd a broad absorption 

throughout the entire spectrum is observed in the range of 300-700 nm.[59] The 

Au(I)-Pd sample shows no peaks at the range 200-800 nm, indicating that the 

bimetallic character in the dispersions is strong, and monometallic Au cannot be 

detected. For the Au(III)-Pd, a small broad absorbance can be detected in the area 

of 510 nm, indicating that the particles have an Au rich phase. In both samples, 

however, there are no additional peaks detected in the spectra indicating that 

complete reduction of the metal precursors has taken place. 

 

5.5.2 Speciation Studies Of Metal Precursors 

 

5.5.2.1 [Pd(acac)2] 

 

Having characterized the resultant nanoparticles, we now aim to probe the 

decomposition reactions to attain information with regard to the decomposition 

mechanisms. Prior to performing in situ analysis, study of the precursor within the 

decomposition media is imperative. 

The reactions of [Pd(acac)2] with different amines were a subject of 

investigation in late 70’s and early 80’s, and a summary of possible reaction 

pathways is given in the scheme presented in Figure 5.12. 

 

 
 

 

Figure 5.12: Possible reaction pathways of [Pd(acac)2] and Pt(II) complexes with 

different amines (noted as L). Redrawn from reference.[60] 
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Baba et al.[61] reported the reaction of [Pd(acac)2] (1) with excess amounts 

of pyridine, diethylamine and N-methylbenzylamine to form the species labeled as 

compound 7, as presented in Figure 5.12. Species 7 has a Pd coordination sphere 

consisting of an acetylacetonate (acac)- ligand chelating through two oxygens, one 

nitrogen ligand originating from the amine (RNHx) and a monodentate (acac)- 

ligand in a carbon bonded state (C3-acac)-. The crystal structure of 7 was revealed 

8 years after its synthesis was first reported.[62] The reaction pathway from 

compound 1 to compound 7 was eluded by spectrophotometric studies performed 

by Matsumoto and Kawagushi.[63] Their UV-Vis studies of the reaction of 1 and 

excess diethylamine showed that 7 was formed via the outer-sphere complex 4. 

They also concluded that there are two steps involved for the formation of 4 from 

1. First, the amine attacks the palladium centre (compound 1 to 2) resulting in a 

species with acac becoming monodentate (3).  Attack of a second amine on 3 results 

in the loss of the monodentate (acac)- giving 4. It is worth noting that, before this 

study, previous studies have claimed an equilibrium between 1, 4 and 7, that 

involved 7 as the intermediate compound between 1 and 4.[64,65] Complex 4 had also 

been reported to be difficult to isolate, while reaction of [Pd(acac)2] with secondary 

amines result in its formation.[60] The formation of compound  5 has only been 

reported for the reaction of 1 with excess of primary amines,[66]  and compound 6 

has only been reported for Pt complexes[60].   

In monometallic Pd nanocrystal synthesis, [Pd(acac)2] is often used as a 

precursor and oleylamine is employed either on its own or with co-surfactants/co-

reducing agents.[67–70] The role of oleylamine on the speciation of [Pd(acac)2] in 

nanoparticle synthesis has only been studied by two different groups recently.[71,72] 

In the first instance, the species were not identified, and they are referred as a 

[Pd(acac)x−(oley)y] complex, whereas the monodentate carbon bonded state is not 

taken into consideration.[71] In the second study, the earlier studies that report the 

carbon bonded state of the (acac)- ligand are cited, but the authors could not 

conclude the structure of the species due to the presence of trioctylphosphine 

(TOP).[72] Finally, one computational study has investigated the decomposition of 

[Pd(acac)2] in oleylamine where the carbon bonded state is also overlooked.[73] In 

those studies, the proposed initial species are 3. 
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  Figure 5.13 presents the UV-Vis results of the studies on speciation of 

[Pd(acac)2] in oleylamine at different ratios of [Pd(acac)2] to oleylamine (Pd:Oleyl).  
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Figure 5.13: UV-Vis study of [Pd(acac)2] in different amounts of oleylamine.  

 

 

When [Pd(acac)2] is dissolved in xylene, an absorption peak can be observed 

at 342 nm. The spectrum of Pd:Oleyl 1:2, shows a significant shift of 36 nm towards 

lower wavelengths. Upon increasing the ratio of oleylamine to Pd, this peak 

gradually decreases in intensity and shifts towards higher wavelengths. At the same 

time, when the ratio of Pd:Oleyl reaches 1:6, a second feature appears around 280 

nm. The intensity of this feature is enhanced as the amount of oleylamine increases, 

and at higher ratios (1:12) a peak is clearly visible. Matsumoto and Kawagushi[63] 

synthesised and characterised by UV-Vis compounds 4 and 7 respectively. They 

report that the dichloromethane solution of [Pd(acac)2] (1) shows a peak at ca 330 

nm, while 4 shows a broad peak with a maxima at ca 300 nm. Structure 7 shows 

two peaks at ca 280 nm and ca 315 nm. The spectra of the ratios Pd:Oleyl 1:2 and 

1:12 correlate well with the UV-Vis results presented by Matsumoto and 

Kawagushi,[63] thus, the changes of the spectra suggest the formation of 4 and 7 

respectively. Table 5.2 provides a summary of the peak positions of the structures 

discussed herein.  

Primary amines have only been reported to form compound 5 by displacing 

both (acac)- ligands.[66] In our studies, however, according to the UV-Vis spectra, 

compound 7 is formed with an excess of oleylamine. The difference may arise from 

the fact that oleylamine is a bulky amine and, therefore, cannot displace completely 
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both the (acac)- ligands. Notably, this is the first report of compound 7 being formed 

by a primary amine. This study also shows that the formation of different Pd species 

is dependent on the ratio of oleylamine used.  

 

Table 5.2: Summary of UV-Vis peak positions and corresponding structures. 

Study 
Structur

e 
Solvent 

Peak 

Positions 

(nm) 
[63] [Pd(acac)2] 1 Dichlomethane ca 330 

[63] [Pd(acac)(RNH2)2][(acac)] 4 Dichlomethane ca 300 

[63] Pd(C3-acac)(acac)(RNH2) 7 Dichlomethane ca 280, 315 

[Pd(acac)2] 1 [Pd(acac)2] in xylene 342 

 4 [Pd(acac)2]:Oleyl 1:2 306 

 4-7 [Pd(acac)2]:Oleyl 1:4 311 

 4-7 [Pd(acac)2]:Oleyl 1:6 283, 318 

 7 [Pd(acac)2]:Oleyl 1:10 283, 328 

 7 [Pd(acac)2]:Oleyl 1:12 283, 333 

 7 [Pd(acac)2]:Oleyl 1:20 271, 318 

[Pd(acac)2] and Au(I) (0.75:1) 4 [Pd(acac)2]:Oleyl 1:2 305 

 4-7 [Pd(acac)2]:Oleyl 1:4 309 

 7 [Pd(acac)2]:Oleyl 1:6 271, 311 

 7 [Pd(acac)2]:Oleyl 1:10 271, 317 

 7 [Pd(acac)2]:Oleyl 1:12 271, 318 

 7 [Pd(acac)2]:Oleyl 1:20 271, 318 

[Pd(acac)2] and Au(III) (1:1) 4 [Pd(acac)2]:Oleyl 1:2 300 

 4-7 [Pd(acac)2]:Oleyl 1:4 310 

 7 [Pd(acac)2]:Oleyl 1:6 270, 314 

 7 [Pd(acac)2]:Oleyl 1:10 270, 320 

 7 [Pd(acac)2]:Oleyl 1:12 270, 320 

 7 [Pd(acac)2]:Oleyl 1:20 270, 320 
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              It is worth noting, that while a few studies report the Pd nanoparticle 

syntheses at Pd:Oleyl ≤ 1:4, [70,71,73] in most of the syntheses oleylamine is used in 

excess[67,69–71] and Pd:Oleyl ratios as high as 1:530 are used,[72] suggesting that the 

prevalent species are 7, in these reactions.   

              The local structure of [Pd(acac)2] in three different environments was also 

investigated by XAS in order to obtain information about the coordination sphere 

of Pd and further clarify the Pd species in solution. The XANES of the Pd precursor 

was measured when pelletised, when dissolved in dodecane and when in oleylamine 

(Figure 5.14). Due to the structural dependence of [Pd(acac)2] on the Pd:Oleyl 

molar ratio, the XANES of [Pd(acac)2] in oleylamine was acquired at two ratios - 

Pd:Oleyl 1:2 and Pd:Oleyl 1:30 - in order to obtain structures 4 and 7, and avoid 

mixed species being present. 
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Figure 5.14: XANES at Pd K-edge of pelletised [Pd(acac)2] (blue line), when 

dissolved in dodecane (black line) , and at ratios Pd:Oleyl 1:2 and Pd:Oleyl 

1:30(orange and red lines). 

 

               The XANES of pelletised [Pd(acac)2] (blue line) shows a straight edge 

jump, followed by a peak (noted as peak A) and a triple-featured region including 

peaks B, C and E. Peak A is found at 24367 eV, peak B at 24377 eV, and peaks C 

and E at 24407 eV and 24435 eV respectively. The XANES of [Pd(acac)2] in 

dodecane (black line) is identical to pelletised [Pd(acac)2], showing that upon 

dissolution of the precursor in a non-coordinating solvent, there are no structural 
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changes taking place. Upon dissolution of the precursor in oleylamine, changes can 

be observed. The XANES of the Pd:Oleyl 1:2 (orange line) has an edge at the same 

energy as pelletised [Pd(acac)2], indicating that Pd has retained its 2+ oxidation 

state. Peak A appears broadened, whereas peak B is shifted 2 eV towards lower 

energies. At the same time, their intensity appears reduced. Peaks C and E are no 

longer apparent and a new feature (noted as D) has emerged. The XANES of 

Pd:Oleyl 1:30 appears similar to that of Pd:Oleyl 1:2, with respect to the reduced 

intensities of A and B, the disappearance of peaks C and E and the appearance of 

D. However, peak A at 24365 eV appears pronounced and peak B is 1 eV shifted 

from its original position. It is evident from the XANES that the oxidation state of 

Pd remains 2+ in all cases, whereas changes in its ligand environment occur upon 

dissolution to oleylamine.    

                The EXAFS of the pelletised [Pd(acac)2] is modeled accurately by four 

Pd-O bond distances (CN = 4.0 (±0.1)) of 1.97 (±0.01) Å, as shown in table 5.3. 

Similarly, when the precursor is dissolved in dodecane, four Pd-O bond distances 

at 1.97 (±0.01) Å are found. These values correlate well with the crystallographic 

structure of [Pd(acac)2] (1) where the Pd-O distances are 1.98 Å.[74] In oleylamine, 

the structure of Pd is modified. For Pd:Oleyl 1:2 two Pd-O and two Pd-N distances 

are found at 2.02 (±0.01) Å and 2.06 (±0.01) Å with CNPd-O and CNPd-N 2.0 (±0.4) 

and 1.9 (±0.5) respectively. For Pd:Oleyl 1:30, the data is fitted satisfactorily to one 

Pd-O scattering path with CN 1.9 (±0.2), a Pd-N path with CN 1.0 (±0.3) and a Pd-

C path with CN 1.0 (±0.3). The bond distances of these paths are 2.01(±0.01) Å, 

2.07(±0.01) Å, 2.09(±0.01) Å respectively, and they are in very good agreement 

with values reported in literature for 7, considering uncertainty [Pd-O1: 2.00 Å, Pd-

O2: 2.06 Å, Pd-N: 2.06 Å, Pd-C: 2.08 Å].[62] Notably, the RPd-O appears slightly 

increased when the precursor is dissolved in oleylamine. The k3-weighted EXAFS 

and corresponding FTs can be seen in Figure 5.15. 
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Table 5.3: Structural parameters derived from EXAFS analysis at the Pd K-

edge of [Pd(acac)2] when pelletised and when dissolved in dodecane and 

oleylamine 

 

[Pd(acac)2] in pellet form, dissolved in dodecane  

and dissolved in oleylamine at Pd K-edge 

Sample Path CN  REXAFS (Å) σ2 (Å2) 
                 R       

                factor 

[Pd(acac)2]

pelletized 
Pd-O  4.0 (±0.1) 1.97 (±0.01) 0.002(±0.001) 0.026 

[Pd(acac)2] 

in 

dodecane 

Pd-O 3.9 (±0.1) 1.97 (±0.01) 0.002(±0.001) 0.028 

[Pd(acac)2] 

in 

oleylamine 

1:2 ratio 

Pd-O 2.0 (±0.4) 2.02 (±0.01) 0.002 (±0.001) 

0.012 
Pd-N 1.9 (±0.5) 2.06 (±0.01) 0.002 (±0.001) 

[Pd(acac)2] 

in 

oleylamine 

1:30 

Pd-O 1.9 (±0.2)   2.01 (±0.01) 0.002 (±0.001) 

0.024 Pd-N 1.0 (±0.3)   2.07 (±0.01) 0.002 (±0.001) 

Pd-C 1.0 (±0.3)   2.09 (±0.01) 0.002 (±0.001) 
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Figure 5.15: Top to bottom: k3-weighted EXAFS and FT of [Pd(acac)2] pellet 

(blue line), in dodecane (green line), Pd:Oleyl 1:2 (orange line) and Pd:Oleyl 

1:30 (red line). 
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5.5.2.2 [Pd(acac)2] And Au Precursors 

 

Similar studies were performed in the presence of the Au(I) precursor to identify 

potential effects on the speciation of Pd. Figure 5.16 shows the ratio study in the 

presence of Au(ethynyl-1-cyclohexanol). The ratio of Pd:Au metals was kept 0.75:1 

replicating the ratio employed in the synthesis of bimetallic nanoparticles, and the 

ratio of oleylamine to metals was varied. Since the Pd:Au molar ratio is constant, 

for increasing amounts of oleylamine only the Pd:Oleyl ratio is labelled. It can be 

observed that the peak for the Pd:Ol 1:2 is found at 305 nm, matching the 1:2 for 

Figure 5.13, which is 37 nm shifted compared to the pure [Pd(acac)2]. Upon 

increasing the ratio of oleylamine to the metals, a decrease and a gradual shift 

towards higher wavelengths is observed in the main absorbance peak, and the 

appearance of the second peak at 271 nm is apparent at Pd:Au 1:6. Overall, these 

are the same trends as observed in the absence of Au salt. The presence of species 

7 can again suggest that their formation is favored with increasing amounts of 

oleylamine.  
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Figure 5.16: UV-Vis study of [Pd(acac)2] and Au(ethynyl-1-cyclohexanol) at 

different ratios of oleylamine. 

 

              Under the selected molar ratios used in the syntheses described in Section  

5.4.1, 7 is considered to be the prevalent structure in the solution containing both 

[Pd(acac)2] and Au(I).  A difference is observed between the spectra of Pd:Oleyl 

1:12 in the absence of Au(I) precursor, where the peaks are found at 283nm and 
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331 nm, presenting a shift of 12 and 13 nm respectively. Increased ratio of Pd:Oleyl 

from 1:12 to 1:20 seems to have no effect on the position of these peaks. The spectra 

of Pd:Oleyl 1:20 in the absence of the Au(I) is identical to that of Pd:Oleyl ≈ 1:20 

in the presence of Au(I), indicating that the Au salt has no apparent impact on the 

speciation of [Pd(acac)2] at this ratio at room temperature.  

Similar UV-Vis studies were also performed in the presence of [AuCl4]
- 

precursor, as shown in Figure 5.17. The [AuCl4]
- precursor is phase transferred from 

the aqueous into the organic phase. This is achieved by mixing the aqueous [AuCl4]
- 

solution with the oleyl/xyl mixture, stirring for 2 hours and separating the organic 

phase. Hence, the stock solution used for this UV-Vis study is the organic layer 

from the phase transfer process. It is reported in the literature that a complex is 

formed between [AuCl4]
- and oleylamine, and it will be noted as ([AuCl4]

- − Oleyl) 

herein. The structure of this complex is discussed later in this chapter.  The ratio of 

Pd:Au was kept 1:1, as used in the decomposition reaction for the synthesis of 

bimetallic nanoparticles. As in the case of Au(I), similar trends are observed in the 

peak shifts and peak intensities with an increasing ratio of oleylamine when 

([AuCl4]
- − Oleyl) is present. The maxima of the peaks are found at similar places 

as in the case of the Au(I)-[Pd(acac)2] system. 7 again seems to be the prevalent 

structure in solution. As a result, the speciation of palladium seems to be unaffected 

by the presence of ([AuCl4]
- − Oleyl) at room temperature.  
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Figure 5.17: UV-Vis study of [Pd(acac)2] and ([AuCl4]- − Oleyl) at different ratios 

of oleylamine. 
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5.5.2.3 Au Precursors 

 

               The UV-Vis spectra of the speciation studies of the Au precursors are 

shown in Figure 5.18. The UV-Vis spectrum of [AuCl4]
- in H2O shows an 

absorbance peak at 310 nm (Figure 5.18 top left), while the UV-Vis of the orange 

complex that forms upon mixing [AuCl4]
-
 and oleyl/xyl shows a peak at 324 nm 

and a several absorbance features extending up to 384 nm (Figure 5.18 bottom left). 

