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Abstract 
 

Motivation: SNP-SNP interactions may be the key for overcoming bottlenecks of genetic association 

studies. However, related statistical methods for testing SNP-SNP interactions are underdeveloped.  

Results: We propose the SNP Interaction Pattern Identifier (SIPI), which tests 45 biologically mean-

ingful interaction patterns for a binary outcome. SIPI takes various inheritance modes and model 

structures (including non-hierarchical models) into consideration. The simulation results show that 

SIPI has higher power than MDR-LR (Multifactor Dimensionality Reduction-Logistic Regression), 

AA_Full, and SNPassoc in general. Applying SIPI to the prostate cancer PRACTICAL consortium 

data with approximately 21,000 patients, the two SNP pairs in EGFR-MMP16 and EGFR-EGFR were 

found to be associated with prostate cancer aggressiveness with the exact pattern in the discovery 

and validation sets. We demonstrated that SIPI not only searches for more meaningful interaction 

patterns but can also overcome the unstable nature of interaction patterns.   

Availability: The SIPI software is freely available at http://publichealth.lsuhsc.edu/LinSoftware/.  

Contact: hlin1@lsuhsc.edu 

Supplementary information: Supplementary figures and tables are available at Bioinformat-

ics online. 

 

 

http://publichealth.lsuhsc.edu/LinSoftware/
mailto:hlin1@lsuhsc.edu


1 Introduction  

During the past decade, the genome-wide association studies (GWAS) 

have successfully identified many inherited genetic variants (or SNPs) 
associated with complex diseases, such as cancer or related phenotypes. 

However, the predictive power of cancer risk for the GWAS-identified 

SNPs is small by a 1.2 median per-allele odds ratio (Ioannidis, et al., 
2010). By combining multiple SNPs in a prediction model, the predictive 

power of these GWAS SNPs can be improved (Van den Broeck, et al., 

2014). We recently reported the polygenic genetic models to estimate 
their risk for prostate cancer (Al Olama, et al., 2014; Amin Al Olama, et 

al., 2015; Eeles, et al., 2013). Despite these efforts, major proportion of 

familiar risk of prostate cancer remains unknown. The similar situation 
applies for using SNPs to predict prostate cancer prognosis (Van den 

Broeck, et al., 2014). It is well known that biological associations among 

genes are complicated. The majority of GWAS focus on identification of 

individual SNP effects, which may not be sufficient to explain the com-

plexity of disease causality. It has been shown that gene-gene/SNP-SNP 
interactions play an important role in the etiology of complex diseases 

(Cordell, 2009; Moore, 2003; Moore and Williams, 2002; Onay, et al., 

2006). Although SNP-SNP or gene-gene interaction studies have been 
emerging, the statistical methods for evaluating SNP-SNP interactions 

are still underdeveloped.  

 
The majority of genetic association studies focus on two-way interac-

tions with two SNPs involved. In the past decade, various statistical 

methods have been proposed for evaluating two-way SNP-SNP interac-
tions. These methods can be classified either model-based or pattern-

based. The most common model-based approach tests an interaction 

based on a full interaction model with both main effects and their inter-
action. Examples include PLINK(Purcell, et al., 2007), SNPassoc 

(Gonzalez, et al., 2007) and Boolean Operation-based Screening and 

Testing (BOOST) (Wan, et al., 2010). For the model-based approaches, 
the impact of an interaction can be distinguished from the main effects, 

but the number of detectable interaction patterns is limited. In the pat-

tern-based approach, interaction detection is based on risk patterns of the 
3x3 genotype combination table of the two SNPs [such as AA+BB/Bb 

vs. others for SNPA (major/minor allele: A/a) and SNPB (B/b)]. The 

Hypothesis Free Clinical Cloning (HFCC) tests for 255 patterns for one 
SNP pair (Gayan, et al., 2008), but some patterns may not be biologically 

meaningful or are rare. SNPmaxsel evaluates 16 interaction patterns and 

four main effects for a given SNP pair (Boulesteix, et al., 2007). Multi-
factor dimensionality reduction (MDR) is also a pattern-based approach. 

MDR generates a binary risk variable (high/low risk) by comparing the 

case-to-control ratio in each genotype combination to a threshold and 
classifies each genotype to either a high risk set or low risk set. The K-

fold cross-validation is used to relieve over-fitting issue (Ritchie, et al., 

2003; Ritchie, et al., 2001). The strength of pattern-based approaches is 
that they are designed to detect wider range of interaction patterns. The 

limitation of these approaches is that they search associations that allow 

for but are not limited to interactions. A significant result detected using 
the pattern-based approaches may be due to strong main effect without 

an interaction.  

 
To overcome these weaknesses, we propose SNP Interaction Pattern 

Identifier (SIPI), which combines the advantages of the model-based and 

pattern-based approaches. Our approach can examine 45 interaction 
models that consider biologically meaningful factors. Each model has a 

straightforward corresponding pattern, and there is a formal statistical 

test for evaluating the interaction effect only. This approach is powerful, 
and the identified patterns can be easily applied to assemble risk-

prediction models. For evaluating the performance of SIPI, we conduct-

ed a simulation study to evaluate power and type I errors of SIPI with 

other three approaches: MDR-LR (Multifactor dimensionality reduction- 

Logistic Regression), AA_full and SNPassoc. MDR-LR (Multifactor 

dimensionality reduction- Logistic Regression) is a modified version of 
MDR for formal testing an interaction (Edwards, et al., 2010). 

