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ABSTRACT: Cryptic pockets, that is, sites on protein targets
that only become apparent when drugs bind, provide a
promising alternative to classical binding sites for drug
development. Here, we investigate the nature and dynamical
properties of cryptic sites in four pharmacologically relevant
targets, while comparing the efficacy of various simulation-
based approaches in discovering them. We find that the
studied cryptic sites do not correspond to local minima in the
computed conformational free energy landscape of the
unliganded proteins. They thus promptly close in all of the
molecular dynamics simulations performed, irrespective of the force-field used. Temperature-based enhanced sampling
approaches, such as Parallel Tempering, do not improve the situation, as the entropic term does not help in the opening of the
sites. The use of fragment probes helps, as in long simulations occasionally it leads to the opening and binding to the cryptic sites.
Our observed mechanism of cryptic site formation is suggestive of an interplay between two classical mechanisms: induced-fit
and conformational selection. Employing this insight, we developed a novel Hamiltonian Replica Exchange-based method
“SWISH” (Sampling Water Interfaces through Scaled Hamiltonians), which combined with probes resulted in a promising
general approach for cryptic site discovery. We also addressed the issue of “false-positives” and propose a simple approach to
distinguish them from druggable cryptic pockets. Our simulations, whose cumulative sampling time was more than 200 μs, help
in clarifying the molecular mechanism of pocket formation, providing a solid basis for the choice of an efficient computational
method.

■ INTRODUCTION

Drug discovery is an increasingly expensive endeavor as many
therapeutic discovery projects fail in clinical trials.1−5 Late-stage
failures are especially costly, and lack of efficacy of lead
compounds is often cited as the main reason for them. This
problem might be addressed by using validated targets. In the
postgenomic era, an increasing number of validated targets with
a well-defined role in disease are arising from large-scale
genomic sequencing complemented by proteome analysis.6

However, not all validated targets are therapeutically tractable
(or “druggable”).7−9 Many attractive targets involve protein−
protein interactions (PPI) or other allosteric regions lacking
apparent binding sites and for a long time were considered
undruggable. This notion is now changing as an increasing
number of proteins previously considered intractable have been
successfully targeted with small molecules, greatly extending the
range of usable targets.10,11 What is more, many validated
targets have ligandable pockets, which are not obvious from
structural information on the unbound protein and only
become clear when a drug is bound. These “cryptic” or
“hidden” pockets offer an attractive opportunity for therapy, as
it was recently shown in the case of K-RAS, the most
commonly mutated oncogene in human cancers. For 30 years,

researchers had tried and failed to develop K-RAS inhibitors, to
the point it was thought to be undruggable. Yet very recently, a
new cryptic pocket was found by tethered compounds and
successfully targeted.12 The molecular mechanism by which
cryptic sites are formed is not clear. Although ligands seem to
be necessary in their opening, it is still debated whether they do
it by an induced-fit, conformational selection, or a “mixed”
mechanism.13−15 Because of these uncertainties and their
hidden nature, cryptic pockets are difficult to identify by both
experimental and computational methods.
Many available cryptic pocket structures, such as those

studied here, were discovered serendipitously. They helped to
understand the nature of these sites and their potential use as
therapeutic targets. Available experimental approaches rely on
expensive procedures such as large-scale fragment screening,16

site-directed tethering,17 or the use of antibodies.18 As cryptic
pockets are mostly not evolved to bind small molecules and
likely have fewer possible binders as compared to catalytic sites,
the discovery effort has to be more focused.19 Simulations and
modeling can play a significant role in the systematic search for
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cryptic sites. Ad hoc machine learning approaches are starting
to emerge,20 but they rely on experimentally known cryptic
pockets, whose number is still limited. Many early attempts to
identify cryptic pockets by atomistic simulations were limited
by the short time-scale accessible,21,22 sampling effectively side-
chain rearrangements, but less successful in predicting more
significant conformational changes.23 Simulations using small
organic fragments as probes24−27 and mixed-solvent28 have
been quite successful in identifying binding hot-spots. For
instance, in the case of the eukaryotic translation initiation
factor 4E protein, a cryptic pocket that opens only transiently
during MD simulations with water is stabilized by a water−
benzene mixture.28 Yet they are also limited by the time-scale
problem and cannot usually find cryptic sites that take longer to
open.29 The ever-increasing computational resources allowed
cryptic pocket predictions based on much longer simulations
complemented by Markov state models.30 Still, even long
simulations, lasting hundreds of microseconds, fall short when
dealing with transient, high-in-energy pockets.
Enhanced sampling techniques have been successfully