After 2 hours stirring, a peak at 340 nm can be observed with two other features at 

395 nm and 479 nm (Figure 5.18 bottom right). The origin of these features is 

unknown. The spectrum of the Au(I) precursor in dodecane shows an absorbance 

peak at 261 nm (Figure 5.18 top right). 
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Figure 5.18: UV-Vis of Au precursors: Top left to right: [AuCl4]-
 in H2O and 

Au(ethynyl-1-cyclohexanol) in dodecane. Bottom left to right: [AuCl4]-
 upon 

mixing in oleyl/xyl and after 2h stirring.  

 

                Few studies have investigated the role of oleylamine and its effect on the 

structure of [AuCl4]
- in the synthesis of monometallic Au nanoparticles.[75–77] Upon 
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mixing oleylamine and an aqueous solution of [AuCl4]
-, initially the colour of the 

solution turns from yellow to orange, indicating the formation of an [AuCl4]
- − 

Oleyl complex.[75] Vigorous stirring at room temperature for 2 hours results in a 

colourless organic phase, indicating partial reduction from Au3+ to Au+. The 

structure of these species has not been elucidated to our knowledge, and they have 

been referred to as RNH2-Au-Cl complex[77] or an Au(I) −amine complex.[78]  

                To further understand the speciation of the Au(I) and Au(III) precursors, 

the samples were also probed with XAS at the Au L3-edge and the results of these 

studies are shown in Figure 5.19.  
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Figure 5.19: Top: XANES at Au L3-edge of [AuCl4]-
 precursor when dissolved in 

H2O (black line) and when in oleyl/xyl upon mixing (orange line) and after 2h of 

stirring (red line). Bottom: XANES of Au(I) precursor when pelletised (orange 

line) and when dissolved in oleylamine (red line). Au foil is plotted for reference. 
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           The XANES of [AuCl4]
-
 when dissolved in water (black line) shows an 

absorption edge at 11917 eV, followed by a sharp whiteline at 11920 eV, indicative 

of the 3+ oxidation state. The whiteline is followed by a feature at 11932 eV labelled 

as A. Upon mixing the aqueous [AuCl4]
-
 solution with oleyl/xyl, the whiteline 

intensity decreases and the absence of A is noted (yellow line). The edge does not 

present any shift, indicating that Au retains its 3+ oxidation state. The differences 

in the XANES of [AuCl4]
-
 when dissolved in water and when in oleylamine can be 

attributed to the different ligand environment around the Au atom. The XANES of 

the reaction mixture upon stirring for two hours at room temperature (red line) 

shows an absorption edge at 11918 eV, followed by a whiteline with substantially 

reduced intensity (located at 11921.8 eV) and absence of peak A. These results 

indicate that Au has partially reduced from 3+ to 1+ oxidation state. There is no 

metallic Au detected at this point, as the comparison of the XANES of this sample 

with the Au foil (blue line) shows that the edge of Au0 at higher energy. The 

absorption edge of Au foil appears at 11919 eV and also presents a characteristic 

peak labelled B at 11946 eV.  Pelletised Au(I) shows an absorption edge at 11918 

eV and a whiteline peak of moderate intensity is observed at 11923 eV, whereas no 

prominent fine structure is observed. The XANES of Au(I) in oleylamine is similar 

to the one of the pellet, presenting only a slight increase around 11940 eV. This 

comparison shows that the oxidation state of the precursor has remained unaltered 

upon dissolution in oleylamine, and that oleylamine has not caused any drastic 

changes on the Au center, as observed in the case of [AuCl4]
-
 precursor.  In this case 

too, metallic Au was not observed. 

           The EXAFS analysis results of these studies are illustrated in table 5.4. The 

EXAFS analysis of [AuCl4]
-
 
 in H2O showed four Au–Cl bond distances at 2.28 

(±0.005) Å that are in good agreement with square planar Au in 3+ oxidation 

state.[79]  

 

 

 

 

 



Chapter 5 

169 
 

 

Table 5.4: EXAFS structural parameters of [AuCl4]-
 in H2O, upon mixing with 

oleylamine and after 2 hours of stirring. 

Sample Path CN  REXAFS (Å) σ2 (Å2) 
                 R       

                factor 

[AuCl4]
-
 in 

water 
  Au – Cl  4.0 (±0.1) 2.28 (±0.01) 0.002 (±0.001) 0.001 

[AuCl4]
-
 in 

oleylamine 

upon 

mixing 

Au – Cl 2.0 (±0.4) 2.22 (±0.01)   0.004 (±0.001) 

0.018 
Au – N 1.9 (±0.5) 1.97 (±0.01) 0.004 (±0.001) 

[AuCl4]
-
 in 

oleylamine 

after 

2hours 

stirring 

Au – N 1.9 (±0.2) 2.04 (±0.01)  0.002 (±0.001) 

0.017 
Au – Au 1.0 (±0.3) 3.13 (±0.02) 0.009 (±0.002) 

 

 

                 The EXAFS of the orange solution that results from the mixing of the 

aqueous [AuCl4]
-
 solution with oleylamine showed an Au–N path with coordination 

of 3.1 (±0.6) at 1.97 (±0.01) Å and one Au – Cl path at 2.22 (±0.01) Å. This result 

shows that oleylamine is replacing three out of four Cl that occupy the first shell 

ligand sphere of Au. After 2 hours of stirring, the EXAFS of the transparent solution 

shows an Au – N bond distance at 2.04 Å with CNAu-N=2.0, and a distance between 

Au+−Au+ centers of aurophillic character at 3.13 Å, with CNAu-Au=2.0. The results 

from this study show that a reduction of Au3+ to Au+ has indeed occurred after 2 

hours of stirring. Notably, the ligand sphere around Au+ was found to be different 

from the one proposed by Kura.[77] In their studies and references therein, it is 

reported that the colorless intermediate has a structure ClAuN(R)H2,
 indicating that 

one [Cl]- and one oleylamine ligand are found on the Au+, however no direct 

structural information is provided. In our study, EXAFS analysis shows that there 

are no [Cl]- ligands on the first coordination sphere of the colourless Au+ species.  

The k3-weighted EXAFS and corresponding FTs are presented in Figure 5.20. 

                   Unfortunately, structural parameters of Au(ethynyl-1-cyclohexanol) 

precursor could not be derived, possibly due to phase cancellation and/or level of 

noise in the data.  The k-space data of Au(I) can be seen in Figure A5.2 in Appendix 

5.  
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Figure 5.20: k3-weighted EXAFS and corresponding FTs of speciation studies on 

[AuCl4]- . 

 

5.5.3 In situ XAS Study On The Synthesis Of Au-Pd Bimetallic Nanoparticles 

By Thermally Induced Decomposition Of [Pd(acac)2] And Au(ethynyl-1-

cyclohexanol) 

 

5.5.3.1 XANES Analysis 

 

To monitor the decomposition of the precursors, in situ XAS measurements were 

performed. An aliquot of the precursor solution was prepared and transferred to the 

cell. The temperature was raised to 130 oC and the reaction was monitored at the 

Pd K and Au L3-edges. The temperature was only raised to 130 oC as this was the 

point at which decomposition was complete. The changes in the structure and 

oxidation states of the metal precursors were followed by changes in the intensity 

of the whiteline, by the position of the absorption edge and by the 

appearance/disappearance of peaks in the fine structure region of the spectrum.  

Firstly, the Au(I)-Pd system was assessed. Figure 5.21 (top) shows μ(Ε) as 

a function of temperature at the Pd K-edge.  Initially, two peaks are apparent after 

the absorption edge, labeled A and B, located at 24366 eV and 24376 eV 

respectively. This XANES corresponds to species 7, as illustrated previously. The 

shape of peak B slowly changes upon increasing temperature. At 80-90 oC, peak B 

is significantly broadened and there is a small increase observed in the region next 

to peak B, which corresponds to metallic Pd. At 100 oC peak B is no longer visible, 

indicating consumption of the precursor species, and a second peak (labelled as 
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peak C) becomes apparent at 24387 eV. Peak C correlates well to metallic Pd. From 

100 oC onwards, the appearance of the XANES resembles that of Pd foil, indicating 

that the precursor species have decomposed to nanoparticles. From 130 oC onwards 

there are no further differences observed in the XANES. Figure 5.21 (bottom) 

shows the in situ XANES at the Au L3-edge of the formation of Au(I)-Pd 

nanoparticles. At room temperature, the whiteline appears pronounced at 11924 eV.  
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Figure 5.21:  Top: In situ XANES at Pd K-edge of the formation of Au(I)-Pd 

alloy nanoparticles. Bottom: The same reaction performed at Au L3-edge.  

 

 

Upon heating up to 60 oC, not many changes are observed in the whiteline 

intensity. At 70 oC, there is a small reduction, indicating that Au(I) has started to 
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decompose. At 80 oC, the XANES has changed completely. The whiteline intensity 

appears suppressed and three peaks have emerged (labeled as peaks B, C and D). 

These peaks correspond to the formation of metallic Au, and all the XANES spectra 

onwards are consistent with the metallic character. Increasing the temperature up to 

130 oC didn’t change the appearance of the XANES. The metallic Au has a similar 

appearance to the XANES of the ex situ study. From the changes in the XANES it 

appears that a sudden reduction of the Au(I) to Au0 takes place. 

The profiles of the edge shift positions are shown in Figure 5.22 as a 

function of temperature. The changes in the oxidation state are depicted by the shift 

of the absorption edge.  The position of the absorption edge at Pd K-edge presents 

an overall shift of 3 eV towards lower energies, which is indicative of reducing 

oxidation state. In this case, this shift corresponds to reduction of Pd2+ to Pd0. At 

the Au L3-edge, a shift of 1 eV is observed between the position of the absorption 

edge at the start of the reaction and the final scan at room temperature. Notably, the 

reduction of the two metals based on the profile of the edge-position vs. temperature 

graph happens at a similar temperature (~70-80 oC). 
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Figure 5.22: Energy shift of edge position at Pd K-edge and Au L3-edge as a 

function of temperature. 

 

LCF was performed on the XANES data at the Pd K-edge and Au L3-edge 

to probe the phase fraction of the species throughout the reaction (Figure 5.23 left 
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to right). The standards used for monitoring the reduction of the Pd precursor and 

the evolution of the metallic Pd were [Pd(acac)2] in oleylamine and Pd foil. The 

LCF was performed at a region from 20 eV before to 30 eV after the absorption 

edge. According to LCF at the Pd K-edge, the phase fraction of [Pd(acac)2] in 

oleylamine presents a plateau from room temperature up to 70 oC at a percentage ~ 

90%, indicating that there is no reduction taking place in this temperature range. 

Similarly, the phase fraction of the metallic Pd remains close to 10% during this 

time. Pronounced conversion of the precursor to Pd0 takes place between 80 -90 oC, 

which supports the broadening of the whiteline peak observed in the XANES. The 

phase fraction of the [Pd(acac)2] decreases to 60% and 55% at 80 oC and 90 oC 

respectively, whereas the metallic increases to 40% and 45% at these temperatures. 

Upon reaching 110 oC, the precursor species have completely converted to metallic 

and the data onwards are consistent with Pd0, whereas the Pd precursor has been 

consumed. Even though LFC does not provide information on the local structure of 

the Pd, it gives valuable information about the phase conversion profiles of the 

species present.   

The LCF at the Au L3-edge (Figure 5.23 right) shows the decomposition 

profile of Au(ethynyl-1-cyclohexanol) in oleylamine and the evolution of Au0 

character as a function of temperature. The Au(I) remains at ~100% phase fraction 

up to 60 oC and no Au0 was observed during this time. At 70 oC, ~20% of the Au 

precursor has converted to metallic. Between 70-90 oC, a rapid conversion is 

observed and almost 80% of the Au(I) has become metallic at that point. Upon 

increasing the temperature, it seems that Au(I) species get further reduced, and from 

90 oC onwards there is a gradual decrease in the Au(I) phase fraction. A closer 

comparison to the reduction temperatures of the two metals shows that the Au(I) 

precursor decomposes at a slightly lower temperature than the Pd precursor (70 oC 

vs 80 oC); however these temperatures are quite close, thus favouring an alloy 

character. 
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Figure 5.23: Left to right: LCF graphs at the Pd K-edge and Au L3-edge of the in 

situ formation of Au(I)-Pd nanoparticles. 
 

5.5.3.2 EXAFS Analysis 

 

The structural parameters derived from the in situ reactions at the Pd K-edge 

are shown in table 5.5.  

 

Table 5.5: Structural parameters derived from EXAFS analysis at the Pd K-

edge of the in situ formation of Au(I)-Pd nanoparticles.  

Thermally induced decomposition of [Pd(acac)2] / Au(I) in 

oleylamine/xylene  at Pd K-edge 

Temperature 

 oC 
Path CN  REXAFS (Å) σ2 (Å2) 

                 

R       

   factor 

rt 

 

Pd-O 1.9 (±0.1) 2.01 (±0.01) 0.002 (±0.001) 

0.014 Pd-N 1.0 (±0.2) 2.06 (±0.01) 0.002 (±0.001) 

Pd-C 1.0 (±0.2) 2.08 (±0.01) 0.002 (±0.001) 

40 oC 

 

Pd-O 2.0 (±0.2) 2.01 (±0.01) 0.002 (±0.001) 

0.021 Pd-N 1.0 (±0.3) 2.06 (±0.01) 0.002 (±0.001) 

Pd-C 1.1 (±0.3) 2.09 (±0.01) 0.002 (±0.001) 

110 oC 

 

Pd-Pd 1.4 (±0.4) 2.72 (±0.01) 0.005 (±0.003) 
0.006 

Pd-Au 5.8 (±1.5) 2.76 (±0.01) 0.009 (±0.003) 

130 oC 

 

Pd-Pd 3.5 (±1.4) 2.76 (±0.04) 0.013 (±0.002) 
0.025 

Pd-Au 7.4 (±2.2) 2.75 (±0.02) 0.013 (±0.004) 

rt 

 after cooling 

Pd-Pd 2.9 (±0.6) 2.75 (±0.02) 0.010 (±0.003) 
0.008 

Pd-Au 6.7 (±1.2) 2.76 (±0.01) 0.010 (±0.003) 
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The room temperature and 40 oC scans permit accurate derivation of 

EXAFS parameters at those temperatures, but upon heating the data quality is poor 

(Appendix 5, Figure A5.1) and didn’t allow for EXAFS analysis of the intermediate 

scans. However, the scans at 110 oC, 130 oC and room temperature upon cooling 

are of good quality; only the scans with good quality will be discussed herein. Even 

though the decomposition of 7 could not be monitored, the progression of the CNs 

of the paths with metallic character at the end of the decomposition process could 

be obtained. Initially, at room temperature and at 40 oC, the structure of the species 

is 7. The CNs and bond distances are in good agreement with literature values.[62] 

Upon increasing the temperature, decomposition of the precursors takes place 

leading to particle formation. By 110 oC, 7 has decomposed and two scattering paths 

for Pd-Pd and Pd-Au with CNs of 1.4 (±0.4) and 5.8 (±1.5) can be observed. These 

CNs increase as the reaction proceeds, indicating particle growth. After cooling, the 

CN of Pd-Pd is 2.9 (±0.6) and RPd-Pd is 2.75 (±0.02) Å and CN Pd-Au is 6.7 (±1.2) 

at RPd-Au is at 2.76 (±0.01) Å. Notably, the CN numbers match well with the values 

of the ex situ studies presented in table 5.1 (Pd-Au is 5.9 (±0.6) at RPd-Au is at 2.10 

(±0.3) Å). The plots of the experimental and calculated EXAFS spectra can be 

found in figure 5.24. 
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Figure 5.24: Pd K-edge k3-weighted EXAFS and FTs of [Pd(acac)2]/Au(I) at rt, 

40 oC, 110 oC, 130 oC and rt after cooling. 
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The structural parameters derived from EXAFS analysis at the Au L3-edge 

are shown in table 5.6. EXAFS analysis could be performed from 90oC to room 

temperature after cooling. At 90 oC onwards, only the metallic paths Au-Au and 

Au-Pd are detected, showing that the precursor has decomposed by that 

temperature.   