 
 

2 Methods 

 

2.1 SNP Interaction Pattern Identification (SIPI)  

SIPI can intensively and effectively search pairwise SNP-SNP interac-

tions. The conventional approach for identifying SNP-SNP interaction is 

to search a specific type of interaction using the full interaction model 
with the additive-additive mode based on the minor allele. The SIPI 

detects 45 interaction models, which take inheritance mode (both origi-

nal and reverse), and risk category grouping (model structure) into con-
sideration. The best interaction pattern is selected based on the Bayesian 

information criterion (BIC), which is used to deal with the trade-off 

between model fit and complexity of the model. BIC is also shown to be 
consistent in selecting the true model and tends to select a parsimonious 

model compared with the Akaike information criterion (AIC), especially 
in studies with a large sample size (Yang, 2005). Based on these fea-

tures, we decided use BIC as the selection criteria in SIPI. The concept 

of SIPI can be applied to different types of outcomes, such as numeric, 

binary and time-to-event variables. In this study, we focused on the 

binary outcome using logistic regression models. The two primary com-

ponents of SIPI are introduced separately below.  
 

2.1a SNP Inheritance Modes  

The SNP inheritance modes can impact on power to detect SNP interac-
tions (Lin, et al., 2008).  We designate a lowercase letter ‘a’ to denote the 

minor (low frequency) allele, and an uppercase ‘A’ to denote the major 

(common) allele. Each SNP has three genotype categories: homozygous 
major type (‘AA’), heterozygous type (‘Aa’) and homozygous minor 

type (‘aa’). For a SNP, the inheritance mode for a disease risk refers to a 

specific relationship between genotype and phenotype. The inheritance 
modes include additive, dominant, recessive, genotypic and over-

dominant modes. The dominant mode assumes that the impact of having 

one or two copies of a given allele on the outcome is the same, and the 
recessive mode implies that the subjects with only homozygous geno-

types of a given allele have a higher risk to develop the outcome. Addi-

tive mode refers to the impact of each additional copy of a given allele 
on the outcome being equal. The genotypic mode, treats a SNP as a 

categorical variable with three groups, and assumes that each genotype 

has a distinct effect on risk. This genotypic mode needs four degrees of 
freedom for the interaction term itself, and interpretation of the result is 

not straightforward. The over-dominant mode, which assumes that heter-

ozygote has a different risk than the other two homozygous genotypes 
(Aa vs. AA/aa), is a rare case. Therefore, we excluded genotypic and 

over-dominant mode and evaluated a total of three inheritance modes 

(dominant, recessive and additive) in this study.  
 

In the majority of genetic association studies, inheritance modes are 

defined based on the minor (or variant) allele. Under this scenario, the 
binary inheritance mode (dominant and recessive) is coded as “1” for the 

group containing the homozygous minor type, and the other group as “0” 

in modeling. For the AA, Aa and aa genotypes, the additive mode coding 
is 0, 1 and 2. The reverse coding (=1 - original coding for dominant and 

recessive mode; and 2-original coding for additive mode) of inheritance 

mode is seldom to be considered in testing SNP-SNP interactions. The 
original/reverse coding of inheritance mode does not impact on statistical 

significance (p-values) for testing individual SNP effects and full inter-

action model, but dramatically impacts testing SNP-SNP interactions in 
non-hierarchical interaction models. As shown in Table 1, there are six 

total possible coding methods for inheritance modes for each SNP. The 

three inheritance modes with the original coding based on the minor 
allele are additive (noted as aSNP1 for SNP1), dominant (dSNP1) and 

recessive (rSNP1). For reverse inheritance modes, the three modes are 

reverse additive (raSNP1), reverse dominant (rdSNP1), and reverse 
recessive (rrSNP1).  
 

Table 1. SNP coding scheme by the SNP comparative allele and inheritance mode  
 Original mode2  Reverse mode2 

SNP1 

Maj/Min1=A/a 

Additive 

(aSNP1) 

Dominant 

(dSNP1) 

Recessive 

(rSNP1) 

Reverse  

Additive  

 (raSNP1) 

Reverse  

Dominant   

 (rdSNP1) 

Reverse  

Recessive    

 (rrSNP1) 

AA 0 0 0 2 1 1 

Aa 1 1 0 1 0 1 

Aa 2 1 1 0 0 0 

Data type Continuous Binary Binary Continuous Binary Binary 
1Maj/Min= major/minor allele  
2Original modes are based on a minor allele ‘a’; Reverse modes (1 - original mode) for the dominant and recessive 

mode and (2 - original mode) for the additive mode 
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2.1b Risk Category Grouping/Model Structure 

Both hierarchical and non-hierarchical interaction model were consid-
ered in this study. For evaluating 2-way interactions, the hierarchical or 
full interaction models are the models with two main effects and their 

interactions. This is the most common model type for testing pairwise 
SNP-SNP interactions, but this full model tests only one specific interac-

tion pattern. Non-hierarchical models are defined as models with an 

interaction, and none or one main effects. Studies show pure interactions 
without main effects are possible in genetic association studies (Lin, et 

al., 2013; Lin, et al., 2008), so a non-hierarchical model provides a flexi-

ble tool to evaluate these interaction patterns. Using non-hierarchical 
models, a data-driven parsimonious model can be generated; therefore 

power of detecting these specific interaction patterns increases (Milne, et 
al., 2008; Piegorsch, et al., 1994). As shown in Equations 1-4, four pos-

sible model structures for testing a two-way interaction include models 

with (1) two main effects plus an interaction (Full-int); (2) the main 

effect of variable 1 plus an interaction (Main1+int); (3) the main effect of 

variable 2 plus an interaction (Main2+int); and (4) an interaction only 

(Int-only).  
 