employed to accelerate the exploration of the relevant
conformational space in complex biological systems31−33 and
were successful in localizing cryptic pockets.34,35 Unfortunately,
many of these methods, as Umbrella Sampling,36 Metady-
namics,37,38 or Transition Path Sampling,39 rely on the use of
Collective Variables (CVs) or a path approximating the
reaction coordinate, and require prior knowledge on the
location and features of the opening pockets. As this knowledge
is mostly unavailable for cryptic binding sites, significant efforts
have been devoted to design general CVs, such as JEDI,40

which sample the opening of hydrophobic cavities. These CVs,
however, still require prior knowledge on the location of the
binding sites. Methods based on multiple replica of the system
such as Parallel Tempering (PT)41 or Hamiltonian Replica
Exchange (HREX)42 offer an attractive alternative to CV-based
enhanced sampling approaches, but thus far have not been
systematically employed for this purpose.
The aim of this work is both to devise a robust and generally

applicable simulation-based approach and to better understand
the driving forces for cryptic pocket formation.15,43 We
compare long MD simulations with both Parallel Tempering
and a novel HREX-based approach “SWISH” (Sampling Water
Interfaces through Scaled Hamiltonians) in combination with
fragment-based simulations, on four systems. Three are of

pharmaceutical interest and harbor experimentally validated
cryptic pockets: TEM1 β-lactamase,44 interleukin-2 (IL2),45

and Polo-like kinase-1 (PLK1)46 (see Figure 1). β-Lactamase is
responsible for widespread antibiotic resistance due to its ability
to hydrolyze β-lactam antibiotics. Its cryptic binding site, which
is not observed in the apo crystal structure,47 has been
discovered serendipitously44 when crystals revealed two small
organic molecules inserted at a predominantly hydrophobic
interface between α-helices H11 and H12, 1.6 nm away from
the active site. IL2 plays a key role in the activation of T-cells
and in the rejection of tissue grafts.10 Its cryptic binding site
coincides with its partner protein binding surface. The
discovery of this cryptic site led to one of the earliest examples
of successful small-molecule inhibitor against PPIs. The site
elongates across the natural PPI interface, of which a significant
part is apolar, and has been explored with increasingly longer
ligands, revealing a surprisingly large pocket.45 PLK1 is a
validated anticancer target in which phosphorylation-dependent
PPIs play a crucial role in regulating cell mitosis. Its cryptic site
was discovered in a complex with a synthetic phosphopeptide,46

revealing a binding cavity that is not exposed when bound to
natural peptides.48 The fourth system, Ubiquitin, is not known
to harbor cryptic pockets. It has been chosen to act as a control
for “false positives” as its structure has been characterized by
crystallography and its flexibility and weak superficial binding
sites by NMR.49,50

■ RESULTS AND DISCUSSION

We begin with testing whether or not the cryptic pockets are
populated in the absence of the ligands allowing their sampling
by long unbiased MD simulations.22,30 We run several long MD
simulations of TEM1, IL2, and PLK1 with different force-fields
for 1−5 μs each. However, they fail to reveal an appreciable
opening of the cryptic sites when starting from the apo crystal
structures (see Supporting Information and Figure S2).

Cryptic Pockets Are Unstable without Ligands and
Higher Temperature Does Not Improve Their Sampling.
The Parallel Tempering41 approach does not rely on the choice
of system-dependent CVs and significantly enhances the
sampling through excursions at higher temperatures; it is thus
a seemingly suitable method for our purpose. However, to our
initial surprise, increasing the temperature does not help
exploring the cryptic sites for any of our chosen systems (see

Figure 1. Crystal structures of TEM1 (A), IL2 (B), and PLK1 (C) complexes showing the cryptic sites bound to ligands, and their corresponding
regions in apo structures, in which the pockets are unidentifiable. Protein surfaces are colored by element: cyan, red, blue, and yellow for carbon,
oxygen, nitrogen, and sulfur, respectively. Cryptic binding sites in holo structures are circled in green with corresponding surface patch of apo
structure displayed in red ovals. Ligands are shown in sticks with fragments that bind to cryptic sites highlighted in orange. Alternative comparison
between the apo and holo structures is shown in Figure S1.
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Figure 2A and Figure S3). Throughout the 500 ns-long
multiple replica simulations, the known cryptic sites remained
mostly unidentifiable with an average exposure (see Supporting
Information) of 23%, 8%, and 13% for TEM1, IL2, and PLK1,
respectively. To better understand this, we investigated the
TEM1 cryptic site stability and its thermodynamic balance.
Starting equilibrium simulations from the open (holo-like)

