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Solid-state spin arrays are being engineered in varied systems, including gated coupled quantum dots and
interacting dopants in semiconductor structures. Beyond quantum computation, these arrays are useful integrated
analog simulators for many-body models. As entanglement between individual spins is extremely short ranged
in these models, one has to measure the entanglement entropy of a block in order to truly verify their many-body
entangled nature. Remarkably, the characteristic scaling of entanglement entropy, predicted by conformal field
theory, has yet to be measured. Here, we show that with as few as two replicas of a spin array, and capacitive
double-dot singlet-triplet measurements on neighboring spin pairs, the above scaling of the entanglement entropy
can be verified. This opens up the controlled simulation of quantum field theories, as we exemplify with uniform
chains and Kondo-type impurity models, in engineered solid-state systems. Our procedure remains effective even
in the presence of typical imperfections of realistic quantum devices and can be used for thermometry, and to
bound entanglement and discord in mixed many-body states.

DOI: 10.1103/PhysRevB.94.241117

Introduction. More than two decades of active research
in quantum information processing has promoted various
quantum technologies, which are believed to have resulted
in a new industrial revolution [1]. One of the major goals,
which dates back to Feynman [2], is to simulate complex
interacting quantum systems, which are intractable with
classical computers, with an engineered and controllable
quantum device, the so-called quantum simulator [3]. Unlike
general-purpose quantum computers, which are supposed
to be programmable to achieve different tasks, quantum
simulators are designed for a specific goal, which make
them easier to realize. Indeed, so far cold atoms [4] and
ions [5] have been used for successfully simulating certain
tasks. Nevertheless, solid-state-based quantum simulators are
still highly in demand due to the fact that (i) they provide
more versatile types of interactions and stronger couplings
compared to cold atoms and ions, and (ii) the quest towards
miniaturization in electronics has reached the quantum level,
making solid-state quantum devices feasible [6].

Much theoretical research has been conducted to under-
stand the highly entangled structures appearing in the ground
state of quantum many-body systems [7]. For a given biparti-
tion A and B of the whole system, which is assumed to be in
the pure state ρAB = |ψAB〉〈ψAB |, the entanglement entropy is
quantified by Sα(ρA) = Sα(ρB), where ρA = TrB ρAB and Sα

is the Renyi entropy, defined as

Sα(ρ) = 1

1 − α
log Tr[ρα], (1)

for different values of α. When α → 1, the Renyi entropy
reduces to the von Neumann entropy S1(ρ) = − Tr[ρ log ρ].
The importance of the entanglement entropy is twofold:
(i) It quantifies the entanglement between A and B; and
(ii) the discovery of its area law dependence in noncritical
systems has immensely contributed to the development of
efficient approximation techniques [8] for describing many-
body systems. On the other hand, in critical one-dimensional
systems with open boundary conditions, conformal field theory

analysis shows that there is a logarithmic correction, as

Sα(x) = c

12

(
1 + 1

α

)
log

[
2N

π
sin

(
πx

N

)]
+ κα, (2)

where x is the size of the contiguous block A starting at one end
of system, and N is the total size. When N � x � 1, the usual
scaling Sα ∝ log x is obtained. This formula is very general
and the central chargec only depends on the universality class
of the model, while the constants κα are model dependent
[9–11]. In spite of the extensive theoretical literature on
entanglement entropy, its experimental measurement is a big
challenge. For itinerant bosonic particles it has been proposed
[12,13], and recently realized [14], to use beam-splitter
operations or a discrete Fourier transform to measure Sα .
Alternatively measuring entropy through quantum shot noise
has been proposed [15,16], but has yet to be realized. On
the other hand, in nonitinerant spin systems, the situation
becomes even more difficult and the only proposal so far is
to use spin-dependent switches [17], which are difficult to
build.

Here, we put forward a proposal for measuring Sα in
a spin system without demanding time-dependent particle
delocalization or spin-dependent switches. While our setup
can be realized in different physical systems, we target it
to solid-state systems, such as gated quantum dot chains
[18–24] or dopant arrays [6,25–27]. Our procedure is based
on well-established singlet-triplet measurements, which are
now routinely performed either via charge detection [28] or
capacitive radio-frequency reflectometry [29–32].

