Highlights

- Detailed stratigraphic record of the Paleocene-Eocene thermal maximum in shallow marine environment of the northern Indian margin, eastern Tethys ocean
- Two scenarios may be envisaged for the major origin of Paleocene/Eocene disconformity: tectonic or climatic control

- 2 in the Tethyan Himalaya (southern Tibet): tectonic and climatic implications
- Juan Li¹, Xiumian Hu¹*, Eduardo Garzanti², Marcelle BouDagher-Fadel³ 3
- 4 1 State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering,
- Nanjing University, Nanjing 210023, China 5
- 6 2 Laboratory for Provenance Studies, Department of Earth and Environmental Sciences,
- Università di Milano-Bicocca, 20126 Milano, Italy 7
- 8 3 Department of Earth Sciences, University College London, London WC1H 0BT, UK
- 9 *Corresponding author: Dr. Xiumian Hu
- 10 *E-mail: huxm@nju.edu.cn; Tel: 0086 25 89683002*

• 1

11

12 Abstract

13	This study presents a detailed stratigraphic record of the Paleocene-Eocene Thermal
14	Maximum (PETM) in the Gamba area of the Tethyan Himalaya, a carbonate-platform succession
15	originally deposited along the southern margin of the eastern Tethys Ocean. The
16	Paleocene-Eocene boundary interval is marked by a negative carbon isotope excursion at the
17	boundary between members 3 and 4 of the Zongpu Formation. The succession is erosionally
18	truncated at this surface, which is overlain by an intraformational carbonate conglomerate, and
19	only the upper part of the PETM interval is preserved. Foraminiferal assemblages of Shallow
20	Benthic Zone 4 are present below the conglomerate bed, but are replaced by assemblages of

21	Shallow Benthic Zone 6 above the conglomerate. Depositional facies also change across this
22	surface; below the disconformity, floatstones and packstones containing nummulitid forams
23	record progressive transgression in an open-marine environment, whereas restricted or lagoonal
24	inner-ramp deposits containing Alveolina and Orbitolites are typical above the disconformity. The
25	prominent negative excursion observed in the δ^{13} C of whole-rock carbonate (-1.0‰ at Zongpu,
26	-2.4‰ at Zengbudong) and organic matter (-24.7‰, at Zengbudong) is correlated to the
27	characteristic PETM carbon isotope excursion. This major negative excursion in shallow-marine
28	carbonates may have partly resulted from syndepositional alteration of organic matter. The erosional
29	unconformity can be constrained to the lower PETM interval (between 56 and 55.5 Ma), and is
30	identifiable throughout the Tethyan Himalaya. This widespread disconformity is attributable to
31	tectonic uplift associated with the southward migration of an orogenic wave, originated 3 ± 1 Ma
32	earlier in the middle Paleocene at the first site of India-Asia continent-continent collision. A
33	possible eustatic component of the pre-PETM sea-level fall, which resulted in the excavation of
34	incised valleys filled during the subsequent sea-level rise when the conglomerate bed was
35	deposited, remains to be assessed.
36	Key words: PETM; Tethys Ocean; Carbonate platform; Disconformity; India-Asia collision;
37	Carbon isotope excursion
38	

39 **1. Introduction**

40 The Paleocene–Eocene Thermal Maximum (PETM) was a geologically brief (~ 170-200 kyr)
41 episode of globally elevated temperatures (Röhl et al., 2007; Murphy et al., 2010), superimposed

42	on a longer-term late Paleocene to early Eocene warming trend, which culminated in the highest					
43	ocean temperatures of the Cenozoic (the early Eocene climatic optimum; Kennett and Stott, 1991;					
44	Zachos et al., 2001). The PETM was characterized by global warming of both the earth's surface					
45	and the deep oceans, by 5-8° C (McInerney and Wing, 2011). Its onset is defined by a negative					
46	carbon isotope excursion (CIE) recorded worldwide (Dupuis et al., 2003). Although the ultimate					
47	cause and trigger of the CIE is uncertain (Sluijs et al., 2006), the dissociation of methane hydrates					
48	along continental margins is a plausible hypothesis that may explain the injection of large amounts					
49	of ¹³ C-depleted carbon into oceanic and atmospheric reservoirs (Dickens et al., 1997). Major					
50	global biotic changes occurred simultaneously with the CIE, including a major extinction of					
51	deep-sea benthic foraminifera, blooms of tropical and subtropical planktonic foraminifera, a					
52	turnover in 'larger benthic foraminifera', an increased abundance of dinoflagellates, and the					
53	disappearance of coral reefs (Bowen et al., 2006; Sluijs et al., 2007; Speijer et al., 2012). The					
54	onset of the CIE is an excellent global chemostratigraphic correlation tool (McInerney and Wing,					
55	2011), and is formally used to define the base of the Eocene (Aubry et al., 2007).					
56	To fully understand biotic responses to climate change during the PETM, detailed analyses of					
57	faunal and floral evolution are needed from a wide spectrum of different environments, including					
58	the deep oceans, shallow seas, and terrestrial settings. Despite major advances in our					
59	understanding of the PETM in open-marine environments, shallow-marine settings remain poorly					
60	explored, and the effects of this global climatic event on the widespread epeiric carbonate					
61	platforms of the Paleogene remain unclear. The Tethys Ocean was a vast, east-west trending					
62	subtropical seaway during the Paleogene, with neritic deposition occurring in a variety of					
63	environments along its margins, making it an excellent place to study the PETM in					

64 shallow-marine settings.

65	The thick shallow-marine carbonate succession of the Tethyan Himalaya spans the critical
66	late Paleocene-early Eocene interval, and is characterized by abundant index fossils (Willems et
67	al., 1993; Hu et al., 2012; Zhang et al., 2013; Li et al., 2015), offering a rare opportunity to study a
68	detailed, biostratigraphically controlled record of the PETM in the eastern Tethys. Biostratigraphy
69	based on larger benthic foraminifera, coupled with precise carbon isotope chemostratigraphy,
70	allows us to place firm constraints on the stratigraphic and environmental evolution of the Indian
71	margin during the very first stages of the India-Asia collision, a period that spans the critical
72	interval of the PETM.
73	2. Geologic setting and lithostratigraphy
74	The Tethyan Himalaya, situated between the Greater Himalaya to the south and the
75	Indus-Yarlung-Zangbo Suture and Lhasa Block to the north (Fig.1A), consists of sedimentary
76	rocks originally deposited along the northern margin of the Indian continent. The Tethyan
77	Himalaya is traditionally subdivided into southern and northern zones, separated by the
78	Gyirong-Kangmar Thrust. The southern zone includes a Paleozoic to Eocene succession,
79	composed largely of shelf carbonates and terrigenous deposits (Willems et al., 1996; Sciunnach
80	and Garzanti, 2012), whereas the northern zone is dominated by deeper-water Mesozoic to
81	Paleocene slope and rise sediments. Paleomagnetic data indicate that the Tethyan Himalaya was
82	located at peri-equatorial latitudes in the latest Mesozoic and early Cenozoic, ranging from
83	5.6±2.8° S during Campanian-Maastrichtian time to 10.1±2.0° N during Selandian-Thanetian time
84	(Yi et al., 2011).

85	Our study area is located in the southern Tethyan Himalaya, near the town of Gamba (Fig.					
86	1B). The site has a continuously exposed marine sedimentary succession ranging from the Upper					
87	Cretaceous to Eocene, subdivided into three lithostratigraphic units (the Jidula, Zongpu and Enba					
88	formations). Lower Paleocene shoreface deposits of the Jidula Formation consist of quartzose					
89	sandstones derived from the Indian continent (Garzanti and Hu, 2015). The overlying Zongpu					
90	Formation is composed of thin- to massively-bedded fossiliferous limestones at the base, with					
91	nodular limestones in the middle and thick-bedded fossiliferous limestones in the upper part of the					
92	formation (Willems and Zhang, 1996; Li et al., 2015). In the Gamba area, the Zongpu Formation					
93	can be further subdivided into four members; thin- to medium-bedded limestones in member l,					
94	nodular limestones in member 2, nodular marly limestones in member 3, and thick- to					
95	massively-bedded limestones in member 4. Members 3 and 4 are separated by a lenticular					
96	conglomerate bed, marking an erosional disconformity that roughly corresponds to the					
97	Paleocene-Eocene boundary (Wang et al., 2010; Wan et al., 2002; Li et al., 2015; Fig. 2B, 2C, 2D).					
98	The Enba Formation comprises greenish-grey marls, intercalated in the upper part of the formation					
99	with litho-quartzose sandstones sourced from the Asian continent, and deposited in prodelta to					
100	offshore environments (Wan et al., 2002; Hu et al., 2012).					
101	3. Materials and methods					
102	3.1. Stratigraphic sections					

- 103 We focused our study on the Zongpu Formation, by measuring two main sections in the
- 104 Gamba area (Zongpu and Zengbudong), and sampling them in detail for petrographic,
- 105 biostratigraphic and carbon isotope analysis (Fig. 1).