By considering a binary inheritance mode, there are four inheritance 

mode combinations (dominant-dominant, dominant-recessive, recessive-
dominant and recessive-recessive). When treating SNPs as numeric 

variables, the additive-additive mode is taken into consideration. Thus, 

SIPI considers a total of five possible types of inheritance mode combi-
nations. For each inheritance mode combination, there are nine unique 

interaction models/patterns when taking into consideration different 

model structures and comparative alleles. Thus, a total of 45 interaction 
patterns are considered in SIPI for each SNP pair (Table 2).  

 

The best model among the 45 models is based on the lowest value of the 
Bayesian information criterion (BIC) (Schwarz, 1978). The significance 

of the interaction effect is tested using the Wald test of the interaction 

term (H0: β3=0). Although the likelihood ratio test (LRT) is usually 
recommended as the most powerful approach, it requires performing the 

two models one wishes to compare. The Wald test is similar to LRT in 

large scale studies and only one model needs to be estimated. In order to 
ease computation burden for high-dimensional data, the Wald test was 

primarily used in SIPI. In the SIPI R package, the users can choose to 

report p-values based on the Wald test or LRT. The Bonferroni method 
is applied to adjust for multiple comparisons. 

 

Full interaction model (Full-int):  
   logit[pr(Y = 1)] = β0 + β1SNP1  + β2SNP2    +  β3SNP1 × SNP2    (𝐞𝐪. 𝟏)        

Main 1+ interaction (Main1+int): 

   logit[pr(Y = 1)] =  β0 + β1SNP1  +                   + β3SNP1 × SNP2    (𝐞𝐪. 𝟐)        

Main 2+ interaction (Main2+int): 

   logit[pr(Y = 1)] =  β0 +              + β2SNP2  +  β3SNP1 × SNP2    (𝐞𝐪. 𝟑)        

Interaction only (Int-only):           

   logit[pr(Y = 1)] =  β0 +                                       + β3SNP1 × SNP2    (𝐞𝐪. 𝟒)        

,where Y is the binary outcome with a value of 0 or 1. 

 
Table 2. List of 45 interaction models by considering the inheritance modes and 

model structures  
SNP1x SNP2 

Inheritance mode1 

Model structure2  Model label3 Model Details 

Dom-Dom Full-int  DD_Full  dSNP1 +  dSNP2 +  dSNP1x  dSNP2 

 Main1+int 

 

DD_M1_int_o1 

DD_M1_int_r1 

 dSNP1 + 

rdSNP1 +                    

  dSNP1x  dSNP2 

rdSNP1x  dSNP2 

 Main2+int 

 

DD_M2_int_o2 

DD_M2_int_r2 

  dSNP2 + 

rdSNP2 + 

 dSNP1x  dSNP2 

 dSNP1x rdSNP2 

 Int-only DD_int_oo 

DD_int_or 

DD_int_ro 
DD_int_rr 

   dSNP1x  dSNP2 

 dSNP1x rdSNP2 

rdSNP1x  dSNP2 
rdSNP1x rdSNP2 

Dom-Rec Full-int  DR_Full  dSNP1 +  rSNP2 +  dSNP1x  rSNP2 
 Main1+int 

 

DR_M1_int_o1 

DR_M1_int_r1 

 dSNP1 + 

rdSNP1 +                    

  dSNP1x  rSNP2 

rdSNP1x  rSNP2 

 Main2+int 

 

DR_M2_int_o2 

DR_M2_int_r2 

  rSNP2 + 

rrSNP2 + 

 dSNP1x  rSNP2 

 dSNP1x rrSNP2 

 Int-only DR_int_oo 

DR_int_or 

DR_int_ro 

DR_int_rr 

   dSNP1x  rSNP2 

 dSNP1x rrSNP2 

rdSNP1x  rSNP2 

rdSNP1x rrSNP2 

Rec-Dom Full-int  RD_Full  rSNP1 +  dSNP2 +  rSNP1x  dSNP2 

 Main1+int 

 

RD_M1_int_o1 

RD_M1_int_r1 

 rSNP1 + 

rrSNP1 +                    

  rSNP1x  dSNP2 

rrSNP1x  dSNP2 

 Main2+int 

 

RD_M2_int_o2 

RD_M2_int_r2 

  dSNP2 + 

rdSNP2 + 

 rSNP1x  dSNP2 

 rSNP1x rdSNP2 
 Int-only RD_int_oo 

RD_int_or 

RD_int_ro 

RD_int_rr 

   rSNP1x  dSNP2 

 rSNP1x rdSNP2 

rrSNP1x  dSNP2 

rrSNP1x rdSNP2 

Rec-Rec Full-int  RR_Full  rSNP1 +  rSNP2 +  rSNP1x  rSNP2 

 Main1+int 

 

RR_M1_int_o1 

RR_M1_int_r1 

 rSNP1 + 

rrSNP1 +                    

  rSNP1x  rSNP2 

rrSNP1x  rSNP2 

 Main2+int 

 

RR_M2_int_o2 

RR_M2_int_r2 

  rSNP2 + 

rrSNP2 + 

 rSNP1x  rSNP2 

 rSNP1x rrSNP2 

 Int-only RR_int_oo 
RR_int_or 

RR_int_ro 

RR_int_rr 

   rSNP1x  rSNP2 
 rSNP1x rrSNP2 

rrSNP1x  rSNP2 

rrSNP1x rrSNP2 

Add_Add Full-int  AA_Full  aSNP1 +  aSNP2 +  aSNP1x  aSNP2 

 Main1+int 

 

AA_M1_int_o1 

AA_M1_int_r1 

 aSNP1 + 

raSNP1 +                    

  aSNP1x  aSNP2 

raSNP1x  aSNP2 

 Main2+int 

 

