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Abstract. Pharmacokinetic analysis of Positron Emission Tomography
(PET) data typically requires at least one hour of image acquisition,
which poses a great disadvantage in clinical practice. In this work, we pro-
pose a novel approach for pharmacokinetic modelling with significantly
reduced PET acquisition time, by incorporating the blood flow informa-
tion from simultaneously acquired arterial spin labelling (ASL) magnetic
resonance imaging (MRI). A relationship is established between blood
flow, measured by ASL, and the transfer rate constant from plasma to
tissue of the PET tracer, leading to modified PET kinetic models with
ASL-derived flow information. Evaluation on clinical amyloid imaging
data from an Alzheimer’s disease study shows that the proposed ap-
proach with the simplified reference tissue model can achieve amyloid
burden estimation from 30-min [18F]florbetapir PET data and 5-min si-
multaneous ASL MR data, which is comparable with the estimation from
60-min PET data (mean error= −0.03). Conversely, standardised uptake
value ratio (SUVR), the alternative measure from the data showed a pos-
itive bias in areas of higher amyloid burden (mean error= 0.07).

1 Introduction

Position Emission Tomography (PET) is currently the most sensitive in vivo
molecular imaging technique to provide a non-invasive assay of the human body.
Dynamic PET image data acquired following the injection of a radioactive tracer
allows the use of pharmacokinetic modelling techniques to quantify a range of
biological, physiological and biochemical parameters. However, a typical dynamic
PET scan requires at least 1 hour to sufficiently cover the underlying processes.
The long scan duration is prohibitive for routine clinical use, where time is
limited, and data integrity is risked by the increased chance of subject motion.

Currently clinical imaging in PET is often performed using single time point
estimates (static imaging) of tracer uptake, such as the standardised uptake
value ratio (SUVR). SUVR, a semi-quantitative measure of uptake, is the ra-
tio of the activity concentration within a region relative to the concentration
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in a tissue which is free from the imaging target, called the reference region. It
usually requires 10 mins of PET data, which are acquired once non-specifically
bound tracer reaches equilibrium between a region and the reference tissue, ap-
proximately 50 mins or more post injection. This measure is expected to corre-
late with fully quantitative estimates derived from the full dynamic PET data.
However, changes in blood flow affect the delivery of the tracer to tissue and
consequently alter the tracer concentration in the tissue when a static image is
acquired. Without the blood flow information contained in the early dynamic
data, there is no way to account for the influence of the changes in blood flow,
thus SUVR values can be biased. This has been highlighted in longitudinal stud-
ies, where pathophysiological changes in blood flow have caused spurious changes
in SUVR values which do not reflect imaging target abundance. [1]. The esti-
mates derived by kinetic modelling are not biased in this way, as the full dynamic
curve contains blood flow information, which is parametrised within the model.
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Result:  
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Fig. 1: Dynamic PET acquisition for
amyloid burden quantification and time
reduction for the proposed method.

In neuroimaging, cerebral blood
flow can be measured using arterial
spin labelled (ASL) MRI, where mag-
netically tagged blood is used as an en-
dogenous contrast agent. With the ad-
vent of PET-MRI scanners, this infor-
mation can be acquired concurrently
with PET data. Therefore the blood
flow information from the ASL can be
used in pharmacokinetic analysis when
the early part of a dynamic PET scan,
which involves blood flow, is not col-
lected. This will lead to the reduction
of PET acquisition time needed to per-
form pharmacokinetic modelling.

In this work, we propose a novel ap-
proach for combining PET and ASL
information to derive the parameters
of interest with a greatly reduced scan-
ning time, Figure 1. To our knowledge,
this is the first time that ASL blood
flow estimates have been used to perform PET kinetic analysis to reduce image
acquisition time. We evaluated the proposed approach in an AD study using
[18F]florbetapir, a PET radiotracer that binds to amyloid-β, which is considered
to be an important target in the AD brain.

2 Methods

2.1 CBF estimation with ASL MRI

The cerebral blood flow (CBF) map is estimated from pseudo continuous arte-
rial spin labelling (PCASL) data using the relationship established in [2]. The
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parameter values used in this work were 0.9ml/g for the plasma/tissue partition
coefficient, a blood T1 value of 1650ms, and a labelling efficiency of 0.85.

2.2 Amyloid-β burden estimation with SRTM

In this work, the simplified reference tissue model (SRTM) [3] was used to quan-
tify the PET data. SRTM describes the tracer-target interaction using a single
tissue compartment model. Using the tracer time activity curve in the reference
region CR(t) as an input function, the operational equation between the tracer
time activity curve in the target tissue CT (t) and CR(t) is formulated as:

CT (t) = R1CR(t) + (k2 −R1
k2

1 +BPND
)CR(t)⊗ e−

k2
1+BPND

t
, (1)

where t denotes time and t = 0 at tracer injection, R1 is the local rate of delivery
in the target tissue relative to reference tissue, k2 is the rate constant from target
tissue to blood, BPND is the binding potential that is proportional to the density
of amyloid-β, and ⊗ denotes the convolution operator. Cerebellar grey matter
is used as the reference region to derive CR(t) as it is considered to be devoid
of amyloid-β in this study [4]. BPND, as the outcome measure of interest to
represent the amyloid-β burden, can then be estimated together with R1 and
k2 by performing curve-fitting using (1) with CT (t) and CR(t) extracted from
PET data acquired from tracer injection over a sufficient duration. We used a
linearised version of SRTM [5] to calculate BPND, R1 and k2 from dynamic PET
data of 0:60 mins as the gold standard.