106	Microfacies analysis was carried out on 550 thin sections from the Zongpu section and 80				
107	thin sections from the Zengbudong section using transmitted-light microscopy. This allowed us to				
108	make semiquantitative estimates of the main sedimentary components, as well as observe primary				
109	textural and diagenetic features, identify microfossils (with a special emphasis on larger benthic				
110	foraminifera), and interpret of depositional settings. Samples for isotope measurements were				
111	collected with an average spacing of 1 m, reduced to ~0.4 m across the Paleocene-Eocene				
112	boundary. Biostratigraphic correlations were based on the distribution of larger benthic				
113	foraminifera (identification based on Hottinger, 1960; BouDagher-Fadel, 2008). We used the				
114	Tethyan Shallow Benthic Zonation established by BouDagher-Fadel (2008, 2015). These shallow				
115	benthic biozones can be correlated with the well-established ranges of planktonic foraminifera				
116	(BouDagher-Fadel, 2013), in order to assign biostratigraphic ages to different intervals.				
117	3.2. Carbon and oxygen isotopes				
117 118	3.2. <i>Carbon and oxygen isotopes</i> To assemble a detailed chemostratigraphic record of the studied sections, we analyzed				
118	To assemble a detailed chemostratigraphic record of the studied sections, we analyzed				
118 119	To assemble a detailed chemostratigraphic record of the studied sections, we analyzed whole-rock carbonate isotope values throughout the entire succession. We processed a total of 357				
118 119 120	To assemble a detailed chemostratigraphic record of the studied sections, we analyzed whole-rock carbonate isotope values throughout the entire succession. We processed a total of 357 samples from the Zongpu section and 84 from the Zengbudong section. Powdered samples were				
118 119 120 121	To assemble a detailed chemostratigraphic record of the studied sections, we analyzed whole-rock carbonate isotope values throughout the entire succession. We processed a total of 357 samples from the Zongpu section and 84 from the Zengbudong section. Powdered samples were obtained by micro-drilling, taking care to avoid cement-filled veins and pores, or larger bioclasts.				
118 119 120 121 122	To assemble a detailed chemostratigraphic record of the studied sections, we analyzed whole-rock carbonate isotope values throughout the entire succession. We processed a total of 357 samples from the Zongpu section and 84 from the Zengbudong section. Powdered samples were obtained by micro-drilling, taking care to avoid cement-filled veins and pores, or larger bioclasts. The carbon and oxygen isotope ratios of powdered samples were measured at the State Key				
 118 119 120 121 122 123 	To assemble a detailed chemostratigraphic record of the studied sections, we analyzed whole-rock carbonate isotope values throughout the entire succession. We processed a total of 357 samples from the Zongpu section and 84 from the Zengbudong section. Powdered samples were obtained by micro-drilling, taking care to avoid cement-filled veins and pores, or larger bioclasts. The carbon and oxygen isotope ratios of powdered samples were measured at the State Key Laboratory for Mineral Deposits Research at Nanjing University, using a Finnigan MAT Delta				
 118 119 120 121 122 123 124 	To assemble a detailed chemostratigraphic record of the studied sections, we analyzed whole-rock carbonate isotope values throughout the entire succession. We processed a total of 357 samples from the Zongpu section and 84 from the Zengbudong section. Powdered samples were obtained by micro-drilling, taking care to avoid cement-filled veins and pores, or larger bioclasts. The carbon and oxygen isotope ratios of powdered samples were measured at the State Key Laboratory for Mineral Deposits Research at Nanjing University, using a Finnigan MAT Delta Plus XP mass spectrometer coupled to an in-line GasBench II autosampler. Samples were reacted				

128	To supplement our carbonate isotope results, we analyzed organic carbon isotopes across the
129	critical Paleocene-Eocene boundary interval in the Zengbudong section. Thirty-eight samples
130	were decarbonated using 10% HCl, and analysed at the SINOPEC Wuxi Research Institute of
131	Petroleum Geology, using a Finnigan MAT Delta Plus XL mass spectrometer. The results were
132	corrected to the VPDB scale and are expressed using delta notation. Additionally, 14 limestone
133	clasts collected from the conglomerate bed in the Zengbudong section were analyzed for both
134	whole-rock carbonate and organic carbon isotopes.

135 **4. Results**

136 *4.1. Lithostratigraphy*

The sedimentology and stratigraphy of the Zongpu and Zengbudong sections are described in
detail in Li et al. (2015). Here we focus on the stratigraphic interval immediately surrounding the
Paleocene-Eocene boundary, and on the sedimentological features of the Paleocene-Eocene
disconformity (Fig. 3).

141 Below the conglomerate bed, the uppermost strata of member 3 are composed mainly of

142 floatstones or packstones, which contain nummulitids. This interval records the progressive

transition to open-marine environments, with the uppermost strata deposited below fair-weather

144 wave base (Fig. 3C).

The ≤4 m thick conglomerate bed, found marking the boundary between members 3 and 4 of
the Zongpu Formation in the Gamba area, is markedly lenticular in shape, with a sharp erosional
base and flat, normally-graded top (Fig. 2A, 2E). Clasts are mostly subrounded to rounded, though
some angular clasts are present. They range in diameter from 0.5 to 15 cm, and consist mainly of

149	coarse-grained, nummulitid-bearings wackestones and packstones derived from the coeval (or
150	slightly older) Thanetian limestones of member 3 (Fig. 3B). The poor sorting, homogeneous
151	character of the clasts, and presence of some angular fragments suggests a local source area, and
152	possibly rapid transport and deposition. The occurrence of rounded clasts does imply some
153	transport in a channel system, but not to the same degree that would be inferred from rounded
154	silicate clasts, since limestone pebbles are rounded quite easily by mechanical abrasion (Kuenen,
155	1964; Mills, 1979). The lenticular bedding and erosive contact with underlying strata both indicate
156	deposition by bedload traction in a high energy, channelized flow. The thicker, more laterally
157	continuous conglomerate units are interpreted to have been deposited in an incised channel, within
158	a braided channel system (Wang et al., 2010; Li et al., 2015).

- 159 Above the conglomerate bed, the base of member 4 consists mainly of restricted to lagoonal
- 160 inner-ramp deposits, characterized by Alveolina and Orbitolites. These transition up-section into
- 161 shallow-marine deposits, and finally open-marine floatstones with *Nummulites* and *Alveolina*,

162 deposited below wave base in a middle ramp environment (Fig. 3A).

163 *4.2. Biostratigraphy*

The biostratigraphy of the Upper Cretaceous to lower Paleogene shallow-water succession of the Tibetan Himalaya is described in detail in BouDagher-Fadel et al. (2015), which correlated the planktonic foraminiferal zones of BouDagher-Fadel (2013) and the shallow benthic foraminiferal zones of the Paleogene into a comprehensive new Tibetan biozonation scheme (Fig. 4). Here we focus on: 1) the stratigraphic interval spanning the Paleocene-Eocene boundary, and 2) the biostratigraphic features of the Paleocene-Eocene disconformity.

170	In both studied sections, the boundary between SBZ3 and SBZ4 (or TP2 and TP3) is defined
171	by the first appearance of Aberisphaera gambanica. Within SBZ4/TP3, Lockhartia conditi,
172	Lockhartia haimei, Lockhartia cushmani, Daviesina langhami (Fig. 5A), Orbitosiphon
173	punjabensis (Fig. 5B), Ranikothalia sindensis (Fig. 5C-a), Orbitosiphon praepunjabensis (Fig.
174	5C-b), Miscellanea juliettae (Fig. 5D), Lockhartia roeae (Fig. 5C-d) and Miscellanea yvettae (Fig.
175	5E) are common. The first appearance of Alveolina pasticillata and Alveolina ellipsoidalis (Fig.
176	5F-b) marks the base of TP5 (within the lower part of SBZ6), corresponding to the base of the
177	Ypresian. This subzone is dominated by Orbitolites complanatus (Fig. 5F-a), Glomalveolina
178	subtilis, Alveolina pasticillata, Alveolina ellipsoidalis (Fig. 5H), Alveolina aramaea and Alveolina
179	illerdensis. The boundary between SBZ6 and SBZ7 is marked by the first appearance of Alveolina
180	moussoulensis.
181	Carbonate clasts from the conglomerate bed in the Gamba area yielded SBZ 4 to SBZ 6 index
182	fossils, including Lockhartia haimei, Lockhartia conditi, Daviesina langhami, Miscellanea
183	juliettae and M. yvettae in SBZ4, Alveolina vredenburgi in SBZ5, and Orbitolites complanatus
184	and Alveolina ellipsoidalis in SBZ 6 (Fig. 3, Fig. 5G).
185	4.3. Stable carbon isotope stratigraphy
186	Stable carbon isotope values are plotted stratigraphically in Fig. 6 for the Zongpu section and

- 187 Fig. 7 for the Zengbudong section. The lower Thanetian is characterized by high variability in
- 188 whole-rock carbonate isotope values, while the upper Thanetian and lower Eocene show $\delta^{13}C_{carb}$
- values centered around +2 ‰ and +1‰, respectively, with an abrupt negative shift at the
- 190 disconformable transition from open marine to restricted lagoonal deposits marked by the

191	conglomerate bed (Figs. 6, 7). Above this negative excursion, a recovery trend is evident in both					
192	Zongpu and Zengbudong sections, beginning in the Alveolina packstone or floatstone at the base					
193	of member 4. The negative excursion in $\delta^{13}C_{carb}$ begins at 314.6 m in the Zongpu section ($\delta^{13}C_{carb}$					
194	= -1.0‰) and at 12.7 m in the Zengbudong section ($\delta^{13}C_{carb}$ = -2.4‰), and persists over an interval					
195	of ~4 m in the Zongpu section, of ~5.4 m in the Zengbudong section. The magnitude of the CIE					
196	reaches 3.4‰ in the Zongpu section, and 4.9‰ in the Zengbudong section.					
197	The organic carbon isotope values measured across the Paleocene-Eocene boundary in the					
198	Zengbudong section display a trend similar to the whole-rock carbonate record. In the upper part					
199	of member 3, $\delta^{13}C_{org}$ ranges from -22.1‰ to -21.6‰, with an average value of -21.8‰ (Fig. 7).					
200	An abrupt negative excursion, with a magnitude of 3‰, occurs at the base of member 4 (-24.6‰),.					
201	These ¹³ C-depleted values persist over a 5.4 m interval, then show a positive trend corresponding					
202	to that seen in carbonate isotopes, with values rising from -24.7% to -22.4%.					
203	The carbonate clasts in the conglomerate bed marking the Paleocene-Eocene boundary in the					
204	Zengbudong section are apparently altered, and display extreme $\delta^{13}C_{carb}$ values, ranging from -2.4‰					
205	down to -6‰ (Fig. 8A). The organic carbon isotope values of the carbonate range vary from -23.0 ‰					
206	to -25.1‰ (Fig. 8B).					
207	5. The Paleocene–Eocene thermal event in the Himalaya					
208	Previous studies of shallow-water successions in the Pyrenean Basin in Spain					

209 (Orue-Etxebarria et al., 2001; Pujalte et al., 2003, 2009, 2014, 2015, 2016), the Galala Mountains

- 210 in Egypt (Scheibner et al., 2005; Scheibner and Speijer, 2009), the Adriatic carbonate platform in
- 211 SW Slovenia (Zamagni et al., 2008, 2012), the Indus Basin in Pakistan (Afzal et al., 2011), the