AA_M2_int_o2 

AA_M2_int_r2 

  aSNP2 + 

raSNP2 + 

 aSNP1x  aSNP2 

 aSNP1x raSNP2 

 Int-only AA_int_oo 

AA_int_or 

AA_int_ro 

AA_int_rr 

   aSNP1x  aSNP2 

 aSNP1x raSNP2 

raSNP1x  aSNP2 

raSNP1x raSNP2 
1Dom: dominant, Rec: recessive, Add: additive  
2 Full-int: full interaction model with two main effects plus an interaction; Main1+int: main effect of variable 1 plus 

an interaction; Main2+int: main effect of variable 2 plus an interaction; and (4) Int-only: an interaction only.  
3_o1, _r1: minor allele (original coding), and reverse coding of SNP1 
 _o2, _r2: minor allele (original coding), and reverse coding of SNP2 

 _oo, _or, _ro, _rr: based on original-original, original-reverse, reverse-original and reverse-reverse coding for SNP1 

and SNP2 

 

 

2.1c Translating Interaction Models to Interaction Patterns 

By treating SNPs as binary variables (such as dominant or recessive), we 

can simplify genotype combinations from a three-by-three panel into a 

two-by-two panel, resulting in four possible sub-groupings. For the two-
by-two panel, we can categorize the genotype combinations to four-, 

three- and two-risk subgroups. As shown in Figures S1-S2, we can trans-

late the interaction models to the corresponding genotype interaction 
patterns. Our 45 pattern labels were based on the three-by-three tables 

with an order of homozygous wild, heterozygous and homozygous vari-

ant types (denote as AA, Aa, and aa) and the homozygous major geno-
types of the two SNPs as the top left corner.  

 

2.2 MDR-LR 

MDR-LR, a two-step approach (Edwards, et al., 2010), is formally to test 

an interaction for the MDR selected interaction models. The first step is 

to apply the MDR concept to classify each SNP to a binary variable 

(high/low risk). In the 2nd step, a full logistic regression with main effects 

of these binary SNP variables and their interaction is conducted. The 

significance of interaction is tested based on the likelihood ratio test of 
the interaction term.   

 

2.3 AA_Full  

The AA_full [available in PLINK (Purcell, et al., 2007)] approach uses a 

full logistic regression model with both main effect and interaction. Each 

SNP is treated as an additive mode based on the minor allele. The signif-
icance test is evaluated using the Wald test of the interaction coefficient.  

 

2.4 SNPassoc 

SNPassoc (Gonzalez, et al., 2007) used the same full logistic regression 

and allows for five different inheritance modes [additive, dominant, 

recessive, genotypic, and over-dominant (Aa vs. AA/aa)] based on the 

minor allele. Two SNPs in the same pair are required to have the same 

inheritance mode. 

 

2.5 Simulation 

We conducted a simulation study to compare the power of SIPI with the 
conventional AA_Full model, MDR-LR, and SNPassoc approach for 

detecting two-way SNP-SNP interactions. For simulation settings, one 

SNP pair was considered. The two candidate SNPs were generated inde-
pendently based on the Hardy-Weinberg equilibrium. Seven sets of a 

wide range of minor allele frequencies (MAF=0.05-0.5) for SNP1 and 

SNP2 were investigated: (0.5, 0.3), (0.5, 0.2), (0.5, 0.05), (0.3, 0.3), (0.3, 
0.1), (0.3, 0.05), and (0.1, 0.05). The sample sizes of 1,000 and 5,000 

were chosen. All analyses were based on 1,000 simulation runs.  

 
The binary outcome variable (such as case/control) was generated based 

on outcome prevalence and the proportion of the value of interest (such 

as disease) in each genotype combination of the two given SNPs using 
multinomial distribution. We evaluated a total of six designed interaction 

patterns, including one real-data pattern (Figures 1-2). Most of these 

simulated models are based on the interaction patterns reported previous-
ly (Lin, et al., 2013; Lin, et al., 2012). One null model without an inter-

action term was also tested. For the effect size of Models 1-4, the out-

come prevalence was set to 0.3 or 0.4 in the high-risk subgroups and was 
0.2 in the low-risk sub-groups. The corresponding odds ratio (OR) is 1.6 
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and 2.7, respectively. The settings of true interaction models are listed in 
Figures 1-2.  

 
Models 1-3 were interaction-only models. For Model 1 (RR_int_rr pat-

tern), both SNPs are considered as recessive with the reverse coding. The 

disease prevalence is 0.3 and 0.2 for the high- and low-risk groups, re-
spectively. For Model 2 (DD_int_oo pattern), both SNPs are considered 

as dominant based on the minor alleles. In Model 3 (RD_int_rr), SNP1 is 

considered under a recessive mode, SNP2 is considered as dominant 
mode, and both SNPs have the reverse coding. Model 4 

(DD_M1_int_o1) includes the SNP1 main effect and an interaction, in 

which both SNPs are considered as dominant based on the minor allele 
of SNP1. The significance of the interaction term is the same regardless 

of the inheritance mode coding (original or reverse) for SNP2. Model 5 

(AA_Full) is a full interaction model and both SNPs are treated as an 
additive mode based on the minor allele. This AA_full model has the 

setting of β0= -2.5 and β1=β2=β3=0.6. Model 6 (RD_int_oo) was designed 

based on rs10488141 and rs6994019 from PRACTICAL data (first SNP 
pair in Figure 4) with an OR of 1.9. For the null model, the disease prev-

alence of 0.2 was applied for all nine genotype combinations.  