The Au-Au and Au-Pd CNs at 90 oC are found to be 6.9 (±0.8) and 1.6 

(±1.2) respectively, with RAu-Au 2.79 (±0.003) Å and RAu-Pd 2.68 (±0.02) Å. Such 

contraction on the RAu-Au is indicative of bimetallic character being present. The 

RAu-Pd value appears significantly contracted, but taking into consideration the small 

CN it shows that very small clusters of Au-Pd are formed at this stage. The CN of 

Au-Au has a larger value, showing that Au rich clusters are formed first due to the 

decomposition of Au precursor taking place at lower temperature, as was evidenced 

in the LCF. Then formation of Au-Pd clusters follows. The CNs of both paths 

increase with increasing temperature, to reach final values of 7.9 (±2.1) and 3.2 

(±1.5) in the final particles, with RAu-Au 2.81 (±0.01) Å and RAu-Pd 2.77 (±0.03) Å. 

 

Table 5.6: Structural parameters derived from EXAFS analysis at the Au L3-

edge of the in situ formation of Au(I)-Pd nanoparticles. 

Thermally induced decomposition of [Pd(acac)2] / Au(I) in 

oleylamine/xylene  at Au L3-edge 

Temperature 

 oC 
Path CN  REXAFS (Å) σ2 (Å2) 

                 

R       

   factor 

 

90 oC 

 

Au-Au 6.6 (±0.9)   2.79 (±0.01) 0.009 (±0.008) 

0.003 
Au-Pd 1.0 (±0.8) 2.68 (±0.02) 0.016 (±0.011) 

100 oC 

 

Au-Au 8.5 (±3.2) 2.83 (±0.01) 0.011 (±0.005) 
0.034 

Au-Pd 1.1 (±0.8) 2.79 (±0.02) 0.006 (±0.005) 

110 oC 
Au-Au 8.5 (±3.2) 2.82 (±0.01) 0.011 (±0.005) 

0.044 
Au-Pd 1.1 (±1.0) 2.80 (±0.02) 0.006 (±0.005) 

120 oC 

 

Au-Au 4.0 (±1.3) 2.82 (±0.01) 0.007 (±0.002) 
0.019 

Au-Pd 6.7 (±4.2) 2.80 (±0.02) 0.025 (±0.011) 

130 oC 

 

Au-Au 5.2 (±1.0) 2.80 (±0.01) 0.007 (±0.002) 
0.008 

Au-Pd 2.5 (±0.9) 2.75 (±0.03) 0.012 (±0.005) 

rt  

 after cooling 
Au-Au 7.9 (±2.1) 2.82 (±0.01) 0.009 (±0.003) 0.015 

 Au-Pd 3.2 (±1.5) 2.77 (±0.03) 0.010 (±0.004)  
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The plots of the experimental and calculated EXAFS spectra can be found 

in Figure 5.25. 
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Figure 5.25: Au L3-edge k3-weighted EXAFS and FTs of [Pd(acac)2]/Au(I) at 90 
oC, 100 oC, 110 oC, 120 oC, 130 oC and rt after cooling. 

 

5.5.4 In situ XAS Study on the Synthesis of Au-Pd Bimetallic Nanoparticles by 

Thermally Induced Decomposition of [Pd(acac)2] and [AuCl4]- 

 

5.5.4.1 XANES Analysis 

 

For the in situ XAS measurements on the thermally induced decomposition of 

[Pd(acac)2] and [AuCl4]
-, an aliquot of the starting solution was prepared in the 

beamline laboratory and was transferred to the cell. The temperature was raised to 

165 oC, and the reaction was monitored at the Pd K-edge during this time. The 

temperature was only raised to 165 oC as this was the point which decomposition 

was complete. Due to time constraints during the beamtime, the reaction was 

monitored only at the Pd K-edge. 

Figure 5.26 depicts the differences occurring in the XANES at the Pd K-

edge upon heating the starting solution up to 165 oC. At room temperature, the 

XANES shows the characteristic feature labelled A and the pronounced peak 

labelled B, both characteristic of species 7, while a smooth oscillatory structure 
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extends beyond those. Upon heating, the shape of peaks A and B remain unaltered 

in the temperature range from room temperature to 120 oC. The first change is 

observed at 140 oC where the shape of peak B is broadened. No other changes are 

observed in the EXAFS part of the XANES spectrum at this point. When the 

temperature reaches 150-165 oC, peak B has disappeared and two new peaks C and 

D appear at 24395 eV and 24432 eV characteristic of metallic Pd.  
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Figure 5.26: In situ XANES at Pd-K edge of the formation of Au-Pd alloy 

nanoparticles using [AuCl4]-
 /[Pd(acac)2]. 

  

 The decomposition of the Pd precursor in this reaction presents a sudden 

transformation to metallic at a higher temperature compared to the one observed for 

the Au(I)-[Pd(acac)2] reaction (120 oC versus 80 oC). It can be observed that even 

though the Au salt does not alter the speciation of the Pd at room temperature, 

different Au salts have an effect on the decomposition temperature of species 7, 

suggesting that the Au precursor is non-innocent and affects the decomposition 

process. Figure 5.27 shows the edge position change during the reaction, which 

presents a plateau from room temperature up to approximately 100 oC. Then a 

decrease follows, which is even more pronounced in the range 140-165 oC. 
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Figure 5.27: Energy shift of edge position of the Pd K-edge as a function of 

temperature. 

 

 LCF analysis was performed from -30 eV before to +50 eV after the edge, 

using [Pd(acac)2] in oleylamine and Pd foil as reference compounds (figure 5. 28).  
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Figure 5.28: LCF at the Pd K-edge of the in situ formation of Au-Pd bimetallic 

nanoparticles using [AuCl4]-
 /[Pd(acac)2]. 

 

It is observed that the Pd precursor species remain at a phase fraction close to 90% 

in the temperature range from room temperature to 120 oC, a sudden drop is 

observed at 140 oC. At 140 oC, the phase fraction has decreased to 60%, showing 

that almost half of the species has become metallic. Ten degrees after, the phase 

fraction of metallic Pd has dramatically increased close to 80 %, reaching a final 
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value of 90% at 165 oC. The profile shows that large fraction of the species becomes 

metallic very fast, and the rest of the reduction is taking place between 140-165 oC. 

 

5.5.4.2 EXAFS Analysis 

 

The results from the EXAFS analysis can be seen in table 5.7, where the 

intermediate scans have been omitted for clarity. A full table of the structural 

parameters can be found in Appendix 5 (table A5.2).   

 

Table 5.7: Structural parameters derived from EXAFS analysis at the Pd K-

edge of the in situ formation of Au(III)-Pd nanoparticles.  

Thermally induced decomposition of [Pd(acac)2] / [AuCl4]-
 in 

oleylamine/xylene at Pd K-edge 

Temperature 

 oC 
Path CN  REXAFS (Å) σ2 (Å2) 

                 

R       

   factor 

30 oC 

 

Pd-O 1.9 (±0.2) 2.03 (±0.01) 0.002 (±0.001) 

0.020 Pd-N 0.9 (±0.2) 2.08 (±0.01) 0.002 (±0.001) 

Pd-C 0.9 (±0.3) 2.10 (±0.01) 0.002 (±0.001) 

110 oC 

 

Pd-O 2.0 (±0.2) 2.05 (±0.01) 0.003 (±0.001) 

0.029 Pd-N 1.0 (±0.3) 2.10 (±0.01) 0.003 (±0.001) 

Pd-C 1.1 (±0.4) 2.08 (±0.01) 0.002 (±0.001) 

120 oC 

 

Pd-O 1.9 (±0.1) 2.05 (±0.01) 0.004 (±0.001) 

0.012 

 

Pd-N 1.0 (±0.2) 2.10 (±0.01) 0.004 (±0.001) 

Pd-C 1.0 (±0.3) 2.13 (±0.01) 0.004 (±0.001) 

Pd-Au 1.0 (±0.3) 2.81 (±0.02) 0.004 (±0.001) 

140 oC 

 

 

Pd-O 2.0 (±0.2) 2.10 (±0.01) 0.007 (±0.001) 

0.016 
Pd-N 1.0 (±0.2) 2.16 (±0.01) 0.007 (±0.001) 

Pd-C 1.1 (±0.3) 2.18 (±0.01) 0.007 (±0.001) 

Pd-Au 1.0 (±0.1) 2.76 (±0.02) 0.003 (±0.002) 

150 oC 

 

Pd-Pd 4.8 (±1.2) 2.75 (±0.01) 0.008 (±0.002) 
0.020 

Pd-Au 1.2 (±1.0) 2.80 (±0.06) 0.008 (±0.002) 

165 oC 

 

Pd-Pd 5.3 (±1.0) 2.76 (±0.01) 0.007 (±0.001) 
0.020 

Pd-Au 2.7 (±0.9) 2.86 (±0.02) 0.007 (±0.001) 

 

From 30 oC up to 110 oC, the data can be fit to structure 7. Due to the 

limitations of XAS to distinguish accurately between light elements, subtle changes 
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to the ligand environment of Pd could not be detected reliably during the heating 

stage.  Irrespective of the nature of the ligands in the first coordination sphere of 

Pd, the oxidation state of palladium remains at 2+ until reduction takes place. 

Interestingly, at 120 oC and 140 oC the first metallic path can be observed. It shows 

that Au-Pd alloy clusters form first, compared to Pd-Pd. Notably, the Au-Pd 

scattering path is observed over the range of 120-140 oC, before the first indication 

of Pd-Pd. At 165 oC, two paths can be detected, Pd-Pd and Pd-Au with CNs of 5.3 

(±1.0) and 2.7(±0.9) respectively. The plots of the experimental and calculated 

EXAFS spectra can be found in Figure 5.29. 
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Figure 5.29: Pd K-edge k3-weighted EXAFS and FTs of [Pd(acac)2]/[AuCl4]-
 at 

30 oC, 110 oC, 120 oC, 140 oC, 150 oC and 165 oC after cooling. 

 

 

5.6 Conclusions 

 

The studies in this chapter focused on the characterisation of the two sets of Au-Pd 

bimetallic nanoparticles, while the speciation of the Pd and Au precursors in 

oleylamine/xylene was also investigated. Also, the reactions were monitored 

through the use of in situ XAS, and detailed LCF, XANES and EXAFS analysis is 

provided where applicable. 

The XAS analysis results of two sets of bimetallic nanoparticles showed that 

when Au(I) was employed as the Au precursor with [Pd(acac)2], the Au-Pd 

nanoparticles exhibited an Au-Pd alloy character with no pronounced segregated 

phases. When [AuCl4]
- was employed with [Pd(acac)2], particles with an Au rich 
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core and some surface Pd were formed. These results were also confirmed by 

observation of the particles in TEM. In the latter synthesis, monometallic Pd 

networks were also observed in the TEM.  

The speciation studies of the [Pd(acac)2] showed that for a ratio of Pd:Oleyl 

1:2 [Pd(acac)(RNH2)2][acac] species are formed, whereas from a ratio of Pd:Oleyl 

1:6 and higher, the formation of Pd(acac)(RNH2)(C
3-acac) species is prevalent. 

UV-Vis studies indicated that the presence of Au salts does not affect the speciation 

of [Pd(acac)2] at room temperature. As a result, the molar ratio of Pd to oleylamine 

is the crucial factor. While the speciation studies for the [Pd(acac)2] relied mainly 

on UV-Vis and also on XAS, XAS was proven to be the more powerful 

characterisation tool in the speciation studies of the Au precursors. The Au L3-edge 

XANES observations of pelletised Au(I) and Au(I) dissolved in oleylamine were 

found to be similar, suggesting that there are no significant structural changes taking 

place to this precursor upon dissolution in oleylamine. Its oxidation state was also 

maintained in this solvent. Oleylamine, however, was found to induce changes to 

the structure of [AuCl4]
-. Upon mixing oleylamine with [AuCl4]

-, three out of the 

four [Cl]- are displaced, while the 3+ oxidation state is maintained. The XAS results 

of the sample after 2 hours of stirring showed that the Au3+ has undergone partial 

reduction to Au+. EXAFS analysis of these species revealed that two only nitrogens 

are present in its first coordination sphere with suggested structure [Au(RNH2)2], 

while an aurophillic interaction between Au+ centers was also detected at a distance 

3.13 Å. 

The results from the in situ measurements at the Au L3-edge and Pd K-edge 

of the thermal decomposition of Au(I)/[Pd(acac)2] showed that these two precursors 

decompose at a similar temperature (70 oC vs 80 oC). This observation is crucial as 

it indicates that the decomposition of the metal precursors at similar temperatures 

is a key step towards the synthesis of Au-Pd nanoparticles without segregated 

phases.  

Due to time constraints during the beamtime, decomposition of Au(III)/[Pd(acac)2] 

was monitored only at the Pd K-edge. The results showed that [Pd(acac)2] 

decomposes at a higher temperature in the presence of [Au(RNH2)2] compared to 

the temperature in the presence of Au(I). This observation suggests that the nature 
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of the Au salt affects the decomposition process of [Pd(acac)2], thus affecting the 

distribution of metals in the final particles.  

It is worth noting that the Au(I) precursor was employed for the first time in 

the synthesis of Au-Pd nanoparticles, and this underlies the fact that research on the 

use of novel precursors for nanoparticle formation is crucial.   
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Chapter 6.  In situ XAS Studies On The Syntheses Of Iron Oxide 

Nanoparticles 

 

 

6.1 Chapter Overview  

 

This chapter discusses the results obtained from in situ XAS studies on the 

formation of iron oxide nanoparticles (IONPs) by the thermal decomposition of 

tris(acetylacetonato) iron(III) ([Fe(acac)3]) in oleylamine, and in triethylene glycol 

(TEG) in the presence of polyvinylpyrrolidone (PVP) and in its absence.  

Initially, the XAS results from the speciation study of [Fe(acac)3] in 

oleylamine, in dodecane and when it is pelletised are presented. UV-Vis was also 

employed in this section as a complimentary technique. Following this, the in situ 

XANES of the thermal decomposition of [Fe(acac)3] in oleylamine is shown, and 

EXAFS results are presented where applicable. The effect of the solvent is also 

discussed by presenting the in situ XAS results of the decomposition of the 

[Fe(acac)3] in the non-coordinating solvent dodecane.  

The second solvent employed was triethylene glycol (TEG), and the 

decomposition of [Fe(acac)3] was performed in that solvent in the presence and 

absence of PVP. The results from the in situ XAS studies are shown in separate 

sections, while the speciation studies of [Fe(acac)3] in TEG and TEG/PVP are 

presented in the respective section. 

LCF analysis was performed on all the in situ XANES of the 

aforementioned reactions to probe the evolution of different species, supported by 

temperature resolved UV-Vis studies. Further characterisation of these nanocrystals 

was undertaken by TEM and XRD. 

Notably, the thermal decomposition of [Fe(acac)3] in organic solvents was 

monitored by in situ XAS for the first time. A liquid XAS liquid cell that can sustain 

high temperatures was developed and used for these studies. A description of the 

cell is also provided. 
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6.2 Introduction 

 

 

Research on nanostructured iron oxide has received considerable interest due to the 

promising prospects of this material in a variety of industrial and commercial 

applications. Technological fields in which iron oxide exhibits remarkable 

performance include high density information storage[1] and drug delivery,[2] and it 

can also be used as a magnetic resonance contrast agent.[3,4] 

Many bottom-up synthetic approaches to iron oxide nanocrystals have been 

developed. Examples include chemical vapour deposition (CVD),[5] co-

precipitation of metal salts,[6–9] hydrothermal[10,11] and electrochemical 

synthesis,[12,13] and thermal decomposition of molecular precursors.[14] The latter is 

an advantageous preparation method due to the high level of control that can be 

achieved over the reaction parameters and, consequently, on the final particle 

properties. Such decompositions involve thermal decomposition of iron precursors 

in high boiling point organic solvents, in the presence of reducing agents and 

particle stabilisers. Many studies have demonstrated the use of different precursors 

and organic reagents for the synthesis of IONPs via thermal decomposition – these 

are discussed in detail in the introductory chapter (Section 1.6.1).  