212	Zagros Basin in SW	Iran (Bagherpour and)	Vaziri, 2012), and the l	Pacific region (Robinson, 2011).

- 213 have extensively documented the correlation between the negative carbon isotope excursion
- associated with the PETM and the evolution of larger benthic foraminifera. However, many of
- these studies were conducted in European and Mediterranean regions corresponding to the western
- 216 Tethys; the applicability of Shallow Benthic Zones (SBZ) and regional biostratigraphic
- 217 correlations to the shallow-water environments of the eastern Tethys remains uncertain (Wang et
- al., 2010), although Zhang et al. (2013) proposed a temporal correlation between the PETM and
- the evolution of larger benthic foraminifera in southern Tibet.
- 220 5.1. Diagenetic effects on carbon isotope curves

221 Dissolution and recrystallization processes during diagenesis of carbonate minerals can 222 significantly alter their carbon isotope composition (Garzione et al., 2004). The carbon isotope 223 ratio of authigenic carbonate may also change as a result of the transformation of aragonite and high-Mg calcite to low-Mg calcite during diagenesis, or from the presence of skeletal grains, 224 225 which may exhibit nonequilibrium isotopic fractionation (Immenhauser et al., 2002; Swart and 226 Eberli, 2005). Thin section analysis reveals that the carbonates of the Zongpu Formation are 227 wackestones or packstones, with a homogeneous micritic matrix and skeletal grains. Microsparry 228 calcite is rare, and sparry calcite is absent, indicating that the original sedimentary fabric has been 229 largely preserved. The skeletal grains include both smaller and larger benthic foraminifera and 230 echinoderms, and were originally composed of low-Mg to high-Mg calcite. Mineralogical 231 stabilization of high-Mg calcite to low-Mg calcite can occur without any textural change in 232 skeletal calcite, especially in porcellanaceous foraminifera like alveolinids and larger miliolids 233 (Budd and Hiatt, 1993). In the absence of subaerial exposure, the transformation of high-Mg to

low-Mg calcite occurs under the influence of marine pore waters, with only minor modification of

- the carbon isotope composition of skeletal grains. Overall, petrographic features suggest that
- carbonate strata in the studied sections have undergone minimal diagenetic alteration.
- 237 Measured δ^{13} C values range from -4.0% to 2.5%, and δ^{18} O values range from -10 % to -4%.
- A crossplot of carbon and oxygen isotope values shows no significant correlation (R^2 =0.39 for the
- 239 Zongpu section; $R^2=0.02$ for the Zengbudong section; Fig. 8A). The crossplot also lacks the slope
- characteristic of "mixing lines" produced by the addition of variable quantities of cement to
- 241 primary skeletal calcite (Marshall, 1992), suggesting that the isotopic values obtained from the
- studied sections likely record a primary palaeoceanographic signal.
- 243 5.2. Completeness of the PETM record in southern Tibet
- 244 The onset of the CIE and its shape are considered to be the most reliable correlation tools for
- the Paleocene-Eocene boundary interval (Röhl et al., 2007). The major environmental and biotic
- 246 changes associated with the PETM provide additional criteria to both pinpoint the
- 247 Paleocene-Eocene boundary and assess the stratigraphic completeness of the PETM event as
- 248 recorded in south Tibet.
- 249 In both studied sections of the Zongpu Formation, sedimentological and biostratigraphic
- analyses indicate a major erosional unconformity between the top of member 3 (which dates to the
- latest Paleocene SBZ 4), and the base of member 4 (which dates to the early Ypresian SBZ 6).
- 252 This disconformity should thus represent at least 400 kyr, corresponding to the missing SBZ5 and
- the earliest part of SBZ6 (BouDagher-Fadel et al., 2008; Fig. 4). Analysis of carbonate clasts
- contained in the conglomerate bed helps to further constrain the time interval represented by the

disconformity, and to assess the processes driving this erosion. Intraformational carbonate clasts

include index fossils from SBZ4 through SBZ6 (Fig. 3). The sedimentary record of the

- 257 Paleocene-Eocene boundary within SBZ6 (BouDagher-Fadel et al., 2008), including the onset of
- the PETM, was thus truncated by latest Paleocene erosion.
- 259 The discontinuity of the sedimentary record is highlighted by the abruptness of the isotopic
- 260 excursion. In southern Tibet, the negative $\delta^{13}C_{carb}$ and $\delta^{13}C_{org}$ excursions are extremely sharp (from

261 2.5 to - 2.0‰ and from -21.6 to -24.6‰, respectively), consistent with the presence of a hiatus.

- 262 The base of the Eocene in the Gamba area also shows a sudden change from open marine to
- 263 restricted-lagoonal environments. Both $\delta^{13}C_{carb}$ and $\delta^{13}C_{org}$ values remain consistent or increase
- slightly immediately below the conglomerate bed, implying that the onset of the CIE is not
- 265 recorded in these strata. The 4 to 7 m thick interval with consistently low $\delta^{13}C_{carb}$ and $\delta^{13}C_{org}$ values
- (i.e., the CIE) is followed by a gradual return to pre-excursion values (Figs. 6, 7, 9), suggesting that
- 267 while the onset of the PETM is truncated by erosion, the stratigraphic record of the upper PETM
- interval is expanded and continuous.

269 5.3. Comparison between southern Tibet and other marine successions

- 270 Constraining the magnitude of the CIE is critical to evaluating its potential causes (Higgins
- and Schrag, 2006) and understanding the sensitivity of the climate system to the associated
- greenhouse gas forcing. Measurements vary widely, ranging from 2% to 4.5% in marine
- carbonates depending on the studied location and substrate (Giusberti et al., 2007; Sluijs and
- 274 Dickens, 2012). The observed magnitude of the negative excursion in our whole-rock carbonate
- records (~3.4‰ in the Zongpu section and ~4.9 ‰ in the Zengbudong section) is slightly greater than

276	the values reported from other shallow-marine continental margins (e.g., between 2.8‰ and 3.5‰ for
277	the North American shelf; John et al., 2008), the Adriatic carbonate platform (~1‰ in the Kozina
278	section and ~3‰ in the Čebulovica section; Zamagni et al., 2012), Pacific guyots (~3‰; Robinson,
279	2011), and deep-sea bulk carbonates (between 2.5‰ and 4.0‰).
280	The magnitude of the negative CIE in our shallow-marine carbonate record is quite large
281	compared to open-marine records of the PETM, with an excursion in whole-rock carbonate samples of
282	up to 4.9‰ in the Zengbudong section (Fig. 10). The low δ^{13} C values of these carbonates may be due
283	to a combination of several effects, including restricted circulation and a smaller carbon reservoir size
284	in the platform-top water mass, a local flux of carbon weathering from the land, and syndepositional
285	diagenesis of carbonate mud in organic-rich sediments (Immenhauser et al., 2008).
286	In the Gamba area, the Zongpu Formation was deposited in a carbonate ramp setting characterized
287	by good water circulation, suggesting that water mass restriction was not a major factor. Low pore
288	water δ^{13} C values may have resulted from the oxidation of organic matter. Syndepositional dissolution
289	of CaCO ₃ caused by organic matter oxidation can alter the isotopic composition of carbonate, resulting
290	in lower δ^{13} C values in diagenetic carbonates (Sanders, 2003; Patterson and Walter, 1994). The
291	strongly negative excursions in whole-rock $\delta^{13}C_{carb}$ values observed in the Zongpu Formation may
292	reflect syndepositional alteration of organic matter. Climatic conditions during the PETM, with
293	intensified chemical weathering and seasonality driving more efficient physical weathering and erosion
294	(Egger et al., 2005; Giusberti et al., 2007), promoted the accumulation of organic-rich black shales
295	along the margin of the Neo-Tethys Ocean (Speijer and Wagner, 2002). Current-driven redistribution
296	of organic matter along the carbonate ramp may have contributed to the differences in the magnitude of
297	negative carbon isotope excursions observed between the Zongpu and Zengbudong sections, with the

298 former characterized by less negative $\delta^{13}C_{carb}$ values.

299 6. Origin of the P-E boundary unconformity

300	The channelized intraformational conglomerate bed that marks the boundary between
301	members 3 and 4 of the Zongpu Formation in the Gamba area has long been biostratigraphically
302	correlated with a similar unit in the Zanskar Range of the northwestern Tethyan Himalaya. This
303	conglomerate is interpreted to be the result of tectonic uplift, due to landward migration of a
304	collision-related flexural wave (Garzanti et al., 1987). The same mechanism has been proposed to
305	explain the conglomerate bed in the Gamba area (Zhang et al., 2012; Li et al., 2015), and a similar
306	disconformity and conglomerate bed can be observed in the Tingri and Düela areas (unpublished
307	field observations). The Paleocene-Eocene erosional unconformity is not limited to the Gamba
308	area, but can be traced for 200 km across southern Tibet. Considering the similarity between
309	stratigraphic records in the Gamba area and the Zanskar Range, we conclude that this
310	Paleocene-Eocene disconformity is a widespread, roughly synchronous feature in the Tethyan
311	Himalaya. The combination of biostratigraphy and detailed carbon isotope chronostratigraphy
312	presented in this study allow us to establish that this erosional event occurred during the lower
313	PETM interval (i.e., around 56 or 55.5 Ma; Hilgen et al., 2010; Westerhold et al., 2012).
314	The origin of the Paleocene-Eocene boundary unconformity in the Tethyan Himalaya is
315	discussed below, in relation to: 1) tectonic uplift of the Zongpu carbonate platform, and 2)
316	climate-driven incision and erosion prior to the PETM.
317	6.1. Tectonic uplift of the Zongpu platform

Based on evidence from the northwestern Himalaya, Garzanti et al. (1987) proposed that the

319	Indian passive margin was tectonically uplifted by southward migration of an orogenic wave that
320	initiated at the Trans-Himalayan Trench during the onset of the collision between India and Asia.
321	In depositional settings from the outer Indian margin, exposed in the Zanskar Range, pelagic
322	outer-shelf sediments yielding planktonic foraminifera of Thanetian age are unconformably
323	overlain by peritidal dolostones and nummulitid-rich calcarenite shoals of early Ypresian age.
324	Channelized quartz-rich sandstone beds are reported to occur during the same interval in the inner
325	Zanskar margin (Nicora et al., 1987), whereas debris-flow conglomerates containing limestone
326	pebbles of Cretaceous to latest Paleocene age occur in the most distal part of the Indian margin
327	(Fuchs and Willems, 1990).
328	In the Gamba sections of southern Tibet, the unusually low carbon isotope values of
329	conglomerate clasts (δ^{13} C as negative as -6 % PDB; Fig. 8) suggest a period of weathering and
330	freshwater influx associated with prolonged subaerial exposure (Immenhauser et al., 2002). This
331	interpretation is strongly supported by three independent lines of evidence: 1) the presence of
332	channelized intraformational conglomerates mantling a major stratigraphic disconformity; 2) a
333	stratigraphic gap of ~400 kyr, corresponding to the missing SBZ5; and 3) a sharp break in the
334	$\delta^{13}C_{carb}$ record, documented in all studied sections. Facies analysis, biostratigraphy, and carbon
335	isotope measurements thus provide compelling evidence that, during a period of warm climate and
336	sea level rise (Kominz et al., 2008; Sluijs et al., 2008), the Paleocene-Eocene disconformity was
337	produced via tectonic uplift. Collision with Asia was already underway (DeCelles et al., 2014; Hu
338	et al., 2015), and this marked uplift event recorded throughout the inner Tethyan Himalaya, from
339	Zanskar to southern Tibet, may be the result of an orogenic wave propagating from the point of
340	first continent-continent contact and moving progressively landward across the Indian margin.