 

2.6 Performance Evaluation 

Both power and type I error were evaluated in the 1000 simulation runs. 

Power is defined as the percentage of detecting a significant interaction 
under the true interaction model. Type I error is defined as percentage of 

detecting a significant interaction under the null model. The significant 

tests of the interaction for all four approaches (SIPI, MDR-LR, AA_full 
and SNPassoc) were based on testing the coefficient of the interaction 

term. Statistical significance for SIPI and SNPassoc is defined as a 

p<0.001 (=0.05/45) and p<0.01 (=0.05/5). For the MDR-LR and 
AA_Full approaches, the significance level is 0.05. In addition, we per-

formed the pattern identification rate, which is defined as the percentage 

of identified correct interaction pattern among the significant simulation 
runs.  

 

2.7 Prostate Cancer Study Application 

SIPI was applied in evaluating SNP-SNP interactions in angiogenesis 

genes associated with prostate aggressiveness using Prostate Cancer 

Association Group to Investigate Cancer Associated Alterations in the 
Genome (PRACTICAL) consortium data. The study population includes 

21,316 cases of European ancestry (3,812 aggressive and 17,504 non-

aggressive) from the 32 study sites. We randomly selected half of the 
cases as the discovery set and the other half as the validation set in each 

study site. The sample sizes in the discovery and validation sets are 

10,664 and 10,652, respectively. Individuals were excluded from the 
study based on strict quality control criteria including: overall call rate 

<95% and extremely high or low heterozygosity (p < 1.0 × 10−5). Ag-

gressive prostate cancer was defined as a Gleason score > 8, PSA >100, 
disease stage of “distant” (stage IV) or death from PCa. Ethnic groups 

were defined based on a subset of 37,000 uncorrelated markers that 

passed quality control (including ~1,000 selected as ancestry informative 
markers). Principal Component Analyses were carried out for the Euro-

pean subgroups. The details of this study population have been published 
previously (Eeles, et al., 2013).  

 

We evaluated the 148 SNPs in the six angiogenesis genes (EGFR, 
MMP16, ROBO1, CSF1, FBLN5, HSPG2), which were reported in a 

genetic interaction network associated with prostate cancer aggressive-

ness(Lin, et al., 2013). These result in 10,878 SNP pairs. The pairwise 
interactions among these SNPs associated with prostate cancer aggres-

siveness (yes/no) were investigated using the SIPI approach in the dis-

covery set first.  For the top SNP pairs identified in the discovery set, 
both SIPI and AA_Full were conducted in the validation set.  

3 Results 

3.1 Simulation  

The power of the six simulated models for two SNPs with MAF of (0.5, 
0.3), (0.5, 0.2) and (0.5, 0.05) are shown in Figures 1-2.  As the sample 

size increased, power of all four approaches increased. In general, SIPI is 

more powerful and suffers less negative impact of SNPs with a low MAF 

than the other three approaches (MDR-LR, AA_Full and SNPassoc). In 
Models 1-4 for a SNP pair with a MAF>=0.2 under a sample size of 

1,000, SIPI has greater than 49% power while the other three approaches 
have low power (<25%).  Under a sample size of 1,000 with MAF of 

(0.5, 0.05), power decreases for all four approaches but SIPI still has the 

highest power. As the sample size increased to 5,000, SIPI has 100% 
power in most of the conditions for identifying an interaction with a SNP 

pair with MAF of (0.5, 0.3) and (0.5, 0.2). The order of power for detect-

ing a SNP-SNP interaction is SIPI> MDR-LR> AA_Full (similar with 
SNPassoc) with a big sample size of 5,000.    

 

With a recessive interaction-only pattern (RR_int_rr) in Model 1 for a 
sample size of 1,000, SIPI has a power of 49-54%, but the other three 

approaches only have a power <10%. When the sample size increases to 

5,000, the power of SIPI is 100% while the other three approaches’ 
power remains low (<35%). MDR-LR has higher power than AA_Full 

and SNPassoc. This demonstrates that MDR-LR, AA_Full, and SNPas-

soc have difficulty detecting the ‘RR_int_rr’ pattern.  
 

For Model 2 with a dominant-dominant interaction-only pattern, SIPI has 

power 58-65%, but the other three approaches only have <20% power in 
a sample size of 1,000 and MAF of (0.5, 0.3) and (0.5, 0.2). As the sam-

ple size increases to 5,000, the power of all methods increase, and SIPI 

has the highest power compared with the other three approaches.   
 

For Model 3 (RD_int_rr), SIPI has the highest power among all testing 

scenarios in Figure 1. For a sample size of 5,000, the highest power for 
MDR-LR is 83%, while SIPI’s power is 100%. Similarly, the power of 

Model 4 (DD_M1_int_o1), a dominant-dominant model with SNP1 main 

effect and an interaction, is 59-73% for SIPI and <25% for the other 
three approaches when the sample size is 1,000. Power increases to close 

to 100% for SIPI and 22-78% for others when the sample size becomes 

5,000.  
 

For Model 5 (AA_Full), the AA_Full method is the most powerful 

among all testing approaches in most of the conditions, except the condi-
tion of low MAF of (0.5, 0.05) in a sample size of 1,000. Under this 

special condition, SIPI has the highest power and about 70% of the SIPI 

significant runs selected AA_M1_int and AA_M1_int_r pattern. For 
Model 6 generated according to the first SNP interaction pair in the 

prostate cancer application (see Figure 4), SIPI is still the most powerful 

approach in most of the conditions.     
  