Lately, efforts have been devoted to the preparation of water-soluble IONPs 

as this property is greatly desired in biomedical applications.[15] Most synthetic 

strategies do not allow for water-solubility of the IONPs and surface treatment is 

usually required post synthesis, commonly involving polymers, in order to enable 

the use of these nanomaterials in medical applications.[16] To overcome this issue, 

water soluble IONPs can be synthesised in liquid polyols. Polyols are versatile 

reagents due to the multiple roles that they can have: solvent, reducing agent and 

particle stabilizer.[17] A typical process involves the dissolution of an iron salt in the 

polyol and its chemical reduction at elevated temperatures. Examples of polyols 

that have been employed include ethylene glycol (EG), diethylene glycol (DEG), 

triethylene glycol (TEG) and tetraethylene glycol (TREG). For example, Cai and 

Wan[17] have studied the decomposition of [Fe(acac)3] in all the aforementioned 

solvents and they found that individual nanoparticles with no signs of aggregation 

are only formed in the presence of TREG, suggesting that this observation maybe 

be attributed to the number of coordinating groups of the polyol.[18] When EG was 
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employed, the outcome of the reaction was a grey coloured suspension of plate-like 

particles. The autoclave synthesis of magnetite (Fe3O4) particles using [Fe(acac)3] 

in a mixture of ethylene glycol, hydrazine and particle stabilisers such as PVP has 

also been reported.[19] 

Cai’s[17] studies also showed that the thermal decomposition of [Fe(acac)3] 

in DEG (30 min at 180 oC, followed by 30 min boiling) formed nanoparticles with 

a grain size of 20 nm that are aggregated. The decomposition of the same iron 

precursor in DEG, at selected temperatures and heating times, has been reported to 

form ultra-small Fe3O4 nanoparticles with average diameters of 3, 4, 5 and 6 nm,[20] 

while another study has also illustrated the relationship between the particle size 

and the time of reaction at selected temperatures in the same solvent.[21] When 

TREG is employed as a solvent, particle stabiliser and reducing agent, the 

decomposition of [Fe(acac)3] at ~ 278 ℃ forms 8 nm sized Fe3O4 nanoparticles.[22] 

Other derivatives of glycols such as trimethylene and propylene glycols have also 

been employed for the synthesis of IONPs.[23] 

Additional structure directing agents or stabilizing agents may also be added 

in order to help control the size and/or the shape, of the nanoparticles. For example, 

hematite (α-Fe2O3) nanorods can be synthesised hydrothermally in the presence of 

1,2-propanediamine,[24] while triangular prisms are the product of the hydrothermal 

decomposition of [FeCl3.6H2O] in EG and 1,3-propanediamine.[25] PVP, ethylene 

diamine and diethylene triamine have also been employed and their effects on the 

particle size and morphology in the presence of different polyols and iron salts have 

been examined.[26] 

From these examples, it is apparent that the outcome of the reaction is highly 

dependent on the chosen experimental conditions, despite the fact that the initial 

reagents might be identical in some cases.   

 

6.3 Aims And Objectives 

 

In this chapter the main aim is to employ in situ XAS to contribute to a better 

understanding of the thermal decomposition of [Fe(acac)3] in high boiling point 

organic solvents that are routinely used for IOnp synthesis. Despite extensive 

studies on these systems, little information is known about the changes that the iron 
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precursor undergoes during the decomposition process, possibly due to the 

difficulty of obtaining in situ data at these temperatures in solution phase systems.  

As a result, a systematic study was carried out in oleylamine, dodecane, TEG/PVP 

and TEG in order to monitor the decomposition of [Fe(acac)3] in these reaction 

media. As such, the primary aim is to monitor these reactions in situ, while 

observing the changes to the iron site, particularly through XANES and LCF 

analysis, and account for differences observed in the processes. The second aim of 

this study is to identify potential interactions between the reaction media and 

[Fe(acac)3] and assess the effects of solvents and/or particle stabiliser (PVP in this 

case) on the structure of the iron precursor. 

 

6.4 Experimental 

 

Chemicals 

Iron (III) acetylacetonate ( ≥ 97.0%), Hematite ( ≥ 99.0%), Magnetite ( ≥ 97.0%), 

Iron (II) oxide ( ≥ 99.0%), oleylamine (technical grade 70%, primary amines > 98 

%), dodecane (≥ 99.0%), triethylene glycol (≥ 99%) and polyvinylpyrrolidone 

(PVP) (mol. wt. 55,000) were purchased from Sigma Aldrich Ltd and used with no 

further purification. 

 

6.4.1 Synthesis Of Iron Oxide Nanoparticles By Thermal Decomposition Of 

[Fe(acac)3] In Oleylamine 

  

[Fe(acac)3] (0.3530 g, 1 mmol) was dissolved in oleylamine (10 ml) and the mixture 

was heated at 30 oC, and stirred for 1 hour under air to allow for sufficient 

dissolution of the precursor. The solution displayed a deep red colour. Then the 

temperature was raised to 300 oC at a rate of 5 oC/min, under air, and after 1.5 hours 

of heating was cooled to room temperature. The colour of the final solution was 

dark brown. To the particle solution, ethanol was added and the mixture was 

centrifuged at 4000 rpm for 20 minutes. The supernatant was then discarded and 

the particles re-dispersed in hexane.   
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6.4.2 Synthesis Of Iron Oxide Nanoparticles By Thermal Decomposition Of 

[Fe(acac)3] In Triethylene Glycol (TEG) In The Presence Of 

Polyvinylpyrrolidone (PVP) 

 

PVP (1.11 g, 10mmol) was added to TEG (10 ml) and dissolved by stirring at 60 

oC for one hour in air. Upon dissolution of the polymer, the solution was allowed 

to cool to room temperature. [Fe(acac)3] (0.3530 g, 1 mmol) was then added. The 

molar ratio of Fe:PVP was 1:10. Subsequently the temperature was raised to 240 

oC for 1 hour to allow for the reaction to occur. The dark brown mixture was allowed 

to cool to room temperature and the solution was mixed with acetone and 

centrifuged at 4000 rpm for 45 minutes to isolate the product. 

 

6.4.3 Synthesis Of Iron Oxide Nanoparticles By Thermal Decomposition Of 

[Fe(acac)3] In Triethylene Glycol (TEG) 

 

[Fe(acac)3] (0.3530 g, 1 mmol) was dissolved in triethylene glycol (TEG) (10 ml) 

at 30 oC under stirring for one hour. Subsequently, the temperature was raised to 

240 oC. After 1 hour the reaction mixture was dark brown in colour and was allowed 

to cool to room temperature. The solution was mixed with acetone and centrifuged 

at 4000 rpm for 45 minutes to isolate the product. 

 

6.5 Cell Development And Beamline Set-up  

 

The high temperature required for the solution phase synthesis of IONPs makes it 

challenging to monitor the reaction using in situ XAS. Therefore, an appropriate 

cell was developed, adapted from an existing high-temperature cell for solid 

samples. The cell configuration, in the X-ray beam, is depicted in Figure 6.1 A. The 

cell consists of a square metallic frame while two quartz windows are attached to it 

using high temperature adhesive. The total capacity of the cell is approximately 0.6 

ml and the pathlength is 4 mm. A thermocouple is connected to the top right side 

of the metallic frame. The temperature difference between the set point and the 

interior temperature is ± 3 oC. The windows were purchased from UQG Optics and 

are quartz microscopy slides of 0.1 mm thickness. The windows can be replaced 

with mica, if required. However mica often contains iron impurities which would 

interfere with the sample absorption, therefore it was avoided in these studies.  
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Figure 6.1 B shows the top view of the cell, the connections to the water cooling 

system, the gas tubes and the power cables can be seen. Figure 6.1 C shows the 

special cap that was placed on top of the cell during the experiments in order to 

allow He to be flushed through the set up. Kapton windows are attached to this cap 

to allow for the transmission of the beam.    

 

  
 

 

Figure 6.1: Left to right A) In situ high temperature cell, B) View from the top of 

the in situ cell, C) The cap of the in situ cell that allowed for a He flow throughout 

the course of the reactions.  

 

During the cell testing, cracks on the quartz windows were observed at 

temperatures ~ 280-300 oC therefore the reactions were limited to temperatures 

slightly lower than the temperatures of the syntheses performed in the laboratory. 

This is not expected to affect the decomposition process which is usually seen to 

occur at much lower temperatures. In addition, the temperature was kept lower than 

the boiling point of each solvent during the in situ XAS experiments in order to 

avoid the formation of bubbles that would interfere with data quality. 

 

 6.6 Syntheses In Situ At The Beamline, Data Collection And Processing 

 

All the syntheses carried out during the beamtime took place according to the 

protocols described in Sections 6.4.1-6.4.3. [Fe(acac)3] precursor solutions were 

prepared, at most, 1 hour before the reaction took place. Small aliquots were 

transferred to the in situ cell at room temperature. Data collection was performed at 

the Fe K-edge (7112 eV) at the Dutch-Belgian XAS beamline, BM26A,[27] at the 

ESRF, Grenoble, France, operating with a ring energy of 6 GeV. Monochromatic 

radiation was supplied by a double Si (111) crystal and ion chambers were used to 

A B C 
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measure incident and transmitted beam intensities (I0 and It). The reaction heating 

rate was 1 oC/min for all the experiments. Helium was flushed through the system 

at a rate of 10 ml/min during the reactions. Each scan lasted approximately 10 

minutes and in situ data was collected up to 10 Å-1 k. Reference crystal structure 

information for Fe and all relevant forms of FeOx were downloaded from known 

crystallographic databases.[28,29] Data normalization, background subtraction and 

EXAFS processing was performed using Athena and Artemis.[30] The k and R 

ranges chosen during the EXAFS analysis of all samples are shown in table A6.1 

in Appendix 6. 

 

6.7 Results And Discussion 

 

 

In Chapters 3, 4 and 5, EXAFS studies were conducted on metal centres coordinated 

to very different ligands – e.g. [AuCl4]
-
 reducing to a distinct, metallic product, Au0. 

The possible thermal decomposition products of [Fe(acac)3] are most likely to be 

α-Fe2O3, which is an Fe3+ species with three Fe-O bond lengths of 1.94 Å and three 

of 2.11 Å, [31]
 and Fe3O4,

 which contains both Fe2+ and Fe3+ species with two Fe-O 

bond lengths of 1.97 Å and two of 2.17 Å.[32] [Fe(acac)3] itself also has Fe-O bonds, 

with six bond lengths at 2.00 Å.[33] The similarity of the nearest neighbour species 

and bond lengths presented in these studies makes identifying the contribution from 

each of these species to the final EXAFS unlikely, especially in the in situ studies, 

where a totally unknown combination of species may be present during the reaction. 

An additional complication arises from the TEG solvent, which may also be able to 

coordinate to the Fe centre through its oxygen atoms. XANES, however, is highly 

sensitive to oxidation state and phase, displaying characteristic features that allow 

for the reliable identification of the different species present. Thus, this chapter 

makes heavy use of XANES analyses, including fingerprinting and LCF.  
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6.7.1 XAS On The Synthesis Of Iron Oxide Nanoparticles Synthesised By 

Thermal Decomposition Of [Fe(acac)3] In Oleylamine 

 

6.7.1.1 Speciation Studies Of [Fe(acac)3] 

 

To investigate the speciation of the iron precursor, the XANES of [Fe(acac)3]was 

measured in three different environments: pelletised, dissolved in dodecane and 

dissolved in oleylamine (Figure 6.2 A). The preparation of solid [Fe(acac)3] was 

performed by pelletizing 70 mg of [Fe(acac)3] with PVP. The Fe K-edge XANES 

of [Fe(acac)3] in all three environments shows a small pre-edge feature located at 

7114 eV due to the forbidden 1s3d transition,[34] and a sharp increase in 

absorption located ~ 10 eV after the pre-edge peak, arising from the 1s4p 

transition.[35] 
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Figure 6.2:  Left to right: A) XANES at Fe K-edge of pelletised [Fe(acac)3] (green 

line), [Fe(acac)3] when dissolved in dodecane (black line) and when dissolved in 

oleylamine (pink line). B) Magnified pre-edge region.   

 

 

This pre-edge feature is characteristic of first-row transition metals and is 

observed in metal-ligand complexes due to the orbital mixing of the ligand p 

orbitals and the metal d orbitals. Since the orbital mixing provides some p character, 

the Δl = ±1 selection rule is relaxed.[36,37] Additionally, it has been observed that an 

increase in the intensity of this peak correlates with a decreasing coordination 

number at the Fe centre.[38,39] Thus, tetrahedral complexes have a more pronounced 

pre-edge intensity, while a perfect octahedral structure may not display the pre-edge 

A) B) 
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peak at all. Slightly distorted octahedral geometries, however, present a weak pre-

edge peak, while a pronounced whiteline intensity is observed in their XANES. 

Additionally, the pre-edge peak intensity is also dependent on the density of the 3d 

states. Thus, for example, for Zn(II) complexes with fully occupied d states, a pre-

edge peak is not observed.[40]  

A comparison of the spectra reveals that the XANES of [Fe(acac)3] in pellet 

form and dissolved in dodecane are identical. Both samples have a pre-edge peak 

with similar intensity and an edge position at approximately the same value (7125.3 

eV and 7125.2 eV for pelletised and dissolved in dodecane respectively (both 

measured at µ(E)=0.6).  This XANES is consistent with the XANES of 

[Fe(acac)3]reported by others.[41] The absorption edge is followed by a broad peak 

with flat top starting from 7130.3 eV that extends up to 7137.4 eV (Figure 6.2 A). 

The XANES of [Fe(acac)3] in oleylamine shows a pre-edge peak with slightly 

higher intensity than the one observed in the pellet/dodecane samples, located at the 

same energy position (Figure 6.2 B). The absorption edge is found at 7124.7 eV, 

presenting a shift of ~0.6 eV towards lower energies, and shows a small shoulder 

in its lower region. This shoulder, in nickel complexes, has been attributed to the 

interaction of nitrogen/sulphur ligands with the metal center.[42] The XANES peak 

has narrowed, presenting a maximum at 7131.5 eV. All these observations indicate 

that the ligand sphere around the Fe site has changed and that a possible interaction 

with the oleylamine has occurred. 

The XANES of [Fe(acac)3] in oleylamine was compared to the XANES of 

known standards in order to determine its oxidation state (Figure 6.3).  
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Figure 6.3: Room temperature Fe K-edge XANES of [Fe(acac)3] in oleylamine 

(black line) plotted against a series of reference samples such as Fe3O4 (green 

line), α-Fe2O3 (red line), FeO (pink line) and Fe foil (orange line). 

 

The standards utilised were FeO (Fe2+), α-Fe2O3 (Fe3+), Fe3O4 (Fe2+,3+), and 

Fe foil (Fe0). Fe foil has a broad pre-edge feature at 7112 eV followed by an 

absorption edge at located at 7120 eV and a peak at 7130 eV, while the absorption 

edge of FeO is shifted 2 eV towards higher energies with respect to the edge position 

of Fe foil. The main characteristic of its XANES is a pronounced peak with a 

maximum at 7129 eV and a shoulder on its lower energy side.  Fe3O4 presents the 

most pronounced pre-edge feature and an absorption edge at 7123.1 eV followed 

by a broad peak at 7131 eV. The XANES of Fe2O3 has an edge at 7124 eV followed 

by a triple-featured region with the main peak located at 7133 eV. Overall, an edge 

shift towards higher energies is observed with increasing oxidation state.  

Figure 6.3 shows the XANES [Fe(acac)3] in oleylamine and the XANES of 

FeOx standards. It can be observed that the iron precursor stays in the +3 oxidation 

state upon dissolution in oleylamine, since its absorption edge is found at a similar 

edge position to Fe2O3, and that it has not formed any known iron oxide structures. 

The intensity of the pre-edge peaks also suggests that the octahedral environment 

around Fe has been maintained, since its intensity is similar to α-Fe2O3. The slight 

observed increase observed in the pre-edge peak of [Fe(acac)3] in oleylamine 
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(Figure 6.3), compared to the α-Fe2O3, could suggest a more distorted octahedral 

structure of the [Fe(acac)3] upon dissolution in that solvent.   

Structural parameters of [Fe(acac)3] from the speciation studies presented 

in Figure 6.2 were derived from EXAFS analysis and are shown in table 6.1. The 

pelletised [Fe(acac)3] presents six Fe-O bonds at 1.99(±0.01) Å in the first shell, 

which is in agreement with the crystal structure reported in literature (Fe-O 1.992 

(±0.006) Å)[33],  and six Fe-C at 2.94 (±0.02) Å in the second shell. The same applies 

when [Fe(acac)3] was dissolved in dodecane – a non-coordinating solvent – where 

six Fe-O bond distances can be found at 1.99 (±0.01) Å in the first shell, and six 

Fe-C at 2.93 (±0.03) Å in the second shell (table 6.1). Higher errors were observed 

in the EXAFS analysis [Fe(acac)3] in dodecane, possibly due to lower data quality. 

In oleylamine, EXAFS analysis of the first shell revealed one Fe-O scattering path 

at 1.98 (±0.02) Å with CN 2.9 (±0.4) and one Fe-N scattering path at 2.12 (±0.03) 

Å with CN 3.4(±0.4), where the nitrogens presumably originate from the 

oleylamine.  