341	Integrated biostratigraphic and zircon chronostratigraphic studies conducted on sedimentary
342	successions from the most distal part of the Indian margin indicate that the onset of collision
343	occurred in the Selandian (middle Paleocene) at 59±1 Ma (DeCelles et al., 2014; Wu et al., 2014;
344	Hu et al., 2015). If the unconformity was indeed caused by tectonic uplift related to a flexural
345	wave, we can estimate the time required for the orogenic front to reach the inner Indian margin in
346	Gamba, Tingri and Zanskar to be 3±1 Myr. Assuming an original paleomargin width between 250
347	and 300 km (van Hinsbergen et al., 2012; Lippert et al., 2014), this corresponds to a migration
348	velocity of 90±20 km/Myr (mm/a). The convergence rate between India and Asia is estimated to
349	have been ~150 mm/a based on paleomagnetic data (Copley et al., 2010; van Hinsbergen et al.,
350	2011). A convergence/shortening ratio of 1.7 ± 1.0 is somewhat larger than what is typically
351	observed in orogenic belts generated by continental collision, but with all of the uncertainties
352	considered, it is still compatible with existing models (Doglioni et al., 2007).
353	6.2. Climate-driven incision and erosion prior to the PETM
354	It is widely understood that valleys in marine-basin margins are usually incised during
354 355	It is widely understood that valleys in marine-basin margins are usually incised during periods of relative sea-level fall, and filled with sediments during the subsequent sea-level rise
355	periods of relative sea-level fall, and filled with sediments during the subsequent sea-level rise
355 356	periods of relative sea-level fall, and filled with sediments during the subsequent sea-level rise (Boyd et al., 2006; Strong and Paola, 2008; Pujalte et al., 2015). A sea-level lowstand preceding
355 356 357	periods of relative sea-level fall, and filled with sediments during the subsequent sea-level rise (Boyd et al., 2006; Strong and Paola, 2008; Pujalte et al., 2015). A sea-level lowstand preceding the PETM has been widely recognized; in the Pyrenees (Pujalte et al., 2014, 2015, 2016), the
355 356 357 358	periods of relative sea-level fall, and filled with sediments during the subsequent sea-level rise (Boyd et al., 2006; Strong and Paola, 2008; Pujalte et al., 2015). A sea-level lowstand preceding the PETM has been widely recognized; in the Pyrenees (Pujalte et al., 2014, 2015, 2016), the North Sea region (Dupuis, 2000), the Austrian Alps (northern margin of the Tethys, Egger et al.,

362	bed within the Paleocene-Eocene boundary interval of the Zongpu Formation also marks the
363	boundary between the open-marine environments of member 3 and the restricted to lagoonal
364	inner-ramp deposits of member 4. The roughly coeval disconformity in the Zanskar Range
365	(Garzanti et al., 1987) clearly records a pronounced fall in relative sea-level, and consequently the
366	formation of an incised valley in previously deposited carbonate-ramp strata (Li et al., 2015). The
367	subsequent rise in relative sea-level began ~40 kyr before the Paleocene–Eocene boundary,
368	leading to the filling of incised valleys and deposition of the conglomerate bed. Relative sea-level
369	continued to rise during and after the PETM, leading to the deposition of floatstones containing
370	Alveolina and Orbitolites in member 4 of the Zongpu Formation. Deposition of the conglomerate
371	bed, which sedimentological evidence suggests may have occurred in a fluvio-deltaic or
372	shallow-marine environment, would have had to have been rapid in this scenario.
373	The tectonic and eustatic components of base-level change cannot be easily distinguished in
373 374	The tectonic and eustatic components of base-level change cannot be easily distinguished in the stratigraphic record, and we are unable to deconvolve their relative contributions to the
374	the stratigraphic record, and we are unable to deconvolve their relative contributions to the
374 375	the stratigraphic record, and we are unable to deconvolve their relative contributions to the formation of the Paleocene-Eocene disconformity. The unique features of the conglomerate bed,
374 375 376	the stratigraphic record, and we are unable to deconvolve their relative contributions to the formation of the Paleocene-Eocene disconformity. The unique features of the conglomerate bed, which has no equivalent in the underlying Paleocene succession, point to a single specific event
374 375 376 377	the stratigraphic record, and we are unable to deconvolve their relative contributions to the formation of the Paleocene-Eocene disconformity. The unique features of the conglomerate bed, which has no equivalent in the underlying Paleocene succession, point to a single specific event driving subaerial exposure and erosion. Tectonic activity was certainly underway during these
374 375 376 377 378	the stratigraphic record, and we are unable to deconvolve their relative contributions to the formation of the Paleocene-Eocene disconformity. The unique features of the conglomerate bed, which has no equivalent in the underlying Paleocene succession, point to a single specific event driving subaerial exposure and erosion. Tectonic activity was certainly underway during these earliest stages of the India-Asia collision, and therefore tectonic reduction of accomodation space
374 375 376 377 378 379	the stratigraphic record, and we are unable to deconvolve their relative contributions to the formation of the Paleocene-Eocene disconformity. The unique features of the conglomerate bed, which has no equivalent in the underlying Paleocene succession, point to a single specific event driving subaerial exposure and erosion. Tectonic activity was certainly underway during these earliest stages of the India-Asia collision, and therefore tectonic reduction of accomodation space remains a viable explanation. This is especially true of the disconformity in the Zanskar region,
374 375 376 377 378 379 380	the stratigraphic record, and we are unable to deconvolve their relative contributions to the formation of the Paleocene-Eocene disconformity. The unique features of the conglomerate bed, which has no equivalent in the underlying Paleocene succession, point to a single specific event driving subaerial exposure and erosion. Tectonic activity was certainly underway during these earliest stages of the India-Asia collision, and therefore tectonic reduction of accomodation space remains a viable explanation. This is especially true of the disconformity in the Zanskar region, which separates pelagic marly limestones below from peritidal carbonates above, suggesting a

384 (Wendler and Wendler, 2015) has yet to be proven as a workable alternative mechanism. However, 385 we have no evidence to rule out a climatically-driven eustatic component, and further work is 386 needed to better understand the possibly superimposed processes that drove deep incision and 387 erosion along the inner margin of the Tethyan Himalaya prior to the PETM. 7. Conclusions 388 This study reports a detailed stratigraphic record of the Paleocene–Eocene Thermal 389 390 Maximum from the Tethyan Himalaya. The succession is truncated by a major disconformity around the Paleocene-Eocene boundary, marked by a conglomerate bed now identified in both the 391 392 Gamba and Tingri areas of southern Tibet. As a result of this unconformity, only the upper part of 393 the PETM interval is preserved. By coupling sedimentological, biostratigraphic, and geochemical 394 data, we were able to reconstruct in detail the sedimentary and tectonic evolution of the southern 395 Indian margin during the earliest stages of the India-Asia collision. Our results allows us to 396 conclude that: 397 1) The Paleocene-Eocene unconformity corresponds with the boundary between members 3 and 4 of the Zongpu Formation, documenting an abrupt environmental change from open-marine 398 399 environments below to restricted or lagoonal inner-ramp environments above. The prominent negative excursion in δ^{13} C at the base of member 4 is seen in both whole-rock carbonate and 400 401 organic carbon records, and can correlated using larger-benthic-foraminifera biostratigraphy with the carbon isotope excursion defining the PETM. The strong ¹³C depletion seen in shallow-marine 402 403 carbonates in southern Tibet may have resulted partly from syndepositional alteration of organic

404 matter.

405	2) The marked negative shift in carbon isotope values across the Paleocene-Eocene boundary
406	is associated with conglomerate beds in the Gamba area of southern Tibet, and a stratigraphic gap
407	of as much as 400 kyr, providing compelling evidence of subaerial exposure. This major
408	Paleocene-Eocene disconformity may be ascribed to tectonic uplift associated with the southward
409	migration of an orogenic wave that originated 3±1 Myr earlier, as India began to collide with Asia
410	in the middle Paleocene. Eustatic sea-level fall may have caused the incision of valleys prior to the
411	PETM, with subsequent filling of the valleys during the interval of conglomerate deposition,
412	however the impact of eustasy on the stratigraphy of the Tethyan Himalaya requires further study.
413	Acknowledgments
414	We would like to express our gratitude to Wei An, Zhong Han, and Mingyuan Lai for their
415	assistance in the field and the laboratory for Provenance Studies, and to Carlo Doglioni, Shijun
416	Jiang, Yongxiang Li and Jiangang Wang for their advice in preparing this manuscript. This study
417	was financially supported by the National Natural Science Fund for Distinguished Young Scholars
418	(41525007) and the Chinese MOST 973 Project (2012CB822001). We would also like to thank
419	our two reviewers and Editor Prof. Isabel Patricia Montanez for their constructive comments.
420	References
421	Afzal, J., Williams, M., Leng, M.J., Aldridge, R.J., Stephenson, M.H., 2011. Evolution of Paleocene to
422	Early Eocene larger benthic foraminifer assemblages of the Indus Basin, Pakistan. Lethaia 44,
423	299-320.
424	Aubry, M. P., Ouda, K., Dupuis, C., Berggren, W. A., Couvering, J. A. V., 2007. The Global Standard
425	Stratotype-section and Point (GSSP) for the base of the Eocene Series in the Dababiya section
426	(Egypt). Episodes, 30(4), 271.
427	Aubry, M.P., Dupuis, C., Berggren, W.A., Ouda, K., Knox, K., Sabour, A.A., 2009. Sea-level changes