conformation with ligands removed, we repeatedly observe a
prompt pocket closure irrespective of the force-field used.
Indeed, the results obtained with amber0351 and amber14SB52

are in qualitative agreement with those obtained with
amber99SB*ildn;53−55 while with charmm22*56,57 we observe
local unfolding (see Supporting Information and Figure S4).
The thermodynamic balance of the binding site formation

was further studied with Parallel Tempering Metadynamics
(PTMetaD) simulations.58 We estimated the free energy
surface (FES) describing the interconversion between apo-
and holo-like structures of TEM1 in the absence of the ligands.
As CVs we used root mean squared deviation (RMSD) from
the open and closed crystal structures and coupled the
simulations to a range of temperatures (see Methods). The
reconstructed FES shows that, as expected, the dominant state
of β-lactamase is akin to the crystallographic apo structure in
which the cryptic site is closed (Figure 2B). However, it also
confirmed that the holo structure does not correspond to a
stable minimum, and pocket opening is thus rarely observed.
After reweighting the FES59 as a function of the pocket
exposure (see Figure 2C), it is clear that the open conformation
is ∼3 kcal/mol higher in energy, disfavoring the formation of
the cryptic site. Figure 2C also reiterates the lack of a minimum
and, as a result, a real transition state for cryptic site opening. In
turn, this explains the lack of any significant pocket opening in
the long equilibrium simulations. While fully open states are
much higher in energy, the calculated free energy profile is in
agreement with previous suggestions that equilibrium fluctua-
tions can sample partially open states.30 As the sampling of the
open states might be force-field dependent, we repeated the

PTMetaD simulation using the same amber03 force-field of ref
30. Although the cryptic pocket is still unstable, the protein
spends significantly more time in a partially open conformation
(see Figure S5). Not only the main minimum is shifted from
∼0 to 20% partial exposure, but also the energy penalty to
achieve an exposure above 80% is 1 kcal/mol less than that of
the amber99SB*-ILDN force-field.
As expected from the PT simulations, the free energy

difference between apo and holo is hardly affected by the change
in temperature (see Figure 2B,C). The estimated entropic
contribution to the conformational change indeed was found to
be very small and negative for both force-fields (see Figure S6),
explaining why pocket exploration is not helped by higher
temperatures. However, we cannot exclude alternative roles of
entropy in other systems.

SWISH Approach Efficiently Explores the Cryptic
Pockets. Our above-discussed results are suggestive of a
major role of the ligands in opening and stabilizing the cryptic
sites. As the druggable pockets are known to be apolar/
hydrophobic,8,40,60,61 we sought an enhanced sampling
approach that would replicate the effect of a small ligand by
changing the protein−water interactions. Inspired by simu-
lations with probes27 and studies about the water−protein
interaction effect on protein folding and stability,62,63 we
developed the HREX-based technique SWISH (Sampling
Water Interfaces through Scaled Hamiltonians). By progres-
sively scaling the nonbonded interactions of solvent molecules
with protein atoms, we shift the water properties toward more
ligand-like behavior to increase cryptic site opening. After a few
trials, we found that the best results are obtained by applying
the scaling to apolar protein atoms only: carbon and sulfur (see
Supporting Information). The higher is the value of scaling
factor λ, the stronger is water affinity to apolar protein surface
patches. Our preliminary tests have also shown that the range
of λ needs to be chosen sensibly to avoid the unfolding of the
proteins. We settled for a range of λ that keeps the fluctuations

Figure 2. TEM1 cryptic site stability without a ligand. (A) Violin plots of pocket exposure distribution at different temperatures during unbiased
Parallel Tempering simulation. Reference values for apo and holo crystal structures are indicated with red and green dashed lines, respectively. For
clarity, only every third replica is shown, to see full range of replicas for TEM1, IL2, and PLK1 systems in Figure S3. (B) Two-dimensional free
energy surfaces at different equilibrium temperatures as a function of RMSD relative to apo and holo crystal structures. (C) Reweighted free energy as
a function of pocket exposure with an image of pocket lining atoms used to estimate this variable visualized as a surface and ligand shown in orange
sticks. All of the above results show instability of the cryptic pocket conformation.
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of the α-carbon RMSD similar to those observed in the Parallel
Tempering simulations.
We performed 500 ns long SWISH simulations for each

target system. In all three cases, we found that as λ increases,
the known druggable sites become more exposed (Figure 3).