SIPI has a smaller negative impact for detecting an interaction of SNPs 

with a low MAF compared to other statistical approaches. As we ex-
pected, power of SIPI decreases when the SNPs’ MAF decreases (Fig-

ures1-2). However, this negative impact is much smaller in SIPI. For a 

SNP pair with (0.5, 0.3) and (0.5, 0.05) in Model 2 with a sample size of 
5,000, the power of SIPI only decreases 13% (from 100% to 87%), but 

MDR-LR, AA_Full and SNPassoc decreased 50%, 31%, and 39%, re-

spectively.  
 

As we expected, SIPI using the Bonferroni correction is the most con-
servative method among all testing approaches. As shown in Figure 3, 

SIPI has the smallest type I errors (0.01-0.02) compared to the other 

three methods. Some of SNPassoc’s type I errors (0.021-0.057) are also 
less than 0.05. The type I errors for AA_full and MDR-LR are close to 

0.05.  As shown in Tables S1-3, the power and type I error comparisons 

for additional MAF conditions show similar observations.   
 

3.2 Patten Detection Accuracy  

The accuracy rate of pattern identification increases (Figures S4-S5) as 
the sample size increases. For Models 1, 2, 3 and 6 with 1,000 samples, 

56-84% of the significant simulation runs identify the correct pattern. 

For the sample size of 5,000, all models have approximately 100% accu-
racy in identifying correct interaction patterns. For Models 4-5 and 

MAF=(0.3, 0.3) with a sample size of 1,000, the pattern identification 

rates are low (10% and 2%, respectively). However, these rate becomes 
100% for a sample size of 5,000. Although pattern detection accuracy is 

low for the smaller sample, SIPI’s power can still be high due to detec-

tion of other similar patterns. Using Model 4 with MAF=(0.3, 0.3) as an 
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example, only 10% of the significant runs detect the correct pattern 

(DD_M1_int_o1) but other three similar patterns (39.9% DD_int_oo, 
23% DR_int_rr, and 12.6% DR_int_or) are identified (Figure S5). Thus, 

its power of detecting any interaction can reach 61.2%.         

 
From the simulation results, we observed an interesting scenario for 

common variants with a MAF close to 0.5. Under this condition, the 

minor allele determination is unstable. In the 1,000 simulation runs, the 
given allele had around a 50% chance to be classified into the major 

allele and a 50% chance of being classified into the minor allele. This 

unstable major/minor allele assignment affects SIPI’s pattern labels, 
which are built upon the minor/major allele. As an example shown in 

Figure S3, a low risk subgroup of a (GG+ GG) combination of SNP1 and 
SNP2 are classified as the “DD_int_rr” pattern when SNP1 is with a 

major allele of ‘G’ and a minor allele of ‘A’ but is classified as 

“RR_int_or” (called a “sister pattern”) when SNP1’s major allele is ‘A’. 

For an interaction with a SNP with a MAF close to 0.5, the pattern iden-

tification rate is the sum of the rates of the designed and sister patterns. 

We present the pattern identification rates for the significant simulation 
runs in Figures S4-S5. For Model 1 with a SNP pair with MAF=(0.5, 

0.3), a total of 74% runs successfully identified the correct risk pattern 

(39% designed pattern and 5% sister pattern). A similar observations are 
presented for other models. 

 

3.3 Example of Prostate Cancer Aggressiveness 

For the proposed SIPI approach, we considered SNP pairs with a p< 

1x10-7 to be statistically significant after the Bonferroni correction for 

489,510 tests (=10,878 pairs x 45 models per pair). Although the SNP-
SNP interaction results do not appear to be significant after adjusting p 

values for multiple comparisons, some of them show promising con-

sistent results in both datasets. In the discovery set, 25 SNP pairs had a p 
< 0.001. Among these top 25 pairs, four pairs have a p-value < 0.01 in 

the validation set. Two pairs (rs10488141+ rs6994019 and rs2058502+ 

rs4947972) have the exact interaction pattern in both sets. The preva-
lence of prostate cancer aggressiveness by the nine genotype combina-

tions are shown in Figure 4, and the prediction models are listed in Table 

3. The prostate cancer patients with the TT + AC/AA genotype of the 
SNP pair of EGFR rs10488141 and MMP16 rs6994019 tend to suggest a 

higher risk of developing aggressive tumors (odds ratio (OR)=1.7, 

p=4.5x10-6). Those with GG+ GG of two SNPs in EGFR (rs2058502 and 
rs4947972) are less likely to have aggressive prostate cancer tumors 

(OR=0.8, p=5.8x10-6). Those with GG+ AG/AA of two SNPs in EGFR 

(rs723527 and rs845555) are likely to have aggressive prostate cancer 
tumors (OR=1.2, p=3.1x10-4). The patients with AA/AG and CC in 

EGFR rs2075110 and CSF1 rs7538029 have a lower chance of develop-

ing an aggressive prostate cancer (OR=0.9, p=2.6x10-5).  
 
Table 3. Results of the PRACTICAL discovery and validation set for the top 25 

SNP-SNP interaction pairs associated with prostate cancer aggressiveness with a 

p<0.001 in the discovery set  
  Discovery1 Validation1  

SNP1 SNP2 Pattern  Pd Pattern Pv Pattern Similarity2 

rs10228436 rs723527 DR_int_oo 1.0 x10-4 DR_int_rr 0.020 
 rs13222549 rs16880086 RR_int_oo 2.0X10-4 AA_int_ro 0.378 
 rs2017000 rs6981717 DR_int_ro 2.0X10-4 AA_int_oo 0.043 
 rs6956366 rs763317 RD_int_oo 2.7X10-4 DR_int_or 0.032 
 rs10488141 rs6994019 RD_int_oo 2.8X10-4 RD_int_oo 0.005 same 