428	bracket the PETM. In: Strong, P., Crouch, E., Hollis, C. (Eds.), and Biotic Events of the
429	Paleogene, CBEP 2009, Wellington, New Zealand, Conference program and Abstracts, p. 144
430	Bagherpour, B., Vaziri, M.R., 2012. Facies, paleoenvironment, carbonate platform and facies changes
431	across Paleocene Eocene of the Taleh Zang Formation in the Zagros Basin, SW-Iran. Historical
432	Biology, v. 24, p.121-142.
433	BouDagher-Fadel, M.K., Price, G.D., Hu, X., Li, J., 2015. Late Cretaceous to early Paleogene
434	foraminiferal biozones in the Tibetan Himalayas, and a pan-Tethyan foraminiferal correlation
435	scheme. Stratigraphy, v. 12, p. 67-91.
436	BouDagher-Fadel, MK, (2008). Evolution and Geological Signifi cance of Larger Benthic Foraminifera:
437	Developments in Paleontology and Stratigraphy, Volume 21: Amsterdam, Elsevier, 540 p.
438	BouDagher-Fadel, MK, (2013). Biostratigraphic and geological significance of planktonic foraminifera,
439	2nd edition. London: OVPR University College of London, 307 p
440	Bowen, G. J., Bralower, T. J., Delaney, M. L., Dickens, G. R., Kelly, D. C., Koch, P. L., et al., 2006,
441	Eocene hyperthermal event offers insight into greenhouse warming: EOS, Transactions, American
442	Geophysical Union, v. 87, p. 165-169.
443	Berggren, W.A., 1995. A revised Cenozoic geochronology and chronostratigraphy.Boyd, R., Dalrymple,
444	R. W., and Zaitlin, B. A., 2006. Estuarine and Incised-Valley Facies Models, in: Facies Models
445	Revisited, edited by: Posamentier, H.W. and Walker, R. G., SEPM Sp. Pub., v84, p 171–235.
446	Budd, A.D., and Hiatt, E.E., 1993, Mineralogical stabilization of high-magnesium
447	calcite—Geochemical evidence for intracrystal recrystallization within Holocene porcellaneous
448	foraminifera: Journal of Sedimentary Petrology, v. 63, p. 261-274
449	Copley, A., Avouac, J. P., and Royer, J. Y., 2010, India-Asia collision and the Cenozoic slowdown of
450	the Indian plate: Implications for the forces driving plate motions: Journal of Geophysical
451	Research: Solid Earth (1978–2012), v. 115, no. B3.
452	DeCelles, P., Kapp, P., Gehrels, G., and Ding, L., 2014, Paleocene-Eocene foreland basin evolution in
453	the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision:
454	Tectonics, v. 33, no. 5, p. 824-849.
455	Dickens, G. R., Castillo, M. M., and G.Walker, J. C., 1997, A blast of gas in the latest Paleocene:
456	Simulating first-order effects of massive dissociation of oceanic methane hydrate: Geology, v. 25,

457 no. 3, p. 259-262.

- 458 Doglioni, C., Carminati, E., Cuffaro, M., and Scrocca, D., 2007, Subduction kinematics and dynamic
 459 constraints: Earth-Science Reviews, v. 83, no. 3, p. 125-175.
- 460 Dupuis, C., Aubry, M. P., Steurbaut, E., Berggren, W. A., Ouda, K., Magioncalda, R., and
- 461 Heilmann-Clausen, C., 2003. The Dababiya Quarry Section: Lithostratigraphy, clay mineralogy,
- 462 geochemistry and paleontology. Micropaleontology, 49(Suppl 1), 41-59.
- 463 Egger, H., 2011. The early Paleogene history of the Eastern Alps. In: Egger, H. (Ed.), Climate and
- Biota of the Early Paleogene, Field-Trip Guidebook, Salzburg, Austria. Berichte der Geologischen
 Bundesanstalt, v.86, p. 9–16.
- 466 Egger, H., Heilmann-Clausen, C., Schmitz, B., 2009. From shelf to abyss: record of the
- 467 Paleocene/Eocene boundary in the Eastern Alps (Austria). Geol. Acta, v7, p. 215–227.
- 468 Egger, H., Homayoun, M., Huber, H., Rögl, F., and Schmitz, B., 2005, Early Eocene climatic, volcanic,

and biotic events in the northwestern Tethyan Untersberg section, Austria: Palaeogeography,

- 470 Palaeoclimatology, Palaeoecology, v. 217, no. 3-4, p. 243-264.
- 471 Fuchs, G., and Willems, H., 1990, The final stages of sedimentation in the Tethyan Zone of Zanskar
 472 and their geodynamic significance (Ladakh-Himalaya): Jahrb. Geol. Bundesanstalt, v. 133, p.
 473 259-273.
- 474 Garzanti, E., and Hu, X., 2015, Latest Cretaceous Himalayan tectonics: Obduction, collision or
- 475 Deccan-related uplift?: Gondwana Research, v. 28, no. 1, p. 165-178.
- Garzanti, E., Baud, A., Mascle, G., 1987. Sedimentary record of the northward flight of India and its
 collision with Eurasia (Ladakh Himalaya, India). Geodinamica Acta, 1, 297-312.
- 478 Garzione, C. N., Dettman, D. L., Horton, B. K., 2004. Carbonate oxygen isotope paleoaltimetry:
- 479 evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan plateau.
- 480 Palaeogeography, Palaeoclimatology, Palaeoecology, 212(1), 119-140.
- 481 Giusberti, L., Rio, D., Agnini, C., Backman, J., Fornaciari, E., Tateo, F., and Oddone, M., 2007, Mode
 482 and tempo of the Paleocene-Eocene thermal maximum in an expanded section from the Venetian
- 483 pre-Alps: Geological Society of America Bulletin, v. 119, no. 3-4, p. 391-412.
- 484 Higgins, J. A., and Schrag, D. P., 2006, Beyond methane: Towards a theory for the Paleocene–Eocene

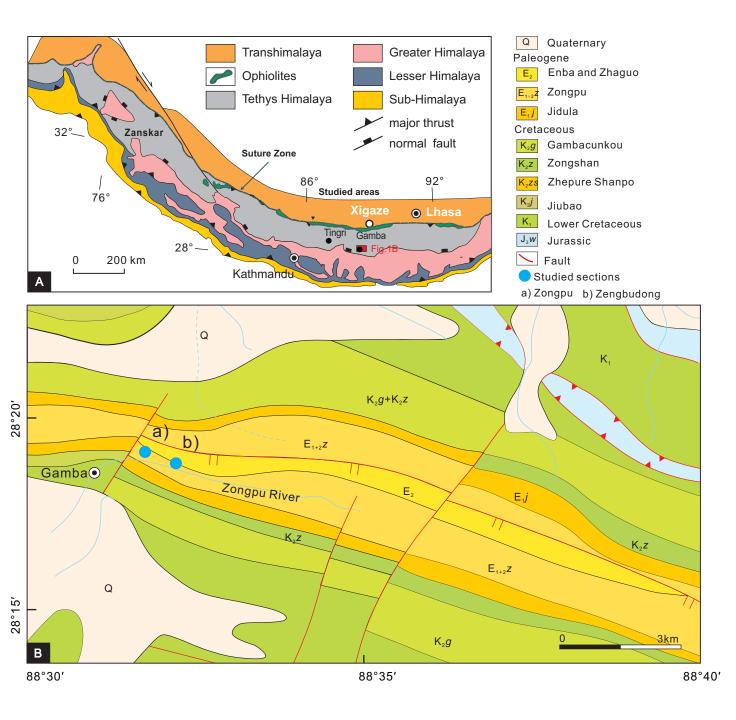
485	Thermal Maximum: Earth and Planetary Science Letters, v. 245, no. 3-4, p. 523-537.
486	Hilgen, F. J., Kuiper, K. F., and Lourens, L. J., 2010, Evaluation of the astronomical time scale for the
487	Paleocene and earliest Eocene: Earth and Planetary Science Letters, v. 300, no. 1, p. 139-151.
488	Hottinger, L, 1960. Uber Eocane und Paleocane Alveolinen. Eclogae Geol Helv, v. 53, p. 265–283
489	Hu, X., Garzanti, E., Moore, T., and Raffi, I., 2015, Direct stratigraphic dating of India-Asia collision
490	onset at the Selandian (middle Paleocene, 59 ± 1 Ma): Geology, v. 43, no. 10, p. 859-862.
491	Hu, X., Sinclair, H. D., Wang, J., Jiang, H., and Wu, F., 2012, Late Cretaceous-Palaeogene stratigraphic
492	and basin evolution in the Zhepure Mountain of southern Tibet: implications for the timing of
493	India-Asia initial collision: Basin Research, v. 24, no. 5, p. 520-543.
494	Immenhauser, A., Holmden, C., and Patterson, W. P., 2008, Interpreting the carbon isotope record of
495	ancient shallow epeiric seas: lessons from the recent: Geological Association of Canada Special
496	Paper, v. 48, p. 137-174.
497	Immenhauser, A., Kenter, J. A., Ganssen, G., Bahamonde, J. R., Van Vliet, A., and Saher, M. H., 2002,
498	Origin and significance of isotope shifts in Pennsylvanian carbonates (Asturias, NW Spain):
499	Journal of Sedimentary Research, v. 72, no. 1, p. 82-94.
500	John, C. M., Bohaty, S. M., Zachos, J. C., Sluijs, A., Gibbs, S., Brinkhuis, H., and Bralower, T. J., 2008,
501	North American continental margin records of the Paleocene-Eocene thermal maximum:
502	Implications for global carbon and hydrological cycling: Paleoceanography, v. 23, no. 2, p. 1-20.
503	Kennett, J. P., and Stott, L. D., 1991, Abrupt deep sea warming palaeoceanographic changes and
504	benthic extinctions at the Palaeocene: Nature, v. 353, no. 6341, p. 225-229.
505	Kominz, M. A., Browning, J. V., Miller, K. G., Sugarman, P. J., Mizintseva, S., and Scotese, C. R.,
506	2008, Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal
507	plain coreholes: an error analysis: Basin Research, v. 20, no. 2, p. 211-226.
508	Kuenen, P. H., 1964. Experimental abrasion: 6. surf action. Sedimentology, v. 3, no.1, 29-43.
509	Li, J., Hu, X., Garzanti, E., An, W., and Wang, J., 2015, Paleogene carbonate microfacies and sandstone
510	provenance (Gamba area, South Tibet): Stratigraphic response to initial India-Asia continental
511	collision: Journal of Asian Earth Sciences, v. 104, p. 39-54.
512	Marshall, J. D., 1992, Climatic and oceanographic isotopic signals from the carbonate rock record and