This positive result suggests that the approach can be effective
in cryptic binding site exploration even without ligands. As
expected, the pocket population in replicas with λ = 1.0,
corresponding to the standard Hamiltonian, is low, in
agreement with the previous results of the other enhanced
sampling approaches.

Fragments Bind to the Cryptic Sites with a Mixed
Mechanism. With the further support for the hypothesis of
ligand-induced cryptic pocket formation, we chose to perform a
series of equilibrium simulations with probe molecules. We
selected a set of six hydrophobic ring molecules: benzene,
pyridine, imidazole, indole, pyrimidine, and tetrahydropyran,
each of which are within the top 15 most common ring
fragments in the FDA approved drugs,64 benzene being the
most common. We solvated the TEM1 apo structure with pre-
equilibrated water boxes with ∼1 M probe concentration. To
prevent phase separation, we used interligand repulsive
potentials similar to those previously used in the literature.24

For each probe, we ran 32 independent replicas of 100 ns in
length. We observe several trajectories in which the fragments
bind to the TEM1 cryptic pocket (see Figure S7), shifting the
equilibrium to significant exposure. Closer inspection of the
resulting structures from successful trajectories shows a wide
open cryptic site bound by a few molecules intercalated
between the helices 11 and 12 akin to the holo crystal structure.
In the presence of ligands, the open conformations clearly
correspond to an energy minimum. However, there is a great
variability between the individual trajectories. In many cases,
the ligands were unable to discover the site. Moreover, they
tend to interact with unspecific sites on the surface. Extending
the simulations up to a microsecond still proved to be
insufficient to successfully explore the cryptic pocket (see
Figure S67H,I). It is possible that, due to the energy penalty of

Figure 3. Violin plots show pocket exposure distribution at different
scaling factor λ during unbiased ligand-free SWISH simulations of (A)
TEM1, (B) IL2, and (C) PLK1 model systems. In each case, reference
values for corresponding apo and holo crystal structures are indicated
with red and green dashed lines, respectively. All three systems show
enhanced populations for states with exposed cryptic sites as λ is
increased.

Figure 4. Violin plots show pocket exposure distribution at different scaling factor λ during unbiased SWISH simulations with benzene fragments of
model systems: (A) TEM1, (B) IL2, and (C) PLK1. In each case, reference values for corresponding apo and holo crystal structures are indicated
with red and green dashed lines, respectively. In the presence of probes, we observe a significant cryptic site population even at the “neutral” (λ =
1.0) replicas. Structural trajectory snapshots of exposed cryptic sites bound by benzene probes, corresponding to maximum pocket exposure at λ =
1.0, are shown on the left-hand side for each system. Benzene is visualized as orange sticks and receptor surface in the same way as in Figure 1.
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site opening, the fragments are not always able to access the
hydrophobic site and hence induce the full site opening,
hindering the convergence. In addition, a slow exchange rate of
the bound fragments together with unspecific interactions also
contribute to poor reproducibility.
From a mechanistic point of view, we observe first a slight

opening of a channel (e.g., from the active site or through the
helices) that allows the permeation of a fragment to the
hydrophobic area underneath the two helices. Once a
hydrophobic fragment resides there, one of the hydrophobic
residues might come loose and expose a larger hydrophobic
patch to which an increasing number of fragments bind. Finally,
the cavity fully opens with multiple fragments bound to it (see
Figure S8). This is suggestive of a mixed binding mechanism
for the fragments whereby both conformational selection and
induced-fit play a role (see analysis and discussion in
Supporting Information). To verify the nature of the binding
mechanism with more drug-like ligands, we repeated the
simulations with CBT [N,N-bis(4-chlorobenzyl)-1H-1,2,3,4-
tetraazol-5-amine], which was shown experimentally to bind to
the cryptic pocket. Albeit we were not able to observe the
binding of CBT during a standard MD simulations of average
length, in agreement with the observations of ref 65, CBT
successfully found the cryptic pocket when SWISH was used
(see below).
Finally, we note that the chemical nature of the probe is

important. We found that the site opening decreased going
from benzene and pyrimidine to pyridine, imidazole, and
indole, and was almost negligible in the case of tetrahydropyran
(see Figure S7).
Combining SWISH with Fragments Provides the Most