 

Table 6.1: Structural parameters derived for [Fe(acac)3] as a pellet, dissolved 

in dodecane, and dissolved in oleylamine.  

 

[Fe(acac)3] in different environments 

 

Sample 

 

Path 

 

CN  

 

REXAFS (Å)  

 

σ2 (Å2)  

 

R factor 

[Fe(acac)3] 

pellet 

 

O 

 

6.2(±0.3) 

 

1.99 (±0.01) 

 

0.003(±0.001)  

0.022 C 5.9 (±1.3) 2.94 (±0.02) 0.003(±0.001) 

[Fe(acac)3] 

in 

dodecane 

 

O 

C 

 

6.3(±0.3) 

5.6 (±2.3) 

 

1.99(±0.01) 

2.93 (±0.03) 

 

0.002(±0.001) 

0.002(±0.001) 
0.032 

[Fe(acac)3] 

in 

oleylamine 

 

O 

N 

 

2.9(±0.4) 

 

1.98(±0.02) 

 

0.003(±0.001) 0.025 
  3.4(±0.4)  2.12(±0.03) 0.003(±0.001) 

 

The analysis shows that the ligand environment around the first shell has 

changed from six oxygens to three oxygens and three nitrogens, forming an 
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[FeO3N3] species. The reaction scheme 6. 1 shows the structure of [Fe(acac)3] 

(structure 1) and the suggested structure of the [FeO3N3] species (structure 2). 

 

Reaction Scheme 6.1: Structural change of [Fe(acac)3] upon dissolution in 

oleylamine (C18H35NH2). 

 

 

                                                           

 
 

 

Figure 6.4 shows the FTs of the speciation study of [Fe(acac)3]. The 

[Fe(acac)3] when pelletised and when dissolved in dodecane shows a prominent 

peak at ca 2 Å and higher shell peaks originating from the (acac)- ligands 

coordinating to the Fe centre. The FTs of these two samples present a high degree 

of resemblance. When [Fe(acac)3] is dissolved in oleylamine, the amplitude of the 

primary shell appears significantly reduced while the appearance of the higher 

shells above 2 Å has changed. The observed differences may be attributed to the 

changes occurring on [Fe(acac)3] upon dissolution in oleylamine.  
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Figure 6.4: FTs of [Fe(acac)3]in pellet form, when dissolved in dodecane and 

when in oleylamine.  
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The k3-weighted EXAFS and corresponding FTs of the speciation studies 

are shown in figure 6.5. 
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Figure 6.5: k3-weighted EXAFS and corresponding FTs of Fe(acac)3 in pellet 

form, when dissolved in dodecane and when in oleylamine.  

 

 

UV-Vis studies were performed on [Fe(acac)3] upon dissolution in 

dodecane and oleylamine (Figure 6.6). The UV-Vis spectrum of [Fe(acac)3] in 

dodecane at room temperature shows two maxima at 353 nm and 431 nm, consistent 

with pure [Fe(acac)3],
[43] indicating that this solvent does not affect the structure of 

the iron precursor. The origin of the low wavelength peak has been attributed to the 

π−π* intra-ligand transition, while the second peak has been attributed to the metal-

to-ligand charge transfer band.[44] The spectrum of [Fe(acac)3] in oleylamine shows 

that the two bands have changed intensity, while a small shift of 4 nm is observed 

at the lower wavelength band. This observation further confirms that a structural 

change occurs on the [Fe(acac)3] upon dissolution in oleylamine. In this case, the 

maxima are observed at 357 nm for the lower wavelength peak and around 425-430 

nm for the high wavelength peak.  
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Figure 6.6: UV-Vis of [Fe(acac)3] in dodecane (black line) and oleylamine (blue 

line).   

 

 

6.7.1.2 XANES Analysis 

 

The decomposition of [Fe(acac)3] in oleylamine was studied employing in situ XAS 

at the Fe K-edge. Figure 6.7 A shows the XANES as the reaction proceeds from 30 

oC to 260 oC, where smooth and gradual changes are observed, while Figure 6.7 B 

shows the XANES at selected time intervals. Initially, at 30 oC, the XANES that 

corresponds to the [FeO3N3] species is clearly observed, showing an edge position 

located at 7114.0 eV (measured at µ(E)=0.6), and the characteristic maximum at 

7131.56 eV (peak A). Upon increasing the temperature, the first difference in the 

XANES is observed at 70 oC (Figure 6.7 C) where peak A narrows while a small 

increase in absorption is observed in the area around 7150.0 eV (peak B). Upon 

increasing the temperature further, the intensity of the high energy side of peak A 

presents a decreasing trend, resulting in peak A becoming narrower as the reaction 

progresses (Figure 6.7 B). The intensity of peak B at 7147 eV increases as the 

temperatures increases from 30 to 220 oC and subsequently decreases in the range 

220-260 oC. During the reaction, the edge position depicts a consecutive shift 

towards lower energies with an overall shift of 1 eV (measured at µ(E)=0.6), 

indicative that some reduction has occurred to the oxidation state of the Fe3+ 

species. From 260 oC onwards, the data resemble the XANES for Fe3O4 (Figure 6.7 

D). The absorption edge of the sample is slightly shifted to higher energies and the 

pre-edge intensity appears reduced compared to the Fe3O4 standard. Also, the region 
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from 7135 eV onwards appears slightly reduced in intensity compared to Fe3O4. At 

260 oC the pre-edge peak has an energy position of 7113.8 eV and an intensity of 

0.085 μ(Ε). 
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Figure 6.7: Top to bottom: A) In situ XANES of the reaction, B) XANES at 

selected time intervals, C) Initial scan at 30 oC, intermediate scan at 70 oC and 

final scan at 260 oC and D) XANES of the nanoparticles at 260 oC plotted with 

the XANES of the Fe3O4 standard. E) Changes in the pre-edge intensity as a 

function of temperature. 
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The main change that occurs to the pre-edge peak as a function of 

temperature is a gradual increase in its intensity from 0.057 to 0.085 μ(Ε) (Figure 

6.7 E). All the changes observed during the reaction take place smoothly, showing 

that the decomposition of the precursor and the formation of iron oxides in this 

solvent is a gradual process.  

Figure 6.8 shows the LCF analysis performed on the in situ data, using 

[Fe(acac)3] in oleylamine, Fe3O4 and α-Fe2O3 as standards. In the LCF analysis, the 

precursor species shows a gradual decomposition throughout the entire reaction, 

starting from a phase fraction of 100 % at the initial stage of the reaction and 

decreasing to ~10 % towards the end. The first indication of IONPs, according to 

LCF, is in the form of α-Fe2O3 and occurs at 70 oC. An aliquot of the reaction was 

withdrawn at 90 oC and was imaged by TEM, where particle formation was 

confirmed (Appendix 6, Figure A6.1). After 70 oC, the phase fraction of α-Fe2O3 

presents a plateau ~ 30 % up to 150 oC, which then decreases to 0 % by the end of 

the decomposition. Fe3O4 formation, however, presents an increasing trend 

throughout the reaction and is dominant after 150 oC – the point at which the phase 

fraction of α-Fe2O3 began decreasing. In the end, Fe3O4 reaches a percentage of 

90%, whereas the phase fraction of the precursor is 10%.  
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Figure 6.8: Composition of the reaction mixture as a function of time, determined 

by performing LCF on the in situ XANES data.  
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These LCF results suggest that the initial IONPs are α-Fe2O3, with Fe3O4 forming 

later and constituting the majority product of this reaction. 

The thermal decomposition of [Fe(acac)3] in oleylamine was also monitored 

via UV-vis spectroscopy (Figure 6.9).  
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Figure 6.9: Temperature resolved UV-Vis of the thermal decomposition of 

[Fe(acac)3] in oleylamine.  

 

At room temperature, two broad absorption bands are observed around 357 nm and 

430 nm. These two features gradually disappear upon increasing the temperature, 

indicating decomposition of the precursor species. At 70 oC they have almost 

disappeared and from that point onwards only broad absorption can be observed. 

XRD was employed to examine the phase and crystallinity of these 

nanocrystals (Figure 6.10). The presence of diffraction peaks indicates that the 

sample is crystalline. The sample peaks are well aligned to the peaks of the Fe3O4 

reference pattern, and there are no additional peaks observed, indicating the absence 

of other crystalline phases or impurities. Therefore both XANES and XRD show 

that the particles substantially comprise of crystalline Fe3O4. It is worth mentioning 

that differentiating between maghemite (γ-Fe2O3) and Fe3O4 in XRD is quite 

difficult.[45] Small Fe3O4 IONPs can be readily oxidised to γ-Fe2O3, and studies have 

proposed a core-shell configuration consisting of a Fe3O4 core and a γ-Fe2O3 

shell.[46,47] The fraction of maghemite in the particles has been found to decrease 

with increasing particle size.[48,49] In the studies published by Demortierè et al.,[46] 

nanoparticles with sizes ≥ 10 nm presented only the Fe3O4 phase, while particles ≤ 
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5 nm can appear fully oxidized to γ-Fe2O3. This phase uncertainty can be readily 

solved with XAS, since the edge position is sensitive to the oxidation state of the 

iron site. Since the size of the particles is ca 10 nm (see below), surface oxidation 

to maghemite and Fe2O3 is not favoured. 
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Figure 6.10: XRD pattern of IONPs. Reference patterns of α-Fe2O3, Fe3O4 and 

maghemite (γ-Fe2O3) are plotted for comparison.[31,50,51] 

 

 

In our studies, the XANES of the nanoparticles closely resembles the 

XANES of the Fe3O4 standard (Figure 6.6 D), indicating that the main component 

in the system is Fe3O4, although a very small shift of the absorption edge position 

of the nanoparticles is observed towards higher energies (a shift of 0.53 eV) 

compared to the Fe3O4. This shift may be attributed to some unreacted precursor 

species as was indicated in the LCF analysis. Since the size of the particles is ca 10 

nm (see below), surface oxidation to maghemite and Fe2O3 is not favoured. 

Regarding the colour of the nanoparticle solution, it is worth noting that 

solutions of Fe3O4 nanoparticles are usually black. The particle solutions prepared 

here are brown in colour. However, the colour of the solution is dependent on the 

size and the morphology of the particles.[52] Indeed, the synthesis of Fe3O4 

nanoparticle colloids with a brown colour has been reported in the studies of Sun 

and Zeng.[53] The crystallinity, shape and size distribution of the particles were 

examined by TEM (Figure 6.11).  



Chapter 6 

206 
 

 

 

4 6 8 10 12 14 16 18
0

10

20

30

40

50

 

 

F
re

q
u
e
n
c
y

Particle diameter (nm)

 Fe
3
O

4
 nanoparticles

 

Figure 6.11: Top left to right: High and low resolution TEMs of Fe3O4 

nanoparticles. Bottom: Particle diameter histogram. 

 

The larger particles appear irregularly shaped, while the smaller ones have 

a quasi-spherical morphology and the particles are not severely aggregated. The 

average particle diameter is 9.2 ± 2.5 nm. Based on the low magnification 

micrographs in Figure 6.11, it can be seen that nanoparticle population is not 

exceptionally monodisperse. This indicates that oleylamine alone is not an effective 

particle stabiliser, and that additional stabilising agents are needed.  

 

6.7.1.3 EXAFS Analysis 

 

Figure 6.12 shows the evolution of the FTs and k3-weighted EXAFS as the 

reaction progresses from 30 oC to 260 oC. In the temperature range 30-70 oC the 

prominent feature in the FTs is a peak observed between 1-2 Å, corresponding to 

the primary shell of [FeO3N3] species. Upon increasing the temperature further 

(from 70 oC to 260 oC), the intensity of this peak appears to gradually decrease, 

indicating that this species decomposes as the temperature rises. By the end of the 

reaction (260 oC) this peak has become a doublet and may be attributed to the Fe-
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O primary shell of IONPs. From 70 oC onwards, a second peak arises in the region 

of 2-3 Å, that originates from the second shell Fe-Fe interactions, commonly 

observed in iron oxide systems. 
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Figure 6.12: FTs (left) and k3-weighted EXAFS (right) plots of the formation of 

Fe3O4 nanoparticles from the decomposition of [Fe(acac)3] in oleylamine. 

 

 

In this reaction, due to the interaction of [Fe(acac)3] with the oleylamine, 

the speciation could be probed up to 70 oC using EXAFS.  The refined parameters 

from the EXAFS fitting for temperatures room temperature-70 oC are displayed in 

table 6.2. EXAFS analysis showed that the [FeO3N3] species forms at room 

temperatures and retains its structure up to 60 oC. During this heating stage, two 

scattering paths were observed in the first shell: Fe-O and Fe-N. The CNs of both 

scattering paths remained close to 3 throughout the temperature range under 

investigation. The Fe-O bond distance at room temperature is at 1.98(±0.02) Å, a 

value that is close to the Fe-O bond distance observed in the case of pelletised 

[Fe(acac)3] [1.99 (±0.01) Å, see table 6.1]. In the temperature range 30-60 oC it 

shows slightly lower values compared to the Fe-O bond distance of pelletised 

[Fe(acac)3]. The Fe-N bond distance ranges from 2.08 Å to 2.10 Å in the 

temperature range room temperature - 60oC. The k3-weighted EXAFS and 

corresponding FTs at temperatures from room temperature to 70 oC are shown in 

Figure 6.14. Interestingly, at 70 oC the Fe-N path can no longer be detected, and 

only one Fe-O path is observed, with CN of 5.2 (±0.3) and a bond distance 

1.97(±0.01) Å. The fact that the Fe-N path can no longer be detected at 70 oC, is a 

similar observation to work presented by Hollingsworth et al.,[54] where the 
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decomposition of [Ni(S2CNBui
2)2] in n-hexylamine was monitored via in situ XAS, 

and EXAFS analysis and revealed an interaction between [Ni(S2CNBui
2)2] and the 

amine taking place between room temperature and 75 oC.  The k3-weighted EXAFS 

and corresponding FTs of the structural parameters shown in table 6.2 are shown in 

Figure 6.14. 

 

Table 6.2: Fe K-edge EXAFS fitting parameters for the decomposition of 

[Fe(acac)3] in oleylamine from room temperature up to 70 oC.  

Decomposition of [Fe(acac)3] in oleylamine 

 

Temperature
oC 

 

Path 

 

CN 

 

REXAFS (Å) 

 

σ2 (Å2) 

 

R 

factor 

rt 
O 

N 

  2.9 (±0.4) 1.98 (±0.02)  0.003(±0.001)  

0.025   3.4 (±0.4) 2.12 (±0.03) 0.003 (±0.001) 

30 
O  3.0 (±0.5) 1.93 (±0.02) 0.003 (±0.001) 0.006 

N 3.0 (±0.6) 2.08 (±0.03) 0.003 (±0.001)  

40 
O 3.0 (±0.4) 1.92 (±0.01) 0.003 (±0.001) 0.006 

N 3.0 (±0.5) 2.09 (±0.01) 0.003 (±0.001)  

50 
O 2.9 (±0.4) 1.92 (±0.01) 0.003 (±0.002) 0.007 

N 3.2 (±0.5) 2.10 (±0.01) 0.003 (±0.001)  

60 
O 2.9 (±0.4) 1.92 (±0.01) 0.003 (±0.002) 0.006 

N 3.1 (±0.5) 2.09 (±0.01) 0.003 (±0.001)  

70 O 5.2 (±0.3) 1.97 (±0.01) 0.008 (±0.001) 0.011 

 

The FTs of the [Fe(acac)3] in oleylamine in the temperature range room 

temperature-70 oC are shown in Figure 6.13. At room temperature, a prominent first 

shell can be observed at ca 2 Å and a second shell at 2.5 Å.  At 30 oC, the first peak 

is found at a similar radial distance position while the position of the second shell 

is shifted to higher values. In the temperature range 40-60 oC, the FTs present 

similar peak positions and intensities, indicating that there is no significant 

structural change taking place. At 70 oC the appearance of the FT changes 

completely, particularly in the higher shells. The primary shell shows increased 

intensity compared to the other shells and a slight shift towards lower radial distance 

values. In addition, a small peak has arisen between 2 and 2.5 Å, while the second 

shell presents increased intensity too and a position shift towards 3 Å.  
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Figure 6.13: FTs of the decomposition of [Fe(acac)3] in oleylamine at 

temperatures  

rt to 70 oC. 
 