- 513 their preservation: Geol. Mag. v. 129, no. 2, p. 143-160.
- 514 McInerney, F.A., Wing, S.L., 2011. The Paleocene-Eocene Thermal Maximum: A Perturbation of
- 515 Carbon Cycle, Climate, and Biosphere with Implications for the Future, Annual Review of Earth516 and Planetary Sciences, Vol 39, pp. 489-516.
- 517 Mills, H. H., 1979. Downstream rounding of pebbles: a quantitative review. Journal of Sedimentary
 518 Research, 49(1), 295-302.
- 519 Murphy, B.H., Farley, K.A., Zachos, J.C., 2010. An extraterrestrial 3He-based timescale for the
- 520 Paleocene–Eocene thermal maximum (PETM) from Walvis Ridge, IODP Site 1266. Geochimica
 521 et Cosmochimica Acta, 74(17): 5098-5108.
- Nicora, A., Garzanti, E., and Fois, E., 1987, Evolution of the Tethys Himalaya continental shelf during
 Maastrichtian to Paleocene (Zanskar, India): Riv. It. Paleont. Strat, v. 92, p. 439-496.
- 524 Orue-Etxebarria, X., Pujalte, V., Bernaola, G., Apellaniz, E., Baceta, J. I., A. Payros, NunÄez-Betelu,
- 525 K., Serra-Kiel, J., and Tosquella, J., 2001, Did the Late Paleocene thermal maximum affect the
- 526 evolution of larger foraminifers? Evidence from calcareous plankton of the Campo Section
- 527 (Pyrenees, Spain): Marine Micropaleontology, v. 2001, no. 41, p. 45-71.
- 528 Patterson, W. P., and Walter, L. M., 1994, Depletion of 13C in seawater CO2 on modern carbonate
- 529 platforms: Significance for the carbon isotopie record of carbonates: Geology, v. 22, p. 885-888.
- 530 Pujalte, V., Baceta, J.I., Schmitz, B., 2015. A massive input of coarse-grained siliciclastics in the
- 531 Pyrenean Basin during the PETM: the missing ingredient in a coeval abrupt change in
- hydrological regime. Climate of the Past, v. 11, no. 12, p. 1653-1672..
- 533 Pujalte, V., Orue-Etxebarria, X., Schmitz, B., Tosquella, J., Baceta, J. I., Payros, A., Bernaola, G.,
- 534 Caballero, F., and Apellaniz, E., 2003, Basal Ilerdian (earliest Eocene) turnover of larger
- for a for a minifera: Age constraints based on calcareous plankton and δ^{13} C isotopic profiles from new
- 536 southern Pyrenean sections (Spain): Geological Society of America Special Paper, v. 369.
- 537 Pujalte, V., Robador, A., Payros, A., Samsó, J.M., 2016. A siliciclastic braid delta within a lower
- 538 Paleogene carbonate platform (Ordesa-Monte Perdido National Park, southern Pyrenees, Spain):
- 539 Record of the Paleocene–Eocene Thermal Maximum perturbation. Palaeogeography,
- 540 Palaeoclimatology, Palaeoecology, v. 459, p. 453-470.
- 541 Pujalte, V., Schmitz, B., Baceta, J. I., Orue-Etxebarria, X., Bernaola, G., Turell, J. D., Payros, A.,

- 542 Apellaniz, E., and Caballero, F., 2009, Correlation of the Thanetian-Ilerdian turnover of larger
- foraminifera and the Paleocene-ocene thermal maximum:confirming evidence from the Campo
 area (Pyrenees, Spain): Geologica Acta, v. 7, no. 1-2, p. 161-175.
- 545 Pujalte, V., Schmitz, B., Baceta, J.I., 2014. Sea-level changes across the Paleocene–Eocene interval in
- 546 the Spanish Pyrenees, and their possible relationship with North Atlantic magmatism.
- 547 Palaeogeography, Palaeoclimatology, Palaeoecology, v. 393, p. 45-60.
- Robinson, S.A., 2011. Shallow-water carbonate record of the Paleocene-Eocene Thermal Maximum
 from a Pacific Ocean guyot. Geology 39, 51-54.
- 550 Röhl, U., Westerhold, T., Bralower, T. J., and Zachos, J. C., 2007, On the duration of the
- 551 Paleocene-Eocene thermal maximum (PETM): Geochemistry, Geophysics, Geosystems, v. 8, no.
 552 12, p. 1-13.
- 553 Sanders, D., 2003, Syndepositional dissolution of calcium carbonate in neritic carbonate environments:
- geological recognition, processes, potential significance: Journal of African Earth Sciences, v. 36,
 no. 3, p. 99-134.
- Scheibner, C., and Speijer, R. P., 2009, Recalibration of the Tethyan shallow-benthic zonation across
 the Paleocene-Eocene boundary: the Egyptian record: Geologica Acta, v. 7, no. 1-2, p. 195-214.
- 558 Scheibner, C., Speijer, R.P., Marzouk, A.M., 2005. Turnover of larger foraminifera during the
- 559 Paleocene-Eocene Thermal Maximum and paleoclimatic control on the evolution of platform
 560 ecosystems. Geology, v. 33, 493-496.
- Sciunnach, D., Garzanti, E., 2012. Subsidence history of the Tethys Himalaya. Earth Science Reviews,
 v. 111, 179-198.
- 563 Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferrandez, C., Jauhri, A.K., Less, G., Pavlovec, R.,

564 Pignatti, J., Samso, M.J., Schaub, H., Sirel, E., Strougo, A., Tambaregu, Y., Tosquella, J.,

- 565Zakrevskaya, E., 1998. Larger foraminifera biostratigraphy of the Tethyan Paleocene and Eocene.
- 566 Bull. Soc. géol. France, v. 169, no.2, p. 281–299.
- 567 Sluijs, A., and Dickens, G. R., 2012, Assessing offsets between the delta C-13 of sedimentary
- 568 components and the global exogenic carbon pool across early Paleogene carbon cycle
- 569 perturbations: Global Biogeochemical Cycles, v. 26.
- 570 Sluijs, A., Brinkhuis, H., Crouch, E. M., John, C. M., Handley, L., Munsterman, D., and Pancost, R. D.


- 571 2008, Eustatic variations during the Paleocene–Eocene greenhouse world, Paleoceanography,
 572 23(4), PA4216, doi:10.1029/2008PA001615.
- 573 Sluijs, A., G. J. Bowen, H. Brinkhuis, L. J. Lourens, and E. Thomas, 2007. The Palaeocene–Eocene
- thermal maximum super greenhouse: Biotic and geochemical signatures, age models and
- 575 mechanisms of global change, in Deep Time Perspectives on Climate Change: Marrying the
- 576 Signal From Computer Models and Biological Proxies, edited by M. Williams et al., pp. 323–347,
- 577 Geol. Soc., London.
- 578 Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Damsté, J. S. S., Dickens, G. R.,
- 579 Huber, M., Reichart, G.-J., Stein, R., Matthiessen, J., Lourens, L. J., Pedentchouk, N., Backman,
- 580 J., Moran, K., and the Expedition, S., 2006, Subtropical Arctic Ocean temperatures during the
- 581 Palaeocene/Eocene thermal maximum: Nature, v. 441, no. 7093, p. 610-613.
- 582 Speijer, R. P., and Wagner, T., 2002, Sea-level changes and black shales associated with the late
- Paleocene thermal maximum: Organic-geochemical and micropaleontologic evidence from the
 southern Tethyan margin (Egypt-Israel): Geological Society of America Special Paper.
- Speijer, R. P., Scheibner, C., Stassen, P., Abdel-Mohsen, and Morsi, M., 2012, Response of marine
 ecosystems to deep-time global warming: a synthesis of biotic patterns across the
- 587 Paleocene-Eocene thermal maximum (PETM): Austrian Journal of Earth Sciences, v. 105, p. 6-16.
- Strong, N. and Paola, C., 2008. Valleys that never were: time surfaces versus stratigraphic surfaces, J.
 Sediment. Res., v 78, p. 579–593
- Swart, P. K., and Eberli, G., 2005, The nature of the δ13C of periplatform sediments: Implications for
 stratigraphy and the global carbon cycle: Sedimentary Geology, v. 175, no. 1-4, p. 115-129.
- 592 Van Hinsbergen, D. J., Lippert, P. C., Dupont-Nivet, G., McQuarrie, N., Doubrovine, P. V., Spakman,
- 593 W., & Torsvik, T. H., 2012. Greater India Basin hypothesis and a two-stage Cenozoic collision
- between India and Asia. Proceedings of the National Academy of Sciences, 109(20), 7659-7664.
- van Hinsbergen, D. J., Steinberger, B., Doubrovine, P. V., and Gassmöller, R., 2011. Acceleration and
- 596
 deceleration of India Asia convergence since the Cretaceous: Roles of mantle plumes and
- 597 continental collision. Journal of Geophysical Research: Solid Earth, 116(B6).
- 598 Wan, X.Q., Jansa, L.F., Sarti, M., 2002. Cretaceous-Paleogene boundary strata in southern Tibet and
- their implication for the India-Eurasia collision. Lethaia, 35(2): 131-146.