Measuring entanglement entropy. Our goal is to measure
Sα for arbitrarily integer values of α � 2. For simplicity,
we explain the procedure for α = 2 and then generalize it
for higher values. Inspired by previous alternative proposals
[12,13,17,33,34], we make use of two copies of a spin array in
the state ρ1 ⊗ ρ2 (ideally, for perfect copies, ρ1 = ρ2). Each
copy is identically divided into two complementary blocks: A1

and B1 for the first copy, A2 and B2 for the second one (see
Fig. 1). Let x be the number of spins in A1 (and A2). We define
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FIG. 1. Scheme for the measurement of the entanglement entropy
for α = 3 using three copies of the same spin chain. Each spin
chain is divided into Ai (yellow spins) and Bi (blue spins). By
performing sequential singlet-triplet measurements of a pair of spins
in neighboring chains it is possible to estimate Sα=3(ρA) (see the
discussion in the text), which measures the entanglement between A

and B.

the multispin SWAP operator acting on A1 and A2 as

P A
12 ≡

x⊗
�=1

SWAP
(
�A1 ,�A2

)
, (3)

where SWAP(�A1,�A2 ) swaps the two spins at the �th sites in A1

and A2. Since all the operators SWAP(�A1 ,�A2 ) are commuting,
it is simple to show that〈

P A
12

〉 = Tr
[
P A

12 ρ1⊗ρ2
] = Tr

[
ρA1ρA2

] = Tr
[
ρ2

A

]
, (4)

where the last equality holds if the two copies are identical,
namely, ρA1 ≡ ρA2 ≡ ρA. Therefore, Eq. (4) implies that S2 =
− log 〈P A

12〉 can be obtained via a sequential measurement of
pairwise SWAP operators acting on the different spins of A1

and A2, as shown in Fig. 1.
The above procedure can be generalized to higher integer

values of α by considering α copies of the spin array in the
state ρ⊗α = ⊗α

�=1 ρ� (where ideally all the ρ�’s are equal).
Remarkably, sequential measurements of multispin SWAP

operators acting on neighboring copies a and a + 1, namely,
P A

a,a+1, are sufficient to measure the Renyi entropy. This is
simple, but not trivial, as better explained in the Supplemental
Material [35], because some P A

(a,a+1)’s for different a are
noncommuting. However, we show that the simple sequential
measurement, exemplified also in Fig. 1, corresponds to
the measurement of the operator P

(A)
12...α , which is defined

recursively by the formula

P A
12...α = P A

α,α−1P
A
1...α−1 + P A

1...α−1P
A
α,α−1

2
. (5)

For example, for α = 3 this reduces to P A
123 = (P A

23P
A
12 +

P A
12P

A
23)/2 and 〈P A

123〉 = (Tr[ρA1ρA2ρA3 ] + Tr[ρA1ρA3ρA2 ])/2,
so that for perfect copies 〈P A

123〉 = Tr [ρ3
A]. In general, using

Eq. (1), we have Sα(ρA) = (1 − α)−1 log 〈P A
12...α〉. We stress

that P A
12...α is ultimately written in terms of nearest-neighbor

multispin SWAP operators P A
(a,a+1). This makes the procedure

scalable in the laboratory as one has to first measure P A
12, then

P A
23, and so forth until P A

α−1,α .
Solid-state spin chains. When exactly one electron is

trapped in each quantum dot, the interactions between confined
electrons in quantum dot arrays are restricted to the spin sector,
and are described by the Heisenberg Hamiltonian

H =
N−1∑
k=1

Jkσ k · σ k+1, (6)

where Jk is the exchange coupling between neighboring sites
and σ k = (σx

k ,σ
y

k ,σ z
k ) is the vector of Pauli operators acting on

site k. The couplings Jk can be locally tuned by appropriately
changing the local gate voltages. The system can be initialized
into its ground state either by cooling, when temperatures is
below its energy gap, or using an adiabatic-type evolution [36],
when the temperature is higher.