It is worth noting, that the discrimination between O and N neighbouring 

ligands in EXAFS is close to the limitation of technique, due to the light nature of 

these elements, as already discussed in Section 2.3.7. However, when the curve 

fitting analysis on the data room temperature-70 oC was performed with only 

oxygen ligands, the Debye-Waller factor was found to be exceptionally high (ca 

0.01 Å2). As a result, the structural model [FeO3N3] was found to be more suitable.  
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Figure 6.14: k3-weighted EXAFS and corresponding FTs of the decomposition 

of [Fe(acac)3] in oleylamine, at temperatures from rt to 70 oC. 
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The role of the oleylamine was further validated by performing the same 

experiment in dodecane. The same amount of [Fe(acac)3] was dissolved in 

dodecane and the solution was heated up to 200 oC. Figure 6.15 (left) shows the in 

situ XAS data as a function of temperature as well as the XANES comparison of 

[Fe(acac)3]when pelletised and when dissolved in dodecane at room temperature 

and at 220 oC respectively (Figure 6.15 right). Due to the poor dissolution in 

dodecane, the quality of the initial scans is poor, but upon heating it is improved. 

The [Fe(acac)3] in dodecane presents the same XANES as the pellet at all 

temperatures, indicating that there is no structural change taking place in the 

precursor species. In addition, there is no IONP formation observed in this reaction 

system. The pre-edge position is located at 7114 eV and does not present any shift 

or intensity change during heating. The broad peak observed in the XANES for pure 

[Fe(acac)3], with the edges of the main peak located at 7130.3 eV and 7127.4 eV, 

does not undergo any transformation either. EXAFS analysis of this data is 

consistent with [Fe(acac)3] structure at all temperatures (table A6.2, Appendix 6). 

This study showed that the solvent plays a very crucial role in the decomposition of 

the precursor. To our knowledge, such interaction between [Fe(acac)3] and 

oleylamine has been reported for the first time, and the study in dodecane further 

illustrated that the solvent plays a crucial role in the syntheses of IONPs. 
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Figure 6.15: Left: In situ XANES of [Fe(acac)3] in dodecane, plotted as a 

function of temperature. Right: XANES of [Fe(acac)3] in pellet form (blue line), 

dissolved in dodecane at rt (black line) and at 220 oC (green line).  
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6.7.2 XAS On The Synthesis Of Iron Oxide Nanoparticles By Thermal 

Decomposition Of [Fe(acac)3] In Triethylene Glycol (TEG) In The Presence Of 

PVP 

 

6.7.2.1 XANES Analysis 

 

Figure 6.16 A shows the Fe K-edge XANES of [Fe(acac)3] upon dissolution in 

TEG/PVP plotted with the XANES of pelletised [Fe(acac)3] and when it is 

dissolved in dodecane. The three graphs overlay closely, showing that in the 

presence of TEG/PVP there is no significant structural change taking place in the 

precursor. Figure 6.16 B shows the pre-edge feature due to the forbidden 1s-3d 

transition, located at 7114 eV, which is apparent in all three spectra. Its intensity 

when pelletised and when in dodecane is similar, while upon dissolution of 

[Fe(acac)3] in TEG/PVP, its intensity appears lower. In all three cases the pre-edge 

is followed by the edge at 7125.2 eV (measured at µ(E)=0.6), indicating that the 

precursor has maintained its 3+ oxidation state in TEG/PVP. Beyond the absorption 

edge there is a broad XANES peak observed, due to the 1s-4p transition, and the 

edges of this peak are found at 7130 and 7137 eV. In the EXAFS part there is a 

broad oscillatory feature with a maximum at 7173 eV. Overall, the XANES shows 

that [Fe(acac)3] maintains its structure and oxidation state upon dissolution in 

TEG/PVP. 
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Figure 6.16: Left to right: A) XANES of [Fe(acac)3] in TEG/PVP (black line), 

pelletised (red line) and in dodecane (orange line). B) Pre-edge region magnified.  
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The in situ XANES of the thermal decomposition of [Fe(acac)3] in 

TEG/PVP during the temperature range 30-220 oC, is shown in Figures 6.17 A and 

B respectively.  
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Figure 6.17: A) Temperature-resolved and B) overlaid temperature-resolved 

XANES plots showing the formation of iron oxide nanoparticles from [Fe(acac)3] 

in TEG/PVP. C) XANES of the reaction at 30 oC, 150 oC and 220 oC. D) XANES 

of the Fe3O4 nanoparticles plotted with the XANES of the Fe3O4 standard. E) 

Changes in the pre-edge intensity as a function of temperature. 
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During heating up to 150 oC, the absorption edge presents a gradual edge 

shift      2 eV towards lower energies (from 7125.25 eV to 7123.32 eV). This energy 

shift is accompanied by a slight decrease in the intensity of the high energy shoulder 

of peak A, while the low energy shoulder becomes gradually sharper up to 150 oC 

(Figure 6.17 C). During this time, an increase in intensity in the region 7150-7168 

eV is observed, while a small intensity decrease can be observed in peak C. Notably, 

the XANES at 150 oC resembles a lot the XANES of 220 oC (Figure 6.17 C), with 

the major difference being the intensity of the main XANES peak. At 190 oC, 

differences in the peak intensities and shapes are evidenced with respect to the 

previous XANES (Figure 6.17 B). A further edge shift is observed towards lower 

energies, characteristic of a reduction in oxidation state at the Fe site, while the low 

energy side of peak A has become very sharp with a μ(Ε) value of 1.36. The higher 

energy shoulder of peak A has completely disappeared at this temperature and a 

new shoulder, marked B, appears at 7145 eV, which makes the XANES of the 

sample closely resemble the XANES of the Fe3O4 structure. At this temperature, in 

the oscillatory part of the XANES, peak C presents further reduced intensity, while 

a new peak, marked D, has emerged at 7227.6 eV. From 190 oC onwards, there are 

no further changes observed and the spectra are consistent with the XANES of 

Fe3O4. A comparison between the XANES at 30 oC and 220 oC (Figure 6.17 C) 

clearly shows the magnitude of the changes during the course of heating, while an 

overall edge shift from 7125.2 to 7122.5 eV is observed (measured at µ(E)=0.6). 

This 3 eV shift is a strong indication of reduction of the oxidation state of the initial 

Fe3+ species. 

Notably, the quality of the data in the 160-190 oC temperature range 

substantially deteriorates due to the onset of the sudden particle formation, and 

these spectra are not shown. The changes in the pre-edge peak intensity are shown 

in figure 6.17 E. From 30-150 oC, an intensity increase of around 0.02 μ(Ε),is 

observed. From 190 oC onwards, the peak presents a more pronounced intensity 

(0.065 μ(Ε)), strong evidence of a reduction in coordination number on the Fe site. 

This is in agreement with the formation of Fe3O4 particles, where Fe is found in 

both octahedral and tetrahedral sites. It has been reported that, upon gradual heating 

of the [Fe(acac)3] dissolved in TEG, TEG coordinates with the Fe site forming 

intermediate alkoxy-acetylacetonate-Fe3+ species [(acac)2Fe−O−TEG] that later 
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decompose to nanoparticles by gradually losing the (acac)- ligands.[55] In addition, 

the coordinating ability of DEG on [FeCl2] has also been reported.[56] These 

proposed species may be responsible for the differences evidenced in the XANES 

upon heating. Unfortunately, such changes in the ligation sphere of Fe cannot be 

probed due to the similar Fe-O bond environment of the precursor species, the 

potential ligated precursor species and the possible final products. 

Figure 6.18 shows the LCF analysis that was performed on the in situ 

XANES. Standards used for the LCF analysis were [Fe(acac)3] dissolved in 

TEG/PVP, α-Fe2O3 and Fe3O4.  
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Figure 6.18: Results from LCF analysis of in situ XANES of the decomposition 

of [Fe(acac)3] in TEG/PVP. 

 

At the start of the reaction the mixture is composed of 100% [Fe(acac)3] in 

TEG/PVP, and upon heating this percentage decreases to ~40% (at 120 oC/100 

minutes) while α-Fe2O3 and Fe3O4 form ~20% and ~40% of the phases present, 

respectively at this time. The fraction of α-Fe2O3 increases very slowly from the 

beginning of the reaction (α-Fe2O3 formation seems concomitant with precursor 

decomposition), whereas Fe3O4 forms after the 40th minute of reaction). Meanwhile, 

the decomposition profile of the precursor shows a sharp decline. By the 130th 

minute (150 oC), the phase fraction of [Fe(acac)3] has reached zero, showing that 

these species have decomposed completely by that temperature. LCF analysis 

clearly shows that Fe3O4 is the preferred product. 



Chapter 6 

215 
 

 

The profile of this reaction system is very different to the oleylamine system 

presented previously. In the oleylamine system, it was observed that the precursor 

species are not completely consumed, even at higher temperatures (260 oC). For the 

TEG/PVP system, at the 150th minute of reaction (170 oC), the phase fractions of 

both α-Fe2O3 and [Fe(acac)3] are zero, while Fe3O4 has reached 100%, and from the 

150th minute onwards, only Fe3O4 is observed in the system. Comparison of this 

LCF profile to the LCF profile of the reaction in oleylamine shows that the phase 

fractions of α-Fe2O3 and Fe3O4 in oleylamine display a slow, gradual change while 

in TEG/PVP, sudden Fe3O4 formation occurs.  

The UV-Vis of [Fe(acac)3] in TEG/PVP and in dodecane are shown in 

Figure 6.19.  In TEG/PVP two characteristic bands, at 349 and 437 nm, are 

observed.  
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Figure 6.19: Left to right: UV-Vis of [Fe(acac)3] in dodecane (black line) and in 

TEG/PVP (blue line) and UV-Vis of the reaction as a function of temperature. 

 

The first band is shifted 3 nm towards lower wavelengths, compared to the 

position of the same peak in dodecane, whereas the second peak is shifted 5 nm 

towards higher energy. The formation of Fe3O4 nanoparticles was monitored by 

employing UV-Vis. From 23-70 oC the intensity of the absorbance peaks shows a 

very slight decrease, whereas from 80-90 oC a more pronounced drop in intensity 

of the peak at 437 nm is observed. This decrease becomes more pronounced 

between 100-140 oC. At 150-160 oC, the peak at 437 nm has completely 

disappeared and a broad absorption is observed throughout the spectrum, indicating 

that the precursor has been fully consumed. This is in agreement with the LCF 

analysis (Figure 6.18). 
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The XRD pattern of the nanoparticles showed that the crystalline structure 

closely matches that of Fe3O4 (Figure 6.20). The morphology of the particles is 

shown in Figure 6.21. They were found to be spherical, while their crystallinity was 

also confirmed (Figure 6.21 top right). The average particle diameter is 6.46 ± 2.16 

nm (particle diameter histogram shown in the bottom of Figure 6.21). 
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Figure 6.20: XRD pattern of Fe3O4 nanoparticles. The XRD patterns of α-Fe2O3, 

Fe3O4 and maghemite are also plotted for reference.[31,50,51] 
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Figure 6.21: Top: Low resolution and high resolution TEMs of Fe3O4 

nanoparticles. Bottom: Particle diameter histogram. 
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6.7.2.2 EXAFS Analysis 

 

Figure 6.22 shows the evolution of the FTs and k3-weighted EXAFS during the 

decomposition of [Fe(acac)3] in TEG/PVP in the temperature range 30-220 oC. 

Initially, a sharp peak is observed in the 1-2 Å region, corresponding to the Fe-O 

first shell of the precursor. This feature is prominent within the temperature range 

30-150 oC, but its intensity gradually decreases during this time. At 190 oC, a second 

feature appears in the 3-4 Å region, that can be attributed to the Fe-Fe interactions 

commonly observed in the FTs of IONPs. The intensities of both peaks remain 

relatively stable from 190 oC onwards, but a small shift towards lower bond 

distances is evidenced in the Fe-O position.  

 

 

 

 
 

Figure 6.22: Left to right: FTs and k3-weighted EXAFS and plots during the 

course of formation of Fe3O4 nanoparticles from [Fe(acac)3] in TEG/PVP. 

 

Table 6.3 shows EXAFS fitting results of the structure of [Fe(acac)3] in TEG/PVP 

at room temperature. A single Fe-O scattering path was detected in the first shell 

with CN of 6.2 (±0.4) and Fe-O bond distance 1.99 (±0.01) Å, values that are in 

very good agreement with the crystal structure of pure [Fe(acac)3].
[33] It is 

challenging to attribute the origin of the oxygens, as they could originate from the 

(acac)- ligands or the TEG solvent, in case it coordinates to the Fe centre, or it could 

be a mixture of oxygens from both these possibilities. The k3-weighted EXAFS and 

corresponding FTs of [Fe(acac)3] in TEG/PVP are shown in Figure 6.23. 
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Table 6.3: EXAFS parameters derived for Fe(acac)3 in TEG/PVP. 

 

Sample 

 

Path 

 

CN 

 

REXAFS (Å)  

 

σ2 (Å2)  

 

R 

factor 

[Fe(acac)3] 

in TEG/PVP 

 

Fe-O 

 

 

6.2 (±0.4) 

 

1.99 (±0.01) 

 

0.002 (±0.001) 
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Figure 6.23: k3-weighted EXAFS and corresponding FT of Fe(acac)3 in 

TEG/PVP at rt. 

 

6.7.3 XAS On The Synthesis Of Iron Oxide Nanoparticles Synthesised By 

Thermal Decomposition Of [Fe(acac)3] In Triethylene Glycol (TEG) 

 

6.7.3.1 XANES Analysis 

 

 

The third reaction of interest involved the thermal decomposition of [Fe(acac)3] in 

TEG in the absence of PVP. Figure 6.24 A shows the Fe K-edge XANES of 

[Fe(acac)3] dissolved in TEG, plotted alongside the XANES of pelletised 

[Fe(acac)3] and [Fe(acac)3] dissolved in dodecane. It can be observed that the data 

quality is worse in the absence of PVP than in its presence. As in the case of 

TEG/PVP, it is evident that the XANES of the three samples overlay closely, 

showing the characteristic XANES fingerprint of [Fe(acac)3] – a broad peak 

observed after the edge, due to the allowed 1s-4p transition.  The low and high 

energy positions of the two edges of this peak in the samples are found at 7130 and 
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7137 eV respectively, while the characteristic broad feature in the oscillatory part 

of the spectrum, located at 7150 eV, is also observed. The energy position of the 

edge (7125.0 eV) shows the oxidation state of Fe has remained at 3+. Figure 6.24 

B shows the pre-edge feature arising from the forbidden 1s-3d transition. Its 

intensity appears higher compared to the other samples, a possible indication of a 

more distorted octahedral structure. The data quality did not allow for accurate 

determination of its maxima position and intensity.  
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Figure 6.24: Left to right: A) XANES of [Fe(acac)3] in TEG (black line), 

pelletised (green line) and in dodecane (orange line). B) pre-edge region 

magnified. 

 

 

The in situ XANES of the reaction in the temperature range room 

tempeature-220 oC is shown in Figures 6.25 A and B, where the expected changes 

for the decomposition of [Fe(acac)3] can be seen. In the range 30-130 oC there is no 

significant change to the shape of peak A (Figure 6.25B), as was also observed in 

the presence of PVP. Between 140-170 oC, the high energy shoulder of peak A 

starts to reduce in intensity, while a significant intensity drop and peak sharpening 

is observed in the range 180-220 oC. At the same time, there is an increase in 

intensity in the energy region 7152-7168 eV, labelled as peak B, which is 

characteristic of iron oxide formation. Due to the signal-to-noise ratio of the data, 

the peak cannot be clearly defined. The overall change that occurred in the XANES 

during the reaction is shown in Figure 6.25 C where an overall shift of the 

A) B) 
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absorption edge from 7124.7 to 7122.3 eV is observed. This is indicative of a degree 

of reduction in the oxidation state of Fe3+. Notably, the energy position of the edge 

remains stable within the temperature range 180-220 oC. 
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Figure 6.25: A) Temperature-resolved XANES plots and B) overlaid 

temperature-resolved XANES plots showing the formation of IONPs from 

[Fe(acac)3] in TEG. C) XANES at rt and 220 oC. D) XANES of the Fe3O4 

nanoparticles plotted with the XANES of Fe3O4 and FeO standards. E) Pre-edge 

energy region of the XANES, overlaid as a function of temperature. 
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Figure 6.25 D shows the XANES at 220 oC, that resembles the XANES 

structure of Fe3O4. A closer comparison of the edge position of the sample to the 

edge position of the Fe3O4 standard reveals that the edge of the sample is slightly 

shifted towards lower energies. To illustrate this difference, the XANES of the 

nanoparticles is plotted with the XANES of the Fe3O4 and FeO standards (Figure 

6.25 D). The resultant nanoparticles have an edge position of 7122.7 eV, a value 

that is in between the edges of the Fe3O4 and FeO standards (7123.6 eV and 7121.4 

eV, respectively). This observation may suggest the presence of a mixture of Fe3O4 

and FeO species. The maximum of peak A is observed at 7129 and 7131 eV in the 

XANES of the FeO and Fe3O4 standards respectively, while the maximum of the 

sample is found at 7130 eV. However, the sample does not present such pronounced 

intensity in that region as that of FeO, and the rest of its oscillatory appearance 

resembles closely that of Fe3O4 while a little amount of FeO may also be present. 