- 600 Wang, X., Wan X. Q. and Li, G. B., 2010. Turnover of larger benthic foraminifera during the
- Paleocene-Eocene stratigraphic boundary in Gamba, Tibet. Acta Micropalaeo ntologica Sinica, v.
 27, no. 2, p. 109- 117.
- Wendler, J. E., and Wendler, I., 2016, What drove sea-level fluctuations during the mid-Cretaceous
 greenhouse climate?: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 441, p. 412-419.
- 605 Westerhold, T., Röhl, U., and Laskar, J., 2012,. Time scale controversy: Accurate orbital calibration of
- the early Paleogene: Geochemistry, Geophysics, Geosystems, v. 13, no. 6, p. n/a-n/a.
- Willems, H., Zhang, B., 1993. Cretaceous and Lower Tertiary sediments of the Tibetan Tethys
 Himalaya in the area of Gamba (South Tibet, PR Chian). Berichte, Fachbereich Geowis
 senschaften, Universitat Bremen, 38: 3-27.
- Willems, H., Zhou, Z., Zhang, B., and Gräfe, K.-U., 1996, Stratigraphy of the Upper Cretaceous and
 Lower Tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China): Geol Rundsch v. 85,
 p. 723-754.
- Wu, F. Y., Ji, W. Q., Wang, J. G., Liu, C. Z., Chung, S. L., and Clift, P. D., 2014,. Zircon U-Pb and Hf
 isotopic constraints on the onset time of India-Asia collision: American Journal of Science, v. 314,
 no. 2, p. 548-579.
- Yi, Z., Huang, B., Chen, J., Chen, L., and Wang, H., 2011,. Paleomagnetism of early Paleogene marine
 sediments in southern Tibet, China: Implications to onset of the India–Asia collision and size of
 Greater India: Earth and Planetary Science Letters.
- Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001,. Trends, Rhythms, and
 Aberrations in Global Climate 65 Ma to Present: Science, v. 292, no. 5517, p. 686-693.
- Zamagni, J., Mutti, M., and Košir, A., 2012,. The evolution of mid Paleocene-early Eocene coral
 communities: How to survive during rapid global warming: Palaeogeography, Palaeoclimatology,
 Palaeoecology, v. 317-318, p. 48-65.
- 624 Zamagni, J., Mutti, M., Košir, A., 2008. Evolution of shallow benthic communities during the Late
- 625 Paleocene–earliest Eocene transition in the Northern Tethys (SW Slovenia). Facies, 54(1), 25-43.
- Zhang, Q., Willems, H., Ding, L., 2013. Evolution of the Paleocene-Early Eocene larger benthic
 foraminifera in the Tethyan Himalaya of Tibet, China. Int J Earth Sci 102, 1427-1445.
- 628 Zhang, Q., Willems, H., Ding, L., Gräfe, K.-U., and Appel, E., 2012, Initial India-Asia

629	Continental Collision and Foreland Basin Evolution in the Tethyan Himalaya of Tibet: Evidence
630	from Stratigraphy and Paleontology: The Journal of Geology, v. 120, no. 2, p. 175-189.
631	Figure captions
632	Fig. 1: A) Schematic geologic map of the Himalayan Range; B) Geologic maps of the Gamba area,
633	showing the location of the studied sections.
634	
635	Fig. 2: Field photographs: (A) Member 3, conglomerate bed, and member 4 of the Zongpu
636	Formation in the Zengbudong section, Gamba area; (B) nodular marly limestones of uppermost
637	member 3; (C) the conglomerate bed in the Zongpu Formation, Gamba area; (D) thick- and
638	massively-bedded limestones of member 4.
639	
640	Fig. 3: Lithological log of the Zongpu Formation (Zongpu and Zengbudong sections) spanning the
641	Paleocene/Eocene boundary, showing the distribution of larger benthic foraminifera, carbonate
642	microfacies, interpreted palaeowater depths and depositional environments, and the distribution of
643	larger benthic foraminifera in carbonate clasts of the conglomerate bed. A) Floatstone with
644	Alveolina and Orbitolites in lowermost member 4; B) packstone with nummulitids in the
645	carbonate clasts, from the conglomerate bed; C) packstone with nummulitids in uppermost
646	member 3. SBZ = Shallow Benthic Zonation of Serra-Kiel et al., 1998; FWWB = fair-weather
647	wave base. Data from Li et al. (2015).
648	
649	Fig. 4: Integrated chrono- and biostratigraphic framework for the Gamba sections of the southern
650	Tethyan Himalaya. Planktonic foraminiferal biozones from BouDagher-Fadel (2013); larger
651	benthic foraminiferal biozones from BouDagher-Fadel (2008, 2015). Timescale is based on
652	Gradstein et al. (2012). Legend corresponds to that in Fig. 3.
653	
654	Fig. 5: Larger benthic foraminifera of SBZ4 through SBZ6 in the Zongpu and Zengbudong
655	sections. A) Daviesina langhami, Thanetian, SBZ4, 12ZP133; B) Orbitosiphon punjabensis,

656 Thanetian, SBZ4, 12ZP133; C) a. *Ranikothalia sindensis*, b. *Orbitosiphon praepunjabensis*

657	Adams, c. Miscellanea juliettae, d. Lockhartia roeae, Thanetian, SBZ4, 12ZP182; D) Miscellanea
658	juliettae, Thanetian, SBZ4, 12ZP182; E) Miscellanea yvettae, Thanetian, SBZ4, 12ZP229; F) a.
659	Orbitolites complanatus, b. Alveolina ellipsoidalis, Ypresian, later part of SBZ6, 13ZB72; G) a.
660	Orbitosiphon punjabensis, b. Lockhartia conditi, c. Miscellanea miscella, d. Lockhartia diversa,
661	reworked late Thanetian SBZ4 assemblage mixed with early Ypresian assemblage, 12ZD69; H)
662	Alveolina ellipsoidalis and Alveolina pasticillata, Ypresian, late SBZ6, 13ZB72.
663	
664	Fig. 6: Lithostratigraphy, biostratigraphic ranges of larger benthic foraminifera, and whole-rock
665	carbonate δ^{13} C curve for the Zongpu section, Gamba area. SBZ= Shallow Benthic Zone,
666	TP=Tibetan Foraminiferal Biozone, CIE= Carbon Isotopic Excursion; M= mudstone; W=
667	wackestone; P= packstone; G= grainstone; F= floatstone. Legend corresponds to that in Fig. 3.
668	
669	Fig. 7: Lithostratigraphy, biostratigraphic ranges of larger benthic foraminifera, and $\delta^{13}C$ curves
670	for whole-rock carbonate and organic matter from the Zengbudong section, Gamba area.
671	
672	Fig. 8: Crossplots of: A) Whole-rock carbonate carbon versus oxygen isotopes (δ^{13} C vs. δ^{18} O)
673	from the Zongpu Formation, in the Zongpu and Zengbudong sections; B) Whole-rock carbonate
674	carbon versus organic carbon isotopes ($\delta^{13}C_{carb}$ vs. $\delta^{13}C_{org}$) of carbonate clasts from the
675	conglomerate bed in the Zengbudong section.
676	
677	Fig. 9: Integrated field photography, lithological log, and stable isotope curve from the
678	Zengbudong section, spanning the Paleocene/Eocene boundary in the Gamba area, southern Tibet.
679	
680	Fig. 10: Chemostratigraphic correlation of PETM records based on stable carbon isotopes, from
681	the Gamba area of southern Tibet (this study), Kozina, SW Slovenia (Zamagni et al., 2012), and
682	the Southern Ocean (ODP690; Kennett et al., 1991).

Li et al., Fig.1

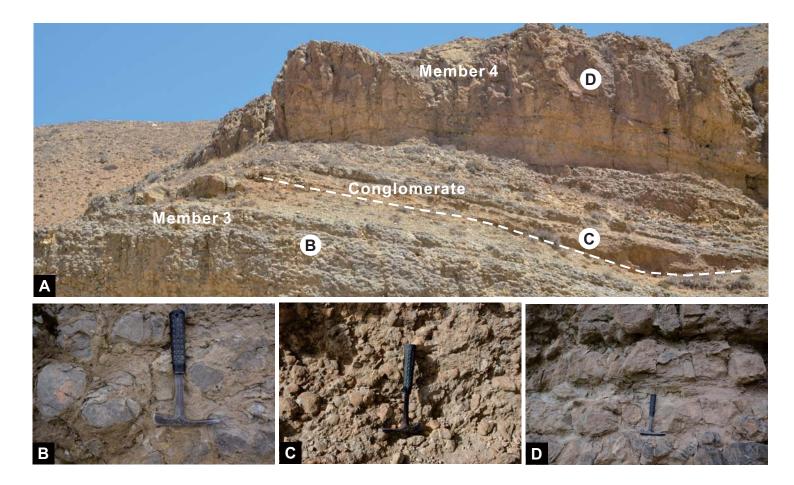
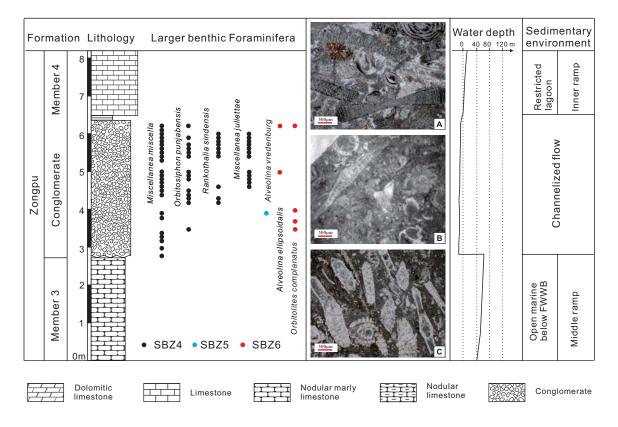
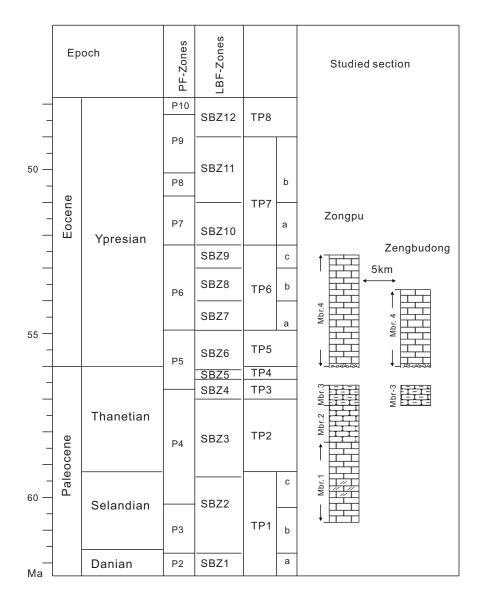




Fig. 2 Li et al.