Singlet-triplet measurements on two electrons trapped in
adjacent quantum dots is now a well-established technique
for spin measurements in solid-state physics [28,30–32,37].
In quantum mechanical language the singlet-triplet measure-
ments on a pair of electrons in dots a and b correspond to
projective measurements of the SWAP operator, as one can
show

SWAP(a,b) =
∑

μ=±,0

|tμ〉〈tμ| − |s〉〈s| = 1 + σ a · σ b

2
, (7)

where |s〉 = (|↑a↓b〉 − |↓a↑b〉)/
√

2 is the singlet state,
and |t+〉 = |↑a↑b〉, |t0〉 = (|↑a↓b〉 + |↓a↑b〉)/

√
2, and |t−〉 =

|↓a↓b〉 are the triplet states. The outcome of this measurement
is either +1 for triplet outcomes, and −1 for the singlet one.

By comparing Eqs. (7) and (3) it is now clear that, for
any given bipartition, we can use a sequence of singlet-triplet
measurements to obtain the outcome of the operators P A

1...α and
thus compute all the Renyi entropies Sα for all integer α � 2.
As described before, and shown also in Fig. 1, the total number
of singlet-triplet measurements to be performed for a single
outcome is xα, where x is the number of spins in subsystem
A. To measure P A

1...α we first switch off the Jk’s within each
array, and then lower the barriers between pairs of spins in two
different arrays to perform the singlet-triplet measurements.
A recently developed multiplexer structure [38] containing
two parallel arrays of quantum dots is a promising setup,
which can be adapted for measuring S2 with our proposed
mechanism. Motivated by this operating device, and for the
sake of simplicity, in the rest of this Rapid Communication
we focus on α = 2. Numerical results are obtained with
either density matrix renormalization group (DMRG) or exact
diagonalization for short chains.

Application 1: Conformal field theory in the laboratory. We
first present how field theory predictions, given in Eq. (2), can
be verified for a uniform chain where Jk = J , for all k’s. In
the thermodynamic limit N → ∞ it is known that the central
charge is c = 1. In Fig. 2(a) we plot the Renyi entropy S2 as
a function of log [ 2N

π
sin (πx

N
)] in a chain of length N = 60.

For open boundary conditions, finite-size effects are known
[9] to give rise to an alternating behavior of S2(x) = S

(U )
2 +

(−1)xS(A)
2 . Using the methodology of Ref. [39] we extract

the uniform part S
(U )
2 , which is dominant for N → ∞ and
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FIG. 2. (a) Scaling of S2 and its uniform part S
(U )
2 in terms of

different sizes of block A, for a chain of N = 60. (b) Scaling of the
central charge c as a function of length N .

follows the scaling of (2). In Fig. 2(a) we also plot S
(U )
2 in red

colors, showing perfect linear scaling. From the slope of this
line we can extract the central charge c, which asymptotically
approaches its thermodynamic limit value, c = 1. This can be
seen in Fig. 2(b), where we also plot the fitting function c =
1 − 0.7536N−0.2848. Such slow convergence is due to finite-
size corrections to the field theory predictions [40], which here,
for simplicity, we have absorbed into the definition of c.

Application 2: Impurity entanglement entropy. Introducing
one or more impurities in the system can change its behavior
dramatically. A paradigmatic example is the single-impurity
Kondo model [41] in which a single impurity in a gapless
system creates a length scale ξ , known as the Kondo length.
The scaling features of Kondo physics can be captured by
a spin chain emulation of this model [39]. This is described
by Eq. (6), where J1 = J ′, while all other couplings remain
uniform Jk = J (for k � 2). Moreover, the length scale is
determined by J ′ as ξ ∝ eg/J ′

for some constant g. The
presence of the impurity modifies the scaling of Eq. (2) when
x < ξ . In order to capture the impurity contribution of the
entanglement entropy we extend the ansatz of Ref. [39] for S1

to generic Sα and define the impurity entanglement entropy as

S(imp)
α (x,N,ξ ) = S(U )