2.3 SRTM with incomplete PET scan and CBF

Population-based extrapolation of reference input CR(t) To estimate
BPND using the PET data where the early part from the tracer injection is absent
(t ∈ [ts, te], ts > 0), firstly extrapolation is required to have the reference input
CR(t) for t ∈ [0, ts] so that the convolution term in (1) can be calculated. In this
work the whole reference input CR(t) for t ∈ [0, te] was generated using a single
tissue compartment model CR(t) = K ′1e

−k′2t ⊗ αAIF (t). If we assume AIF (t),
t ∈ [0, te] is a population arterial input function with α being an individual
scaling factor, k′2 a population rate constant from reference tissue to blood, and
K ′1 an individual rate constant from blood to reference tissue, then K ′1α can be
estimated by scaling a measured population-based reference input curve CpR(t),
t ∈ [0, te] to match the individual CR(t), t ∈ [ts, te] to generate CR(t), t ∈ [0, te].

R1 estimation with CBF ASL is used to measure the CBF, flow denoted by
F , which is converted into a pseudo R1 estimate to use in SRTM. R1 is defined
as R1 = K1/K

′
1 where K1 is the rate constant from blood to target tissue and

K ′1 is the rate constant from blood to reference tissue.
Based on the Renkin-Crone model, the relationship between K1 and F can

be described as
K1 = EF = (1− e−PS

F )F, (2)
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where E denotes the net extraction, P is the vessel permeability and S the surface
area. Under common physiological conditions of flow, where PS is high (> 3ml ·
100g−1 ·min−1), the relationship between K1 and flow F is linear. In the absence
of knowledge on PS across the brain, we assume that it is sufficiently high such
that the relationship between K1 and F , and in turn the relationship between
R1 and F , can be approximated as a linear function. Linear regression between
R1 and F was performed on a group of subjects, and the linear relationship was
then applied to a different group of subjects to convert CBF to a pseudo R1

value for estimating BPND with incomplete PET data.

SRTM with CBF-derived R1 and extrapolated CR(t) Rewrite (1) as
C ′T (t) = φCR(t)⊗ e−θt, where C ′T (t) = CT (t)− R1CR(t) is calculated from the
CT (t) and CR(t) extracted from the measured PET data for t ∈ [ts, te], and R1 is
derived from the CBF. Here, φ = k2−R1k2/(1 +BPND) and θ = k2/(1 +BPND)
are unknown. To solve φ and θ, we used the basis functions defined in [5] to pre-
calculate the convolution term using the extrapolated CR(t), t ∈ [0, te] with a
range of biologically plausible values for θ. BPND and k2 are then derived from
φ, θ and the CBF-derived R1.

3 Experiments and Results

Data We evaluated the proposed method on data from 11 cognitively normal
subjects participating in Insight 46, a neuroimaging sub-study of the MRC Na-
tional Survey of Health and Development, who underwent amyloid PET and
multi-modal MR imaging on a Siemens Biograph mMR PET/MR scanner. List
mode PET data were acquired for 60 mins following intravenous injection of
[18F]florbetapir, a radiotracer that binds to amyloid-β. For PET image recon-
struction, simultaneously acquired structural MR was used to synthesise CT
data and calculate the µ-map [6]. Dynamic PET data were binned into 15s× 4,
30s×8, 60s×9, 180s×2, 300s×8 time frames, and reconstructed using the man-
ufacturer’s software with corrections for dead-time, attenuation, scatter (based
on the synthesised CT), randoms and normalisation. PCASL data were acquired
using a 3D GRASE readout with voxels of 1.88× 1.88× 4mm. 10 control-label
pairs were acquired with a pulse duration and post labelling delay of 1800ms.

Data Processing Framework T1-weighted images were parcellated [7] into
amygdala, pons, brainstem, cerebellum (white and grey separately), hippocam-
pus, cerebral white matter, putamen, thalamus and 6 cortical grey matter re-
gions, with left and right hemispheres combined. The T1-weighted image was
rigidly registered to both ASL and PET space, and the transformation was
propagated to the parcellation. Regional average CBF values were calculated,
and the PET time activity curves were averaged across the region prior to ki-
netic modelling. PET data acquired during 30:60 mins were used to evaluate
the proposed method. To estimate the reference region activity in the missing
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time frames, a population averaged reference input was extracted from 14 age
matched subjects with 60-mins [18F]florbetapir PET data. To establish the re-
lationship between the CBF and R1 values, linear regression was performed on
data from 5 subjects and the proposed approach was tested on the remaining 6
subjects. A summary of the data processing framework is shown in Figure 2.
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Fig. 2: Overview- parcellation is registered to PET and ASL to calculate regional
average values. ASL data is converted into CBF-derived R1 values using the
linear regression relationship. A population reference tissue time activity curve
of 0:60 mins combined with the measured reference tissue data (30:60 mins) is
used with the CBF-derived R1 and the measured PET tissue data (30:60 mins),
to apply the modified simplified reference tissue model to estimate BPND.