Li et al., Fig. 3

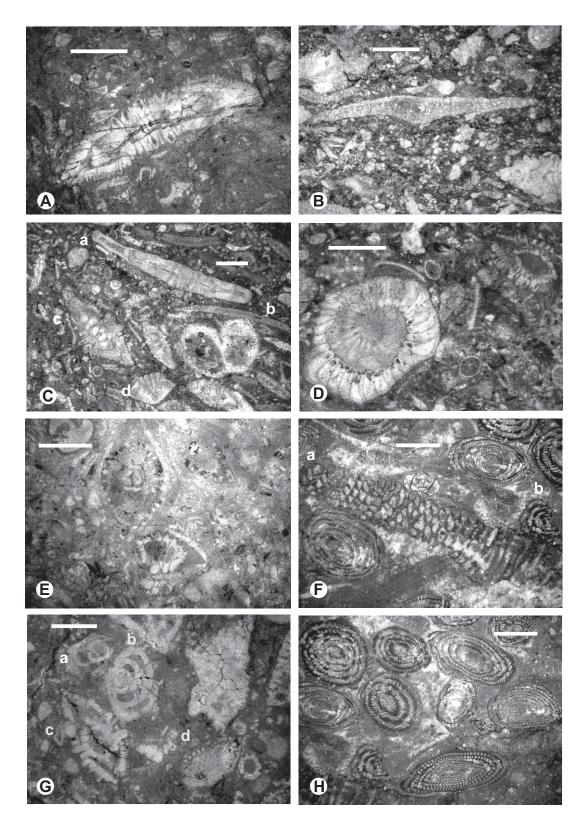
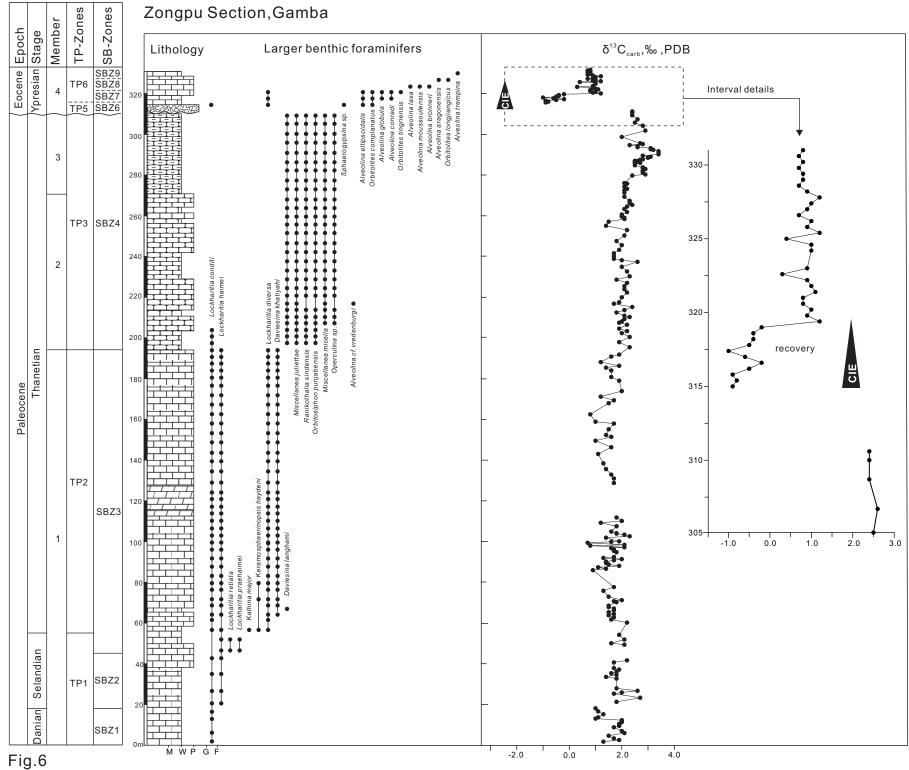
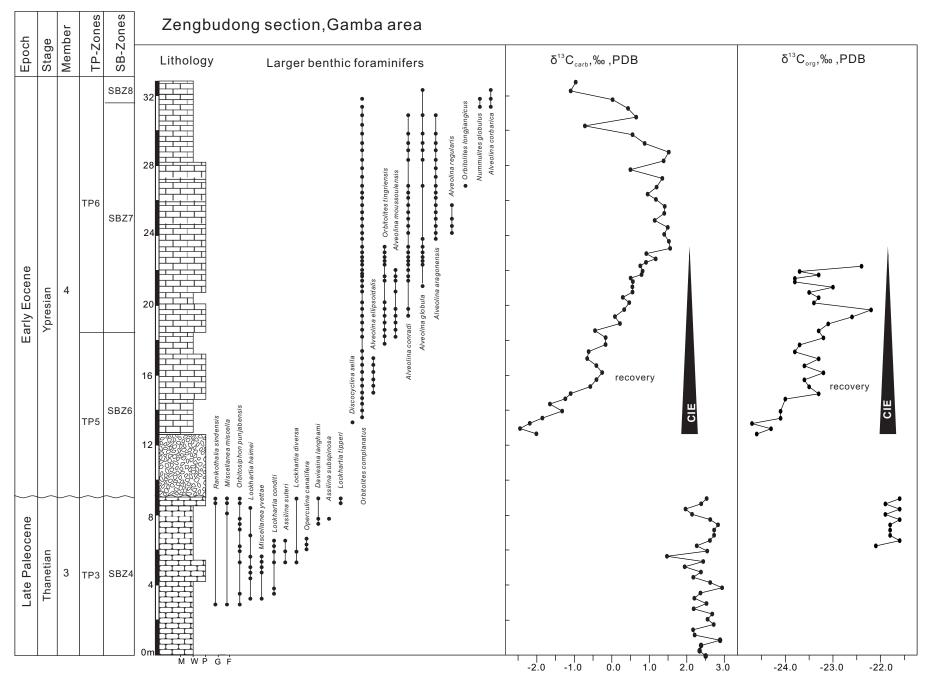
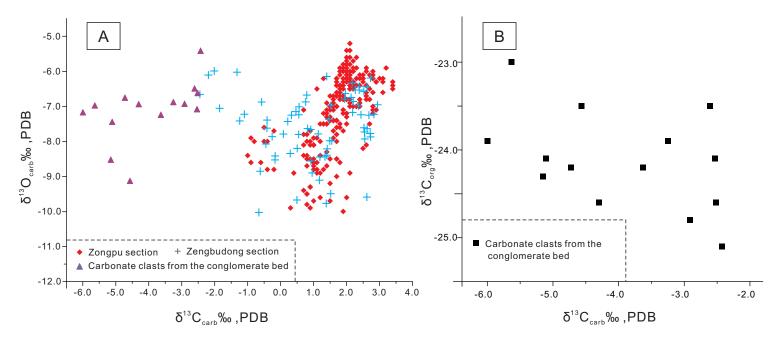





Fig. 5

Zengbudong section

Field view of the conglomerate directly overlying the member 3

 $\delta^{{}^{13}}C_{{}_{carb}}, \hbox{\sc w}, PDB$

Fig. 9

Zengbudong section, Gamba(Southern Tibet)

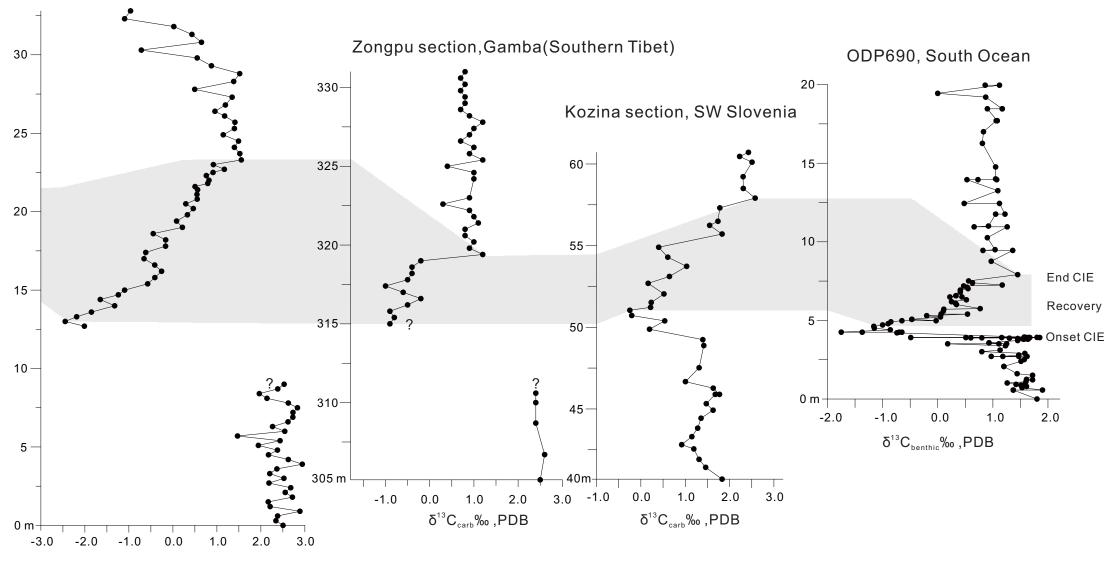


Fig. 10 $\delta^{13}C_{carb}$ %, PDB

June 11, 2016

Dear Editor (*Palaeogeography, Palaeoclimatology, Palaeoecology*),

We would like to submit our original article entitled "Shallow-water carbonate response to the Paleocene–Eocene thermal maximum in the Tethys Himalaya (southern Tibet): tectonic and climatic implications" for publication.

This manuscript is entirely original and not submitted elsewhere for publication. If accepted, we are willing to pay the extra charge for color figures.

For potential referees, we would like to recommend the following researchers, who are familiar with Paleocene–Eocene thermal maximum and Tethyan Himalaya geology.

Dr. Helmut Weissert, ETH Zurich, Switzerland, Email: helmut.weissert@erdw.ethz.ch

Dr. Appy Sluijs, Utrecht University, Netherlands; Email: a.sluijs@uu.nl

Dr. Qinghai Zhang, University of Bremen, Germany; Email: zhang@uni-bremen.de

Dr. Xiaoqiao Wan, China University of Geosciences, Beijing; Email: wanxq@cugb.edu.cn

Dr. Victoriano Pujalte, University of the Basque Country, Spain; Email: <u>victoriano.pujalte@ehu.es</u>

We thank you for your kind consideration, and look forward to hearing from you in due course.

Sincerely yours,

Xiumian Hu (Corresponding author, <u>huxm@nju.edu.cn</u>)

Juan Li, Xiumian Hu*, Eduardo Garzanti, Marcelle BouDagher-Fadel

Supplementary Interactive Plot Data (CSV) Click here to download Supplementary Interactive Plot Data (CSV): Appendix.xls