This suggests that the nanoparticles are mostly Fe3O4.The data quality does not 

allow changes in the pre-edge feature to be identified (Figure 6.25 E). 

The LCF analysis of this reaction was performed, employing [Fe(acac)3] 

dissolved in TEG, α-Fe2O3, Fe3O4 and FeO as standards (Figure 6.26).  
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Figure 6.26: Results of LCF analysis of the in situ XANES studies of the thermal 

reduction of [Fe(acac)3] in TEG. 

 

 

The phase fraction of the precursor decreases throughout the reaction, from 

100% to reach a final value of 10% after the decomposition has finished. The phase 
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fraction of α-Fe2O3 varies from 0% to a maximum of 20% during this time, but no 

clear formation pattern can be observed. However, the phase fraction of Fe3O4 

presents a significant increase at the 120th minute (corresponding to a temperature 

of 130 oC), reaching 23%, and then gradually increases further up to 45% at the 

160th minute (170 oC). Notably, at that minute of reaction (160th minute), the phase 

fraction of FeO also presents an increase up to 23%. The phase fraction of 

[Fe(acac)3] at this time is 32%. Upon increasing the temperature further, the phase 

fractions of Fe3O4 and FeO are maintained close to 30-40%. At the end of the 

decomposition, at 220 oC, the reaction mixture consists of 62% Fe3O4 and 26% 

FeO, along with a small amount of unreacted precursor (10%). This LCF analysis 

is substantially different than that in the presence of PVP, where Fe3O4 is the only 

product of the reaction after 170 oC and no FeO was made.  

The comparison of the UV-Vis of [Fe(acac)3] dissolved in both dodecane 

and TEG is shown in Figure 6.27 left. The absorbance peak at higher wavelengths 

is found at a similar position in both solvents (~432 nm), while the peak in the 

shorter wavelengths appears shifted by 8 nm in the presence of TEG (344 nm in 

TEG vs 352 nm in dodecane).  

To complement the LCF analysis, the decomposition of [Fe(acac)3]was also 

monitored by UV-Vis (Figure 6.27 right). Initially two absorbance peaks are 

apparent, but their intensity decreases with a gradual increase in the temperature 

from 23 to 130 oC. From 130 oC to 240 oC, the spectra are dominated by a featureless 

absorption with decreasing intensity. When the reaction mixture is further 

maintained at 240 oC, an increase in the absorption is observed, this was not 

observed when PVP was present. This difference may be attributed to the capping 

ability of PVP preventing the particles from growing indefinitely. In its absence, 

uninhibited particle growth and aggregation are possible.    
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Figure 6.27: Left: UV-Vis of [Fe(acac)3] in TEG (blue line). Right: UV-Vis of the 

reaction as a function of temperature. 

 

XRD analysis was employed for phase identification, but due to the high 

level of noise an accurate phase assignment is not possible (Figure 6.28). However, 

the appearance of broad peaks does confirm that the particles are, at least partially, 

crystalline. 

TEM analysis of the particles showed large structures with ill-defined limits, 

and sizes larger than 20 nm (Figure 6.29). The crystalline nature of the particles was 

also confirmed with this technique. By comparing the particle morphology and size 

with the PVP capped system, it can be seen that PVP plays a major role in the 

synthesis of IONPs.  
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Figure 6.28: XRD pattern of nanoparticles. The XRD patterns of α-Fe2O3, Fe3O4 

and FeO are plotted for comparison.[31, 50,57] 
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Figure 6.29: Low and high resolution TEMs of Fe3O4 nanoparticles. 

 

 

6.7.3.2 EXAFS Analysis 

 

Figure 6.30 shows the in situ FTs and k3-weighted EXAFS of the reaction 

studied in this section. From 30-170 oC a sharp peak is observed in the range 1-2 Å 

that originates from the Fe-O first shell of [Fe(acac)3]. The intensity of this peak 

gradually decreases with increasing temperature, but remains relatively stable after 

190 oC. The EXAFS above 2 Å proves complex, possibly due to the data quality, 

and therefore contributions of higher shells could not be assigned reliably. 

However, at 220 oC, a doublet can be observed at 2.5-4 Å, this originates from the 

second Fe-Fe shell typically observed in iron oxides.  
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Figure 6.30: FTs (left) and k3-weighted EXAFS (right) plots showing the 

formation of Fe3O4 nanoparticles from [Fe(acac)3[ in TEG. 

 

Table 6.4 shows the EXAFS fitting results of [Fe(acac)3] in TEG. A single 

Fe-O scattering path was detected with a CN of 6.5 (±0.8) and bond distance of 1.96 

A) B) 
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(±0.03) Å. The k3-weighted EXAFS and corresponding FT of [Fe(acac)3] in TEG 

are shown in Figure 6.31. 

 

Table 6.4: EXAFS parameters derived for [Fe(acac)3] in TEG. 

 

Sample 

 

Path 

 

CN 

 

REXAFS 

(Å) 

 

σ2 (Å2) 

 

R factor 

[Fe(acac)3] 

in TEG 
    Fe-O 6.5 (±0.8) 1.96 (±0.03) 0.002 (±0.001) 0.038 
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Figure 6.31: k3-weighted EXAFS and corresponding FT of [Fe(acac)3] in TEG. 

 

 

6.8 Conclusions 
 

 

In this chapter, the liquid phase thermal decomposition of [Fe(acac)3] in organic 

solvents was investigated by in situ XAS.  

Upon dissolution of the [Fe(acac)3] in oleylamine, XANES and EXAFS 

analysis showed that oleylamine has an effect on the structure of [Fe(acac)3] and 

that it coordinates to the Fe center, forming species with suggested structure of 

[FeO3N3]. The structure of this species was found to remain stable up to 70 oC – to 

our knowledge this is the first time this structural change has been reported. LCF 

analysis showed that the decomposition of [Fe(acac)3] in oleylamine proceeds 

smoothly, while two iron oxide species (α-Fe2O3 and Fe3O4) are involved in the 

reaction. When the decomposition took place in TEG/PVP, the reaction profile was 
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substantially different. A sudden transformation of [Fe(acac)3] to Fe3O4 was 

observed at 160 oC, accompanied by complete consumption of the [Fe(acac)3]. 

EXAFS analysis showed that in TEG/PVP the first shell of the precursor species 

comprises of six Fe-O bonds. The same was observed in case of TEG only. 

Interestingly, when the reaction was performed in TEG only, FeO was observed in 

the LCF. The decomposition again proceeded smoothly in this case.  

In summary, from the XANES profiles it can be concluded that the most 

efficient solvent system for magnetite nanoparticle synthesis is TEG in the presence 

of PVP. It is clear that the presence of the stabilizing agent affects the 

decomposition process of the iron precursor. The reason for this observation is 

unclear, however a possible contribution of PVP to the process could be the slightly 

reducing character of PVP assisting in the reduction process. However, the solvent 

also plays a crucial role in the phase and morphology of the final nanoparticles. 

In addition, this systematic study illustrates the potential of the experimental 

set-up to study high-temperature, solution-phase nanoparticle synthesis via XAS. 

This is the first time a reaction system of this type has been probed, in real-time by 

XAS, and this set-up could easily be applied to other elements and reaction systems.  
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Chapter 7. Conclusions, Summary And Future Work 

 

7.1. Conclusions and Summary  
 

The main aim of the work presented in this thesis was to investigate the speciation 

of molecular precursors in reaction media employing XAS and to monitor in situ 

the thermally induced decomposition of these precursors that leads to nanoparticle 

formation. Nanomaterials investigated varied from noble metals, such as Au and 

Pd, to iron oxides. Custom made in situ cells were developed and/or used 

throughout this thesis to accommodate the reaction mixtures, while allowing the 

collection of XAS data in transmission or fluorescence mode. In this thesis, it has 

also been highlighted that the development of appropriate XAS cells is crucial for 

the successful outcome of the experiments presented throughout this thesis. 

The focus of the studies presented in Chapter 3 was to investigate the 

speciation of the molecular precursor [AuCl4]
- in a series of growth solutions that, 

upon nucleation, lead to the formation of isotropic and anisotropic Au 

nanoparticles. There are many open questions with regard to the shape selectivity 

in these syntheses, and the studies presented herein aimed to elucidate the structure 

of the molecular species, an aspect that is often overlooked. The results showed that 

the presence of halides greatly affects the structure of [AuCl4]
-. The presence of 

[Br]-, either existing intrinsically in the growth solution due to the use of CTAB or 

because it is added from an external source (NaBr), resulted in the formation of 

[AuBr4]
- species in each case. These species lead to rod shaped particles under 

selected experimental conditions, suggesting that this structure is necessary for this 

shape selectivity to be expressed. It is suggested that the modulation of the reduction 

potential of the precursor through coordination of [Br]- is a significant aspect in the 

Au nanorod synthesis. In addition, a secondary role of the [Br]- may also be to adjust 

the reduction potential of the Au precursor by displacing any [OH]- groups ligating 

on the Au precursor due to hydrolysis effects. 

Several studies have shown that the addition of [I]- in growth solutions 

results in Au nanoparticles with nanoplate morphology. The XAS results in this 

case showed that the coordination of [I]- on the [AuBr4]
- is not a favourable process, 
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instead a reduction of the oxidation state from Au3+ to Au+ occurred. As a result, in 

this case it is suggested that the main factor that affects the morphology of the 

nanoparticles is most likely the stabilisation tendency of [I]-, rather than its 

coordinating ability. The results from Au L3-edge studies on the growth solution 

that contained Ag+ showed that Ag+ has no significant effect on the speciation of 

[AuX4]
- (X=Cl, Br), but it is also likely that Ag+ cannot be detected due to its small 

amount. Another key finding of these studies is that [AuCl4]
- precursor species 

favour the formation of concave cubed-shaped Au nanoparticles, in the presence of 

Ag+. The Ag K-edge studies showed that changes to the structure of the AgNO3 

precursor also occur. XANES and EXAFS analysis showed that the initial structure 

of AgNO3 undergoes changes depending on the halide present. As expected, in 

growth solutions containing [Cl]-, [Br]- and [I]-, the AgNO3 becomes AgCl, AgBr 

and AgI. Interestingly, these structures undergo a second change upon nucleation, 

and from Ag+ they become metallic Ag. The XANES fingerprint of the nanoparticle 

solutions that contain Ag indicates that it is metallic in all cases, and that an 

interaction with the Au also exists. EXAFS analysis of the CTAB stabilised Au 

nanorods showed severe undercoordination of the Ag-Ag and Ag-Au primary 

shells, indicating that Ag is found in near surface regions of the particles.  

Chapter 4 discusses the applicability of XAS to study, in situ, the synthesis 

of Au nanoparticles in EG. More precisely, two reactions are investigated: the 

decomposition of [AuCl4]
- in EG in the presence and absence of PVP. Prior to any 

XAS measurements on the reactions, studies were performed to ensure the stability 

of the [AuCl4]
- upon exposure to the synchrotron X-rays. It was demonstrated that 

the effect of beam induced nucleation (an effect known to occur in EDXAS 

beamlines) also occurs in beamlines using bending magnets. The introduction of an 

Al foil was proven to be successful in preventing this effect, and allowed us to 

monitor the decomposition of [AuCl4]
- without any interference from the beam. In 

Chapter 4 it was also revealed that the synchrotron X-rays may also affect the 

reaction media, which is EG in this case. This interaction is suggested to be in the 

form of radicals that possibly help in accelerating the decomposition of [AuCl4]
-. 

Thus, in both reaction studies herein, the decomposition took place at temperatures 

lower compared to the ones observed in a typical polyol process (~160 oC).  
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The results from the in situ XAS investigation of the decomposition of 

[AuCl4]
- in EG showed that a sequential bond cleavage is taking place, and the 

XANES profiles indicates that Au species with intermediate oxidation states may 

be present. In the reaction where PVP is absent, comparison of the XANES of the 

40th minute of the reaction with the XANES of the AuCl standard suggests at this 

point the prevalent species have Au+ oxidation state. After that minute, until the 

reaction finishes, an isosbestic point is observed, indicating that only two species 

are involved from now on as the reaction progresses. These species are Au+ and 

Au0. Interestingly, EXAFS analysis at the initial Au-Au formation stage revealed 

an Au-Au bond length expansion up to 1.7%. 

At the reaction where PVP is present, an Au-Cl bond cleavage was also 

observed. However, in this reaction, the bond cleavage is accompanied with a 

concomitant increase in the intensity of a peak in the XANES, which is 

characteristic of Au0. This is different to what was observed in the absence of PVP, 

where an increase in the intensity of this peak was observed after sometime, 

signalling the presence of an induction period. In addition, in the presence of PVP, 

the results showed that the nucleation is observed at almost double the reaction time, 

when compared to the reaction in the absence of PVP. This clearly illustrates that 

PVP has an effect on the overall process. EXAFS analysis showed that Au-Au bond 

length expansion at the initial stages of Au nanoparticles formation is also observed 

in the presence of PVP. EXAFS analysis also showed that the CNAu-Au of the final 

particles in the presence of PVP is smaller, compared to the CNAu-Au of the particles 

in the presence of EG, demonstrating the capping abilities of PVP.  

The studies of Chapter 5 involved investigations on two sets of Au-Pd 

bimetallic nanoparticles, synthesised in oleylamine/xylene. The nanoparticles were 

prepared using Au(ethynyl-1-cyclohexanol) (noted as Au(I)) and [Pd(acac)2], and 

phase transferred [AuCl4]
- (noted as Au(III)) in the presence of [Pd(acac)2] too. 

Notably, the Au(ethynyl-1-cyclohexanol) precursor was used for the first time in 

the synthesis of Au-Pd bimetallic nanoparticles.  

The results from the characterisation studies of the two sets of nanoparticles 

showed that when Au(I)/[Pd(acac)2] are used, the nanoparticles present a more 

pronounced alloy character with no clear sign of segregated phases, as was 

confirmed by XAS, TEM and UV-Vis. When Au(III)/[Pd(acac)2] were used, an Au 
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core-Pd shell morphology is favoured, while monometallic Pd was also observed in 

the TEM analysis.  

Speciation studies revealed that the structure of [Pd(acac)2] is dependent on 

the molar ratio of Pd to oleylamine used. When the Pd:Oleyl molar ratio is 1:2, then 

the structure of [Pd(acac)2] becomes [Pd(acac)(RNH2)2][acac], whereas when the 

ratio Pd:Oleyl is 1:6 or more, then the prevalent species are Pd(acac)(RNH2)(C
3-

acac). The latter structure has not been reported as the initial species in studies 

investigating the mechanism of thermal decomposition of [Pd(acac)2] in oleylamine.  

In addition, it is the first time that the formation of Pd(acac)(RNH2)(C
3-acac) 

species has been reported to occur in the presence of a primary amine. The results 

of these studies also showed that the presence of Au salts does not affect the 

speciation of [Pd(acac)2] at room temperature. 

XAS was the key characterisation technique used in the speciation studies 

of the Au precursors.  EXAFS analysis of [AuCl4]
-  in water showed four [Cl]- in 

the primary shell, but upon mixing with oleylamine, changes are induced on its 

structure, and one [Cl]- and three nitrogens can be detected. These changes were 

also observed in the XANES. Upon two hours of stirring this sample, XANES and 

EXAFS revealed a reduction to the oxidation state from Au3+ to Au+, while two 

nitrogens were detected in its primary shell, possibly forming [Au(RNH2)2] species. 

In addition, an aurophillic interaction was also observed between the Au+ centres. 

The XANES of the Au(I) precursor when pelletised and when dissolved in 

oleylamine didn’t show any significant change.  

In order to better understand the decompositions, the syntheses were 

monitored via in situ XAS. The results showed that [Pd(acac)2] was found to 

decompose at a higher temperature in the presence of the [Au(RNH2)2] species 

compared to the decomposition temperature in the presence of the Au(I) precursor. 

This clearly shows that the Au salt has an effect on the decomposition pathway of 

the [Pd(acac)2], and that the nature of the salt further influences the distribution of 

the metals in the final nanoparticles.  

The nanomaterials of interest in Chapter 6 were iron oxide nanoparticles. 

The importance of this study is illustrated by the fact that, for the first time, we were 

able to monitor via in situ XAS the formation of iron oxides in liquid media at high 

temperatures (>200 oC). The high temperature solution phase reactions in liquids 
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were not previously accessible, and this set of work demonstrates only a small 

aspect of the research that could be undertaken in this field. The development and 

use of an appropriate in situ cell was crucial for the success of these studies.  