rs723527 rs845552 RD_int_oo 2.9X10-4 RR_int_oo 0.056 
 rs2058502 rs4947972 DD_int_rr 8.9X10-4 RD_int_or 0.002 Same (sister pattern) 

rs6548616 rs7780270 DR_int_ro 3.2X10-4 RR_int_ro 0.181 
 rs12666347 rs7781264 DR_int_ro 3.6X10-4 DD_int_ro 0.082 
 rs2017000 rs723527 DR_int_oo 3.7X10-4 RR_int_rr 0.079 
 rs723527 rs845555 RD_int_oo 4.5X10-4 RR_int_rr 0.009 similar  

rs16880086 rs6954351 AA_int_ro 4.6X10-4 RR_int_oo 0.123 
 rs10228436 rs7780270 DR_int_oo 4.7X10-4 DR_int_rr 0.070 
 rs13222549 rs16880099 RD_int_oo 4.9X10-4 AA_int_oo 0.424 
 rs10225877 rs16880086 AA_int_oo 5.6X10-4 RD_int_or 0.053 
 rs1519938 rs9842630 DD_int_ro 5.9X10-4 DR_int_or 0.040 
 rs13224708 rs17290392 DD_int_oo 6.1X10-4 DR_int_oo 0.943 
 rs10488141 rs1879202 RR_int_oo 6.4X10-4 RD_int_oo 0.021 
 rs10488141 rs2222294 RD_int_oo 7.3X10-4 DR_int_ro 0.063 
 rs2075110 rs7538029 RD_int_rr 7.7X10-4 DD_int_oo 0.007 similar  

rs13222549 rs17666091 RD_int_oo 8.7X10-4 DR_int_oo 0.021 
 rs11986591 rs6954351 AA_int_ro 9.1X10-4 DR_int_oo 0.138 
 rs11977660 rs9842630 DD_int_ro 9.2X10-4 RD_int_ro 0.044 
 rs7780270 rs9832396 RD_int_or 9.6X10-4 RR_int_oo 0.191 
 rs759169 rs9842630 AA_int_rr 9.8X10-4 AA_int_rr 0.150   

1 Pd: p-value in the discovery set, Pv: p-value in the validation set; Pd<0.001 and Pv<0.01 were in bold. 
2 Comparing patterns in the discovery and validation set for the SNP pairs with Pd<0.001 and Pv<0.01 

 

Three of the four SNP interaction pairs remain promising (rs10488141+ 
rs6994019, rs2058502+ rs4947972, and rs2075110+ rs7538029) after 

including these four SNP pairs and the first five principal components of 

European ancestry in the model (Table 4). For evaluating whether the 
SNPs in the top pairs in the discovery are comparable in the validation 

set, the MAF of these SNPs are calculated. As shown in Table S4, the 

MAFs for these top SNPs are very similar in these two datasets. The 
individual effects of these SNPs in the combined dataset are also evalu-

ated, and some SNPs did not have significant main effects. For example, 

the SNP pairs of rs10488141 and rs6994019 has an interaction with a p-
value of 4.5x10-6 but without main effects (p-value=0.145 and 0.659, 

respectively). These show that some pure SNP-SNP interactions (without 

significant main effects) associated with prostate cancer aggressiveness. 
In summary, our results demonstrate SNP-SNP interactions in the two 

gene pairs (EGFR-MMP16 and EGFR-CSF1), and within EGFR. These 

findings support that EGFR may be the hub of this angiogenesis interac-

tion network, which is consistent with the conclusion of the previous 

study (Lin, et al., 2013).    

  

4 Discussion 
SIPI is more powerful than the MDR-LR, AA_Full and SNPassoc ap-

proach, in general, even after applying stringent Bonferroni correction 

for multiple comparison justification. The primary strengths of SIPI are 
(1) taking various non-hierarchical models and inheritance modes into 

consideration and (2) using BIC to search for a best interaction pattern. 
In practice, it is challenge to detect a true interaction pattern for studies 

with a limited sample size. These features ensure that SIPI can search 

more similar interaction patterns close to the truth for overcoming the 
unstable nature of detecting SNP-SNP interaction patterns. 

 

Our study demonstrated that SIPI is a more comprehensive and flexible 

tool for detecting two-way SNP-SNP interactions compared with the 

other three approaches.  AA_Full in PLINK (Purcell, et al., 2007), 

SNPassoc (Gonzalez, et al., 2007), and MDR-LR(Edwards, et al., 2010) 
are all based on the full interaction model. The difference is how they 

deal with mode of inheritance. AA_full treats SNPs as an additive mode. 

SNPssoc considers five inheritance modes (additive, dominant, reces-
sive, genotypic and over-dominant) but two SNPs in a pair need to have 

the same mode. MDR-LR classifies each SNP to a dominant or recessive 

mode based on risk profile of each individual SNP with the outcome. 
MDR-LR may not test the exact MDR-selected interaction pattern be-

cause the SNP classification is based on main effect. Thus, these three 

approaches can only detect a limited interaction patterns.  For example, 
AA_Full, SNPassoc, and MDR-LR experienced difficulty in detecting 

the RR_int_rr pattern (Model 1, power<35%, Figure 1), but SIPI had 

100% power for a large sample size of 5,000.  
 

SIPI also provide advantages compared to other statistical approaches. 

BOOST (Wan, et al., 2010) uses the log-linear model to test interactions 
and treats SNPs as the genotypic mode. For BOOST, four degrees of 

freedom in a model are needed for each interaction pattern, so this wors-

ens high-dimensional data issue. SNPmaxsel (Boulesteix, et al., 2007) 
evaluates 16 interaction patterns, which are parts of SIPI patterns. These 

16 patterns are the interaction-only models for SNPs with a binary mode 

(dominant or recessive).  HFCC (Gayan, et al., 2008) is used to assess 
255 patterns, but some are rare or biologically meaningless patterns. 