α (x,N,ξ ) − S(U )
α (x − 1,N − 1), (8)

where S(U )
α (x,N,ξ ) is the Renyi entropy of a block of size x in a

chain of length N and impurity coupling J ′, which determines

ξ , while S(U )
α (x − 1,N − 1) represents the bulk contribution of

the uniform chain when the impurity is removed. In Fig. 3(a)
we plot the S2(x,N,ξ ) and its uniform part S

(U )
2 in a chain of

length N = 60. The bulk contribution of the uniform chain,
i.e., S2(x − 1,N − 1), and its uniform part S

(U )
2 (x − 1,N − 1)

are plotted in Fig. 3(b). The qualitative difference between
Figs. 3(a) and 3(b) is due to the different parities (i.e., even
and odd) of the chains.

The emergence of the length scale implies that
S

(imp)
2 (x,N,ξ ) is only a function of the ratios S

(imp)
2 (x/N,N/ξ ).

To verify this scaling we fix N/ξ and plot S
(imp)
2 as a function

of x/N for different lengths N . To keep N/ξ fixed, J ′ has
to be tuned according to Ref. [42]. The results are shown in
Fig. 3(c) where, as predicted, the curves of different chains
collapse onto each other. Although the data collapse becomes
better by increasing the system size, Fig. 3(c) shows that the
scaling predictions can be captured even in relatively small
chains.

Application 3: Entanglement spectrum. For any pure state
ρAB the eigenvalues of ρA are called the entanglement
spectrum [43], whose analysis is important to characterize
quantum phase transitions [44,45]. The eigenvalues of ρA are
the roots of q(λ) = det(λ1 − ρA), which can be written as
q(λ) = ∑

k gkλ
k . According to Ref. [46], the coefficients gk

can be obtained algorithmically from Tr [ρα
A] for α = 1, . . . ,k.

Since these traces can be measured with our procedure, one can
build q(λ) and hence obtain the full entanglement spectrum.
Clearly, given a maximum number of copies αmax, one can
find the entanglement spectrum for block sizes as large as
x = log2 αmax.

Application 4: Thermometry via purity measurement. One
of the biggest challenges in solid-state experiments is to
measure the true temperature of electrons, as it is normally
higher than the temperature of the refrigerator. Remarkably,
our scheme enables us also to measure the electronic tem-
perature via singlet-triplet measurements, assuming that the
system is in a thermal state ρβ = e−βH /Z. Our approach is
based on three distinctive features of engineered solid-state
structures: (i) The exchange integral J can be varied; (ii) the
purity P(β,J ) = Tr [ρ2

β] = e−S2(ρβ ) can be measured with our
scheme by taking two copies and x = N ; and (iii) computing
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FIG. 3. (a) The Renyi entropy S2(x,N,ξ ) and its uniform part S(U )
2 in a chain of length N = 60. (b) The bulk Renyi entropy S2(x − 1,N − 1)

and its uniform part S
(U )
2 (x − 1,N − 1) in a homogeneous chain of 59 sites without impurity. (c) Data collapse for different chains when J ′ is

tuned to keep N/ξ = 2.
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FIG. 4. (a) Average E[S2(ρ{δ}
A )] over 1000 random sets of cou-

plings J
(j )
k = Jk(1 + ε

(j )
k ), where j = 1,2 refers to the different

copies, Jk = J , and ε
(j )
k is uniformly distributed in [−δ, + δ] for

different block sizes x. (b) Monte Carlo simulation of E[S2(ρ{Bnuc}
A )]

for the effect of random fields B
(j )
k as a function of the strength

of the hyperfine interaction Bnuc. In both figures the entropies are
normalized with respect to the error-free case S2(ρA), and N = 10.

the energy expectation E(β,J ) = Tr[Hρβ] is reduced to
singlet-triplet measurements on neighboring sites of one of the
arrays, owing to Eqs. (7) and (6). A simple calculation reveals
that ∂P(β,J )

∂J
= β

J
[2E(β,J ) − E(β,2J )]P(β,J ). Aside from β,

all the quantities in the above equality can be measured either
directly [namely, P(β,J ) and E(β,J )] or through the variation
of J [namely, ∂P(β,J )

∂J
and E(β,2J )]. In summary, owing to the

above equality, using different singlet-triplet measurements
with different values of J , it is possible to infer β and thus the
temperature.