The XANES and LCF profile of the thermal decomposition of [Fe(acac)3] 

in oleylamine showed a gradual decomposition of the molecular precursor as the 

temperature increases, and formation of magnetite as the final product of the 

reaction. Hematite was also detected during the reaction, according to LCF analysis. 

EXAFS analysis showed that oleylamine coordinates to the Fe through the 

displacement of three out of the six oxygens that [Fe(acac)3] originally has in its 

first coordination sphere. The effect of oleylamine on the structure of [Fe(acac)3] is 

reported for the first time, to our knowledge. The suggested structures of these 

species [FeO3N3] remained stable up to ca 70 oC and later decomposed to form iron 

oxides. The validation of this observation was derived from performing the 

experiment in a non-coordinating and non-amine containing solvent (dodecane).  

The results from the decomposition of [Fe(acac)3] in TEG were 

substantially different compared to the oleylamine system. From the beginning of 

the reaction up to 150 oC, the gradual decomposition of [Fe(acac)3] is concomitant 

with the gradual formation of hematite and magnetite, while after that temperature 

there is a sudden consumption of the precursor, and the phase fraction of hematite 

drops to zero, while the phase fraction of magnetite reaches 100%.  Notably, the 

decomposition of [Fe(acac)3] in TEG only, showed a different reaction profile, 

suggesting an influence of PVP on the decomposition pathway. In this reaction, 

sudden changes in the phase fractions of the species involved were not observed. 

[Fe(acac)3] decomposed gradually over the course of reaction time as the 

temperature was raised, while an amount of FeO was also detected in the LCF 

analysis. The decomposition of [Fe(acac)3] in TEG/PVP was found to be the most 

favourable for the formation of magnetite nanoparticles.  

 

7.2 Future work 
 

Even though the studies presented in Chapter 3 deal with the speciation of the 

starting material in the seed mediated approach, future work could have the same 

focal point but be expanded to other synthetic strategies. As it was shown, the 
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reaction media have a significant effect on the structure of the precursor, thus 

understanding the precursor species it is of vital importance in order to gain insight 

on the nanoparticle formation process. 

Chapter 4 mainly illustrated the importance of identifying potential beam 

effects when a reaction system is studied at synchrotron radiation facilities, while 

the methodology that was developed is directly transferrable to other reaction 

systems of interest. 

Potential continuation of the work presented in Chapter 5, could involve 

completion of the set of studies of the thermal decomposition of Au(III)/[Pd(acac)2], 

by monitoring the reaction via in situ XAS at the Au L3-edge. Unfortunately, this 

data couldn’t be acquired in the studies presented herein due to the restricted 

amount of time during synchrotron based experiments. In addition, further studies 

could expand in investigating the effects of different molar ratios of precursors 

and/or reagents used in the syntheses and also explore the effects of different amines 

on the speciation of the metal precursors. Since these studies present a small fraction 

of the bimetallic systems that could potentially be studied, future studies may also 

focus on combinations of other metals.  

In the studies presented in Chapter 6, the results were derived mainly 

through XANES and LCF analysis. Due to the same nature of the ligands in the first 

shell of the molecular precursor and the possible products of these reactions, 

identification of the contribution of each of these species to the final EXAFS was 

unlikely. However, this does not limit future studies on iron oxides systems, as the 

decomposition of molecular precursors with distinctively different ligands 

compared to the ones of the products of the reaction may also be possible. Hence, 

EXAFS analysis could be employed.  

The high temperature thermal decomposition of molecular precursors in 

solution to form nanoparticles is a general approach to a variety of nanoparticle 

systems. As a result, the above methodology can also be applied to other elements, 

such Co and Ni.  

Almost every synthetic route reported in literature provides a potential 

avenue to expand on any of these chapters. In order to design materials for high-

performance technological applications, precise control over the structure and the 

morphology of the nanocrystals is a prerequisite. Information on the synthesis 
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reactions, the precursor species and the effects of reaction conditions on the final 

particles will provide a profound understanding and will enable the more efficient 

design of nanomaterials for targeted applications.  
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APPENDICES 

 

Appendix 3 

 

 

Figure A3.1: CTAB- stabilized Au nanoparticle seeds. 

 

 

 

Figure A3.2: CTAC- stabilized Au nanoparticle seeds. 



Appendix 

239 
 

        

Figure A3.3: Citrate- stabilized Au nanoparticle seeds.  

 

  

Figure A3.4: High resolution tem and particle size histogram of CTAB Au 

nanorods. 

 

Figure A3.5: Edge length histogram of CTAB Au nanoplates. 
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Figure A3.6: Low resolution Au nanospheres observed in the synthesis of CTAB 

Au nanoplates.  

 

 

Figure A3.7: High resolution TEM and particle size histogram of CTAB Au 

nanospheres. 
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Figure A3.8: High resolution TEM and edge length histogram of CTAC Au 

concave nanocubes. 

 

  

 

 Figure A3.9: High resolution TEM and particle length histogram of CTAC Au 

nanorods.  

  

 

Figure A3.10: High resolution TEM and particle size histogram of CTAC Au 

nanospheres. 
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Table A3.1: k and R ranges used during the curve fitting analysis of Au L3-

edge data.  

        

         Sample 

 

Edge        Path K range R range 

CTAB Au 

nanorods 
Au L3 Au-Au 3-12 1.5-3 

CTAB Au 

nanoplates 
Au L3 Au-Au 3-12 1.5-3 

CTAB Au spheres Au L3 Au-Au 3-12 1.5-3 

CTAC Au concave 

cubes 
Au L3 Au-Au 3-12 1.5-3 

CTAC Au 

nanorods 
Au L3 Au-Au 3-12 1.5-3 

CTAC Au spheres Au L3 Au-Au 3-12 1.5-3 

 

 

 

Table A3.2: k and R ranges used during the curve fitting analysis of Ag K-edge 

data.  

 

Sample Path K range R range 

Ag foil Ag-Ag 2-14 1.5-3 

AgNO3 Ag-O 2.6-8 1.5-3 

AgCl Ag-Cl 2.37-8.25 1.5-3 

AgBr Ag-Br 1.7-8 1.5-3 

AgI Ag-I 2-8 1.5-3 

CTAC-AgNO3 Ag-Cl 2.36-8 1.5-3 

CTAC –HCl–[AuCl4]
- – 

AgNO3 
Ag-Cl 2.36-8 1.5-3 

CTAC –HCl–[AuCl4]
- – 

NaI–AgNO3 
Ag-I 2-8 1.5-3 

CTAB nanorods Ag-Ag 

Ag-Au 
1.7-8 1.5-3 
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Appendix 5 

 

Table A5.1: Acquisition mode and k- and R- range fitting parameters for each 

sample.  

 

Sample Edge k-Range R-Range Mode 

[Pd(acac)2] pellet Pd K 1.4-13 1-3 Transmission 

[Pd(acac)2] in 

dodecane 

Pd K 1.4-13 1-3 Transmission 

[Pd(acac)2] in oleyl 

1:2 

Pd K 2.8-10 1.1-2.5 Transmission 

[Pd(acac)2] in oleyl 

1:30 

Pd K 2.5-10 1.1-2.5 Fluorescence 

AuCl4
- in water Au L3 2.9-10 1.5-2.5 Transmission 

AuCl4
- upon 

mixing with 

oleylamine 

    Au L3 3-9.7 1.6-2.5 Fluorescence 

AuCl4
- upon 

mixing in 

oleylamine after 2 

hours stirring 

 

Au L3 

 

3-10.5 

 

1.5-3.2 

 

Fluorescence 

Au(I)-Pd ex situ Pd K 2.44-11.1 1.8-3.5 Transmission 

 Au L3 3.1-10 1.2-3.5 Transmission 

Au(III)-Pd ex situ Pd K 2.44-11.1 1.8-3.4 Fluorescence 

 Au L3 3.1-10 1.8-3.5 Fluorescence 

In situ 

decomposition 

Au(I)/ [Pd(acac)2] 

rt and 40 oC 

 

Pd K 

 

2.5-10 

 

1.1-2.5 

 

 

Transmission 

 

In situ 

decomposition 

Au(I)/[Pd(acac)2] 

110 oC, 130 oC, 

and rt after cooling 

 

 

Pd K 

 

 

2.74-10 

 

 

1.5-3.3 

 

 

 

Transmission 

 

In situ 

decomposition 

Au(I)/[Pd(acac)2] 

90 oC-RT after 

cooling 

 

 

Au L3 

 

 

2.65-10 

 

 

1.5-3.6 

 

 

Fluorescence 

In situ 

decomposition 

[AuCl4
-]/ 

[Pd(acac)2] 

30 oC, 110-165 oC 

 

Pd K 

 

2.5-10 

 

1.5-3.6 

 

Fluorescence 
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Figure A5.1: Pd K-edge of intermediate scans of poor quality of the thermal 

decomposition of [Pd(acac)2] / Au(I) in oleylamine/xylene.  
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Figure A5.2: Au L3-edge data of Au(I) plotted in k-space. 

 

Table A5.2: Structural parameters derived for the in situ thermal 

decomposition of [Pd(acac)2] / [AuCl4]- in oleylamine/xylene  at Pd K-edge. 

 

Temperature 
oC 

Path CN(±) R (Å) (±) σ2 (Å2) (±) R factor 

30 oC 

 

Pd-O 1.9 (0.2) 2.03 (0.01) 0.001 (0.0006) 

0.020 Pd-N 0.9 (0.2)  2.08 (0.01) 0.001(0.0006) 

Pd-C 0.9 (0.3) 2.10 (0.01) 0.001 (0.0006) 

40 oC 

 

Pd-O 1.9 (0.1) 2.01 (0.01) 0.001 (0.0005) 

0.012 Pd-N 0.9 (0.2) 2.06 (0.01) 0.001 (0.0005) 

Pd-C 0.9 (0.2) 2.09 (0.01) 0.001 (0.0005) 

50 oC 

 

Pd-O 1.9 (0.1) 2.01 (0.01) 0.001 (0.0006) 

0.016 Pd-N 0.9 (0.2) 2.06 (0.01) 0.001 (0.0006) 

Pd-C 0.9 (0.3) 2.09 (0.01) 0.001 (0.0006) 

60 oC 

 

Pd-O 2.0 (0.2) 2.01 (0.01) 0.002 (0.0007) 
0.021 

Pd-N 1.1 (0.3) 2.07 (0.01) 0.002 (0.0007) 

Pd-C 1.1 (0.3) 2.08 (0.01) 0.002 (0.0007)  

70 oC 

 

Pd-O 2.1 (0.2) 2.00 (0.01) 0.002 (0.0007) 
0.020 

Pd-N 1.1 (0.2) 2.05 (0.01) 0.002 (0.0007) 

Pd-C 1.1 (0.3) 2.08 (0.01) 0.002 (0.0007)  

80 oC 

 

Pd-O 2.0 (0.2) 2.01 (0.01) 0.002 (0.0007) 
0.025 

Pd-N 1.1 (0.3) 2.06 (0.01) 0.002 (0.0007) 

Pd-C 1.1 (0.4) 2.09 (0.01) 0.002 (0.0007)  

90 oC 

 

Pd-O 2.0 (0.2) 2.02 (0.01) 0.002 (0.0007) 
0.023 

Pd-N 1.1 (0.3) 2.06 (0.01) 0.002 (0.0007) 
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Pd-C 1.1 (0.3) 2.08 (0.01) 0.002 (0.0007)  

100 oC 

 

Pd-O 2.0 (0.2) 2.03 (0.01) 0.002 (0.0006) 

0.019 Pd-N 1.0 (0.2) 2.08 (0.01) 0.002 (0.0006) 

Pd-C 1.1 (0.3) 2.11 (0.01) 0.002 (0.0006) 

110 oC Pd-O 2.0 (0.2) 2.05 (0.01) 0.003 (0.0008) 

0.029  Pd-N 1.0 (0.3) 2.10 (0.01) 0.003 (0.0008) 

 Pd-C 1.1 (0.4) 2.08 (0.01) 0.002 (0.0006) 

120 oC Pd-O 1.9 (0.1) 2.05 (0.01) 0.004 (0.0006) 

0.012  Pd-N 1.0 (0.2) 2.10 (0.01) 0.004 (0.0006) 

 Pd-C 1.0 (0.3) 2.13 (0.01) 0.004 (0.0006) 

 Pd-Au 1.0 (0.3) 2.81 (0.02) 0.004 (0.0006)  

140 oC Pd-O 2.0 (0.2) 2.10 (0.01) 0.007 (0.001) 

0.016 
 Pd-N 1.0 (0.2) 2.16 (0.01) 0.007 (0.001) 

 

 

Pd-C 1.1 (0.3) 2.18 (0.01) 0.007 (0.001) 

Pd-Au 1.0 (0.1) 2.76 (0.02) 0.003 (0.002) 

150 oC 

 

Pd-Pd 4.8 (1.2) 2.75 (0.01) 0.008 (0.002) 
0.020 

Pd-Au 1.2 (1.0) 2.80 (0.06) 0.008 (0.002) 

165 oC 

 

Pd-Pd 5.3 (1.0) 2.76 (0.01) 0.007 (0.001) 
0.020 

Pd-Au 2.7 (0.9) 2.86 (0.02) 0.007 (0.001) 

 

Lattice parameters were derived from Huw Marchbank using TOPAS.[1] For the 

Au(I)-Pd the lattice spacing was found to be 3.98264 ± 0.00669 with the goodness 

of the fit at  10.669. That value corresponds to an alloy with almost 50% Pd 

character and 50% Au.[2].For the Au(III)-Pd the lattice spacing was found at 

4.00370  ± 0.03425 with the goodness of the fit at 17.673. The error at the second 

decimal place is large, and it doesn’t allow for accurate value for the spacing to be 

calculated in this case.  
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Appendix 6 

 

Table A6.1: Acquisition mode and k- and R- range fitting parameters for each 

sample. 

Sample K range R range 

[Fe(acac)3] 

pellet 
2.47-10.5 1.2-3.3 

[Fe(acac)3] 

in dodecane 
2.6-8 1.5-3 

[Fe(acac)3]  

in oleylamine 
2.37-8.25 1.5-3 

[Fe(acac)3] 

in oleylamine rt 
2.55-9 1-2.3 

[Fe(acac)3] 

in oleylamine 30 oC 
2.55-9 1-2.3 

[Fe(acac)3] 

in oleylamine 40 oC 
2.55-9 1-2.3 

[Fe(acac)3] 

in oleylamine 50 oC 
2.55-9 1-2.3 

[Fe(acac)3]  

in oleylamine 60 oC 
2.55-9 1-2.3 

[Fe(acac)3] 

in oleylamine 70 oC 
2.55-9 1-2.3 

[Fe(acac)3] 

in TEG/PVP  
1.7-8 1.5-3 

[Fe(acac)3] 

in TEG 
2.3-8 1.2-2.5 

 

          

 

Figure A6.1: High resolution TEM micrographs of an aliquot of the [Fe(acac)3] 

in oleylamine reaction withdrawn at 90 oC. 
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Table 6A.2 shows the EXAFS parameters derived from the curve fitting analysis of 

the in situ dataset [Fe(acac)3] in dodecane as a function of temperature. The CN of 

Fe-O remains 6 throughout the entire experiment while the errors of R and σ2 are in 

the range of ± 0.01-0.03 and ± 0.0008-0.001 respectively.  

 

Table A6.2: EXAFS parameters derived from the curve fitting analysis of the 

in situ dataset [Fe(acac)3] in dodecane. 

Temperature oC Scatter REXAFS (Å) σ2 (Å2) R factor 

30 O           1.99         0.002          0.020 

40 O 2.00 0.002 0.012 

50 O 2.03 0.003   0.017                                        

60 O 2.03 0.002 0.012 

70 O 2.02 0.003 0.012 

80 O 2.03 0.002 0.022 

90 O 2.02 0.003 0.008 

100 O 2.03 0.003  0.017                                        

110 O 2.03 0.002 0.012 

120 O 2.02 0.003 0.012 

130 O 2.03 0.002 0.022 

140 O 2.0 0.003 0.008 

150 O 2.0 0.003   0.017                                        

160 O 2.01 0.002 0.014 

170 O 2.00 0.003 0.033 

180 O 2.00  0.003 0.036 

190 O 2.00 0.003 0.038 

200 O 2.00 0.004   0.043                                        

210 n/a n/a n/a n/a 

220 O 2.00  0.006 0.031 

rt after cooling O 2.00         0.002   0.013                                          

 

 

 

 

 

 

 

 

 