Compared with these approaches, SIPI includes 45 biologically mean-

ingful patterns, some of which have been reported previously (Lin, et al., 
2013).  

 

For external validation of SNP-SNP interactions, we suggest loosening 
the validation criteria for evaluating SNP-SNP interactions to allow for 

similar matches. The optimal goal of a genetic association study is to 

build prediction models for clinical usage. External validation using an 
independent dataset is a key in identifying true prediction factors. The 

majority of previous studies use AA_Full in the two independent datasets 

or the exact interaction pattern identified in the discovery set to verify 
the same pattern in the validation set (Su, et al., 2013). However, this 

exact match is too stringent for identifying SNP-SNP interactions. Our 

simulation findings (Figures S4-S5) indicate the unstable nature of inter-
action patterns due to unsteady risk profiles of the nine genotype sub-
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groups. Thus, it should be more effective to allow for similar matches 
instead of exact matches in SNP-SNP interaction validation, especially in 

the studies with a small sample size. SIPI provides useful features that 
work to overcome this unstable pattern nature. SIPI uses the BIC to 

select the best pattern of 45 patterns so that the true pattern or the most 

similar pattern can be detected. This provides flexibility in terms of 
result validation. For a SNP pair with MAF of (0.3, 0.3) in Model 4 with 

a sample size of 1,000, SIPI can still reach 61% power to detect an inter-

action of SNP1 and SNP2, even though only 10% of the significant 
results point to the correct pattern.  

 

The outcome prevalence table stratified using three-by-three genotypes 
(called the “3x3 outcome table”, available in SIPI software) is a useful 

way to boost result interpretation for interaction patterns. Using the 3x3 

outcome table for real prostate cancer data application, it is easy to ob-
serve that two of the top SNP pairs had similar interaction patterns in the 

discovery set and validation set (Figure 4). Combining the two testing 

sets with a larger sample size ensures that the interaction pattern is more 
reliable. In result validation, the sister pattern (one pattern with two 

different pattern labels) can be easily observed for an interaction with a 

SNP with a MAF close to 50%. In our prostate cancer application, three 
out of eight SNPs involved in the top SNP interactions have a 

MAF>45%. In practice, the sister pattern issue can be identified by re-
viewing the 3x3 outcome table. Thus, we cannot purely rely on pattern 

label to decide whether the two patterns are exactly matched. Due to the 
sister pattern and similar matching issues, it is suggested that the 3x3 

outcome table should be consulted to further review interaction patterns.  

 
In summary, SIPI is a tool to search for 45 interaction patterns for pair-

wise SNP interactions. Although only binary outcome models were 

discussed in this study, it can be extended to various outcome data types, 
such as numeric and time-to-event data. The promising interaction pairs 

identified by SIPI can be included in a risk prediction model with other 

significant individual SNPs, other known clinical risk factors, and bi-
omarkers in order to increase prediction accuracy.   

 

 
 

 

 
 

 

 

              
Figure 1. Power comparisons of the SNP Interaction Pattern Identifier (SIPI) and other three methods for Models 1-3 

 
1Proportion of the outcome event in the genotype combination of the 3x3 table; a lowercase letter denotes the minor allele, and an uppercase 

letter denotes the major allele. 2 MDR-LR (Multifactor dimensionality reduction- Logistic Regression), AA_Full (full interaction model and 
each SNP is treated as an additive mode), SNPassoc R package    
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Figure 2. Power comparisons of the SNP Interaction Pattern Identifier (SIPI) and other three methods for Models 4-6  

 
1Proportion of the outcome event in the genotype combination of the 3x3 table; a lowercase letter denotes the minor allele, and an uppercase 
letter denotes the major allele. 2 MDR-LR (Multifactor dimensionality reduction- Logistic Regression), AA_Full (full interaction model and 

each SNP is treated as an additive mode), SNPassoc R package    

 
 

Figure 3. Comparisons of Type I errors of the SNP Interaction Pattern Identifier (SIPI) and other three methods  

 
1Proportion of the outcome event in the genotype combination of the 3x3 table; a lowercase letter denotes the minor allele, and an uppercase 

letter denotes the major allele. 2 MDR-LR (Multifactor dimensionality reduction- Logistic Regression), AA_Full (full interaction model and 
each SNP is treated as an additive mode), SNPassoc R package    
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Table 4. SNP-SNP interaction models associated with prostate cancer aggressiveness  

 Univariate model  Multivariable model2 

 Unadjusted 

OR (95% CI) 1 

p-value adjusted 

OR (95% CI)1  

p-value 

rs10488141+ rs6994019,   TT+ AC/AA vs. others 1.7 (1.4-2.1) 4.5x10-6 1.8 (1.4-2.6) 6.3x10-7 

rs2058502+ rs4947972,   GG+ GG vs. others 0.8 (0.7-0.9) 5.8x10-6 0.8 (0.7-0.9) 5.2x10-5 

rs723527+ rs845555,   GG+ AG/AA vs. others 1.2 (1.1-1.3) 3.1x10-4 1.1 (1.0-1.3) 1.6x10-2 

rs2075110+ rs7538029,   AA/AG+ CC vs. others 0.9 (0.8-0.9) 2.6x10-5 0.9 (0.8-0.9) 6.9x10-4 
1 Odds ratio (95% confidence interval) 
2 all four SNP pairs and the first five principal components of European ancestry were included in the multivariable model.   
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