Efficient Approach to Cryptic Pocket Detection. We
repeated the SWISH simulations in the presence of benzene
and pyrimidine fragments for all systems (see Figure 4 and
Figure S9). In all of the cases, we see a significant and
consistent opening of the cryptic site. The increased
effectiveness of the SWISH+fragment approach might be
explained by the fact that, while SWISH sampling helps
exposing the cryptic sites, those are further opened and
stabilized by the fragments. The combined method is thus very
general as it helps sampling systems with induced-fit,
conformational selection and “mixed” binding mechanisms.15

What is more, due to the scaling of protein−water interactions,
at high λ values the ligands are out-competed by water. This
behavior accelerates the sampling by allowing the fragments to
quickly leave unspecific interaction sites and more efficiently
explore the protein surface (Figure S9). We note that this also
reduces the average pocket exposure at higher λ values as water
molecules are less efficient at inducing the exposure than larger
fragments. However, the fractional opening appears to be
sufficient for the fragments to enter and further induce the sites
once lower λ allows displacing the scaled waters. What typically
happens is that at higher lambda the opening and closing of the
pockets is faster, helping the binding of the fragments to cryptic
pockets, but also the unbinding is faster, leading to a lower
residence time. When a ligand bound to a replica at higher
lambda exchanges with a replica at lower lambda values, the
residence time of the fragments is higher, and thus the open
states experience a longer lifetime. Thus, by combining the
pocket opening power of the scaled replicas and the binding
stability of the unbiased replica, the fragments access the pocket
and stay bound. However, higher lambdas help the sampling up
to a point; when lambda is too high, the protein starts to unfold

resulting in the exploration of mostly irrelevant unfolded states
(see the Supporting Information).
The greatly increased effectiveness of the SWISH+fragment

approach might be explained by the fact that, while SWISH
sampling helps expose the cryptic sites, those are further
opened and stabilized by the fragments. What is more, due to
the scaling of protein−water interactions, at high λ values the
ligands are out-competed by water. This behavior accelerates
the sampling by allowing the fragments to quickly leave
unspecific interaction sites and more efficiently explore the
protein surface (Figure S8). We note that this also reduces the
average pocket exposure at higher λ values as water molecules
are less efficient at inducing the exposure than larger fragments.
However, the fractional opening appears to be sufficient for the
fragments to enter and further induce the sites once lower λ
allows displacing the scaled waters. What typically happens is
that at higher λ the opening and closing of the pockets is faster,
helping the binding of the fragments to cryptic pockets, but also
the unbinding is faster, leading to a lower residence time. When
a ligand bound to a replica at higher λ exchanges with a replica
at lower λ values, the residence time of the fragments is higher,
and thus the open states experience a longer lifetime. Thus, by
combining the pocket opening power of the scaled replicas and
the binding stability of the unbiased replica, the fragments can
access the pocket and stay bound. The combined method is
very general as it helps sampling systems with induced-fit,
conformational selection and “mixed” binding mechanisms.15

As compared to plain MD with fragments or mixed solvent, it is
much more efficient in exploring conformational changes with
high activation barriers. Unlike CV-based approaches,34,35 it
does not need previous knowledge of the binding site.
We also performed SWISH simulations of TEM1 with the

validated allosteric ligand CBT. At higher λ’s, one CBT
molecule was able to bind to the cryptic pocket in ≃100 ns.
After the first CBT was bound, as second molecule quickly
entered the site, and the two explored orientations similar to
those revealed by X-ray crystallography (see Figure S10). This
result is also suggestive of a mixed binding mechanism for CBT,
as the presence of one molecule in the cavity clearly helps the
binding of additional ones.