Application 5: Bounding entanglement and discord in
mixed states. The Renyi entropy of a block A is a measure
of entanglement between A and B only if ρAB is a pure
state. However, we show that it is still possible to bound
the amount of entanglement and discord also for mixed
states by measuring both Sα(ρA) and Sα(ρAB). The distillable
entanglement ED , an operational entanglement measure,
satisfies the hashing inequality [47], ED � maxX=A,B I1(X),
where I1(X) = S1(ρX) − S1(ρAB). Similarly, for the quantum
discord D(A|B), which is an asymmetric measure of quan-
tum correlations between A and B [48], it is known that
D(A|B) � I1(A) and similarly D(B|A) � I1(B) [49]. The
von Neumann entropy S1 can be extrapolated [50] from Sα

for different integers α � 2, which can be measured with our
scheme. However, we show that I1 can also be bounded by
directly measuring S2(ρA) and S2(ρAB), which require only
two replicas. Indeed, since S2(ρ) � S1(ρ) � f [S2(ρ)], where
f is given in Ref. [51], we obtain I1(X) � I2(X), where
I2(X) = S2(ρX) − f [S2(ρAB)]. For either X = A,B, I2(X)
thus provides a measurable lower bound to entanglement and
discord.

Imperfections. Realistic experimental imperfections may
introduce errors, e.g., by making the different copies non-
identical. Our protocol provides Tr[ρA1ρA2 ], as given in

Eq. (4), which may deviate from the ideal case Tr [ρ2
A].

Indeed, imperfect fabrication may result in random couplings
J

(j )
k →Jk(1 + ε

(j )
k ), where j is the index of different copies

and ε
(j )
k is a random number uniformly distributed between

[−δ, + δ]. In Fig. 4(a) we calculate the average E[S2(ρ{δ}
A )]

over 1000 random sets of couplings for different block sizes
x, normalized with respect to its value at δ = 0. As the
figure shows, the average entropy increases by increasing
δ. Moreover, up to δ = 10%, the outcomes are almost
indistinguishable from the error-free case.

The second source of imperfections is due to the hyperfine
interaction with the nuclear spins in the bulk, which effectively
introduces an extra term

∑
k B(j )

k · σ k in the Hamiltonian
(6), where each component of the random fields has a
normal distribution with zero mean and variance Bnuc. Unlike
the randomness in the couplings, which is constant over
different experiments being due to the fabrication, the effective
random fields are different in any experimental repetition. To
realistically model this, we perform a Monte Carlo simulation
of real experimental outcomes (see the Supplemental Material
for details). The results are shown in Fig. 4(b) for different
block sizes x. For realistic values of Bnuc = 0.1J [28], we
see that the entanglement entropy is only slightly affected by
hyperfine interactions. The increasing trend of the entropy as
a function of the noise, which is consistent with Ref. [52], is
further discussed in the Supplemental Material.

Conclusions. We propose a scheme to experimentally
measure the entanglement between blocks in engineered
solid-state quantum devices. Our procedure is based on
singlet-triplet measurements which are routinely performed
in quantum dot systems. All the Renyi entanglement entropies
Sα for integer α � 2 can be measured via α replicas of the
system. Although for uniform chains the convergence of the
central charge is slow, the logarithmic scaling predictions
can already be verified with reasonably small system sizes
(�60). Moreover, in the Kondo impurity model we found
that the impurity contribution in the Renyi entropy satisfies
a universal scaling law. Despite the fact this law has been
obtained in the thermodynamic limit, remarkably, it can be
observed for chains as small as N � 30. In addition, our
scheme enables the measurement of the purity of the whole
system, which allows one to measure the true temperature of
electrons in a thermal state. Our procedure remains effective
even in the presence of typical imperfections due to imperfect
fabrication and hyperfine interactions. Although our scheme
has been targeted to quantum dot arrays, the same protocol
can also be realized in other systems, such as dopants in
silicon [26].
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