3.1 Comparison of proposed method with gold standard

Figure 3a shows BPND, the measure of the amyloid burden, estimated using the
proposed method with 30:60 mins data plotted against the gold standard using
the full 60-min dynamic data. Linear regression of all subjects and regions shows
that the proposed method offers a good approximation of the gold standard as
it closely follows the line of identity (blue dashed line), which is within the 95%
confidence interval (CI) of the regression (shaded area). Furthermore, subject
specific Pearson correlation coefficients, ρ, show a high linear correlation.

The alternative measure used in clinical practice, SUVR−1, was calculated
from PET data over 50:60 mins for comparison, Figure 3b. Whilst ρ is still
high for each subject, a clear bias is shown as SUVR− 1 overestimates the
binding potential at higher values. The mean error quantifies the bias between
the estimates and the gold standard which is 0.0740 for SUVR− 1, indicative of
the systematic overestimation, compared to −0.0311 for the proposed method.
The proposed method also has a lower mean square error (0.0151 compared to
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Binding Potential (Gold standard- full PET time series)
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Fig. 3: Estimated amyloid burden against the gold standard value calculated
using full PET time series.

0.0247 for SUVR− 1), and variance (0.0142 compared to 0.0194 for SUVR− 1).
Figure 4 shows BPND maps for a subject, comparing the gold standard with the
proposed method and SUVR − 1 regionally. The proposed method shows good
agreement with the gold standard, with slight overestimation of the cortical white
matter. For the SUVR−1 estimation, amyloid burden is greatly overestimated
within both grey and white matter structures. The difference map shows that
the errors in the proposed method are far lower than for SUVR−1.

SUVR-1 Proposed SUVR-1 Proposed Gold standard 

Amyloid burden Difference Amyloid burden Amyloid burden 

Fig. 4: Regional average binding potential maps for (left to right) gold standard,
proposed method, SUVR−1, difference maps compared to gold standard.

3.2 Influence of R1 estimation on amyloid quantification

Whilst Figure 3a demonstrates a high similarity between binding potential es-
timation using the gold standard and the proposed method, there is a noise
component which introduces variation around the line of identity. This is due
to noise in the PET data, noise in the CBF-derived R1 estimate from the ASL
data, and inaccuracies in the estimation of the reference tissue input.
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To demonstrate the influence of the CBF-derived R1 estimate using ASL
data, the proposed method was applied using the R1 estimated using the gold
standard technique instead of the CBF-derived R1. The population input func-
tion and 30:60 mins PET data were used as before. This represents the optimal
case in which R1 can be determined exactly from the ASL data. Figure 5a shows
that the variance in the binding potential estimate has been reduced (from 0.0142
to 0.008), and the linear regression line lies along identity with a narrow CI. This
is expected since the CBF map from the ASL is noisy, and linear regression per-
formed to determine the relationship between CBF and R1 was performed with
only 5 subjects, and therefore may not be generalisable. However, for the data
used in this study the estimation of R1 from CBF is sufficiently accurate that
the BPND estimates between the proposed method using CBF-derived R1 and
gold standard R1 are comparable and there is a reduced bias in the estimates.

Figure 5b compares BPND estimation using 30:60 mins PET data only to
the gold standard to demonstrate the need of a CBF-derived R1. Due to the
lack of data to support the kinetic modelling, the results are noisy and extreme
parameter estimates occurred for some regions. These points are beyond the
display range in Figure 5b and have skewed the linear regression such that it no
longer follows the identity line, and the 95% CI extends beyond that shown.
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Fig. 5: Estimated binding potential plotted against the gold standard value cal-
culated using full PET time series

4 Discussion and Conclusion

This work demonstrates that the proposed method produces estimates of amy-
loid burden which are comparable to full pharmacokinetic modelling of 0:60-mins
[18F]florbetapir PET data, using just 30:60-mins of PET data together with
blood flow information from ASL. The proposed method is more accurate than
the simplified estimate of amyloid burden, SUVR−1, which showed a positive
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bias especially at higher binding potential values. The results of the proposed
technique depend on the CBF-derived R1 estimate from the ASL data. The ASL
data used here were acquired for only 5 minutes without motion correction, and
thus susceptible to artefacts and noise. Linear regression between CBF and R1

using just 5 subjects could produce errors which may propagate to the binding
potential estimation. To reduce the influence of errors in the CBF maps on the
parameter estimation, a more complex kinetic model will be explored in future
work to penalise the deviation of R1 estimation from the CBF-derived R1 value.
The relationship between CBF from ASL and PET R1 will be further explored
to tune this regularisation scheme. The application of this technique to PET
tracers which bind to other biological targets of interest will also be explored.
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