■ DISTINGUISHING REAL CRYPTIC POCKETS FROM
FALSE POSITIVES

An important question that needs to be addressed is how do we
distinguish “real” cryptic sites from false positives? In general,
one cannot be certain whether a novel cavity found by
simulations and previously unreported by experiments is a false
positive or a yet undiscovered cryptic site. However, this does
not mean that the question cannot be addressed, especially if
the aim is to distinguish between weakly binding superficial
sites and buried cryptic sites. Take, for instance, the case of
TEM1. Apart from the main cryptic site to which CBT binds,
the other two minor cryptic sites have been proposed to be
druggable.30 We want to distinguish these sites (the main and
possibly the two minor ones) from other more or less
superficial binding “hotspots”. Both long repeated MD
simulations (32 × 1.1 μs) and SWISH simulations with
fragments were able to identify the superficial sites (see Figure
S11). When we plot the isosurfaces of the volumetric maps
showing the time-averaged occupation density, the hotspots
corresponding to the two superficial sites are evident. This
reflects the fact that the ligands spend more time in contact
with those sites. At difference with the superficial sites,
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however, only the SWISH simulations were able to systemati-
cally explore the main cryptic site between the helices 11 and
12, irrespective of the use of benzene or pyrimidine. Thus, the
occupation of the main site in the long MD is much lower than
that obtained by SWISH. Subtracting the ligand density
obtained from the long MD simulations from that obtained
with SWISH+fragments clearly reveals a hotspot corresponding
to the buried cryptic site (Figure S11). We repeated the analysis
on IL2 and PLK1 with similar results. On the basis of these
results, we propose that buried cryptic sites can be detected by
looking at the fragment occupation density differences between
SWISH and standard MD simulations. This approach also
provides a quick visual way to assess different hotspots.
Still, an important question is whether or not we can

distinguish true pockets from false positive. To test whether or
not the approach we propose also works in a case where no
experimental cryptic pockets are known, we have tested it on
Ubiquitin, whose structure and dynamics as well as a number of
weak superficial binding sites have been experimentally
characterized.49,50 First, by computing the time-averaged
fragment occupation, we observe with both long MD
simulations and SWISH two weak superficial hotspots, which
are interestingly located close to experimentally reported weak
binding sites (Figure S11).50 Yet when we compute the
difference in the binding density, both hotspots disappear,
consistent with the absence of observed buried cryptic binding
pockets.

■ CONCLUSIONS

We investigated the molecular mechanisms of cryptic pocket
opening and compared the efficiency of different simulation-
based approaches in finding them. Long standard MD
simulations, free-energy calculations, and extensive Parallel
Tempering simulations revealed the energy penalty of cryptic
site opening resulting in a spontaneous closure in the absence
of a ligand. Although long equilibrium simulations can sample
rare fluctuations leading to the opening of the sites, the
incomplete opening and short lifetime make their detection
difficult. Also, the partially open states are quite different from
the states observed in ligand-bound crystal structures and might
prove impractical in virtual screening. The use of different
force-fields confirms the qualitative picture; while some of them
might underestimate the energy penalty to form the pockets, all
agree on their lack of stability.
Our results indicate a role of induced-fit effects in cryptic site

opening, and show a mixed mechanism in some cases, as the
binding of benzene and the more drug-like ligand CBT to
TEM1. We have demonstrated that our proposed SWISH
method is able to induce the opening of the known cryptic
binding sites in TEM1, IL2, and PLK1 systems by scaling
protein−water interactions. Combining the SWISH method
with suitable probe molecules proved to be the most efficient
and reliable approach. At difference with CV-based enhanced
sampling algorithms, it does not require prior knowledge of the
site or the definition of optimal CVs to discover the cryptic
sites. What is more, the difference in time-averaged fragment
densities from SWISH and long MD simulations is able to
distinguish them from nonspecific superficial binding hot-spots.
To the best of our knowledge, this is the first successful
example in which enhanced sampling techniques are combined
with fragment molecule simulations to explore cryptic pockets.
We also note that the SWISH approach might be applied to a

wide range of protein sampling problems including protein
folding.

■ METHODS
The protein structures were retrieved from the Protein Data Bank66

(PDB entries 1JWP, 1PZO, 1M47, 1PY2 (chain D), 3FVH, 3P37
(chain A), and 2LJ5). Missing residues were added using the software
Modeller,67 according to the respective Uniprot sequences. The
structural figures were made using VMD.68

Molecular Dynamics was performed with Gromacs 4.6.7.69 Unless
otherwise specified, all simulations were run at 300 K NVT ensemble
with temperature coupled using V-rescale algorithm,70 using the
amber99SB*-ILDN53−55 and explicit solvent TIP3P71 force-fields.
PTMetaD58 was run using the PLUMED72 for 500 ns using binding
site RMSD relative to apo and holo structures over the temperature
range of 305−315 K using 9 replicas. Unbiased Parallel Tempering
simulations (310−400 K; 32 replicas) and SWISH simulations (λ ∈
[1.0 ; 1.35], 8 replicas, HREX73) were each performed for 500 ns.
Ligands were parametrized using GAFF74 with additional repulsive
interligand potential. To monitor pocket exposure, we analyzed
snapshots using fpocket.75 For further details, see the Supporting
Information.
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