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mTORC1 and mTORC2 regulate skin
morphogenesis and epidermal barrier formation
Xiaolei Ding1,2, Wilhelm Bloch3, Sandra Iden2,4, Markus A. Rüegg5, Michael N. Hall5, Maria Leptin2,6,7,

Linda Partridge4,8,9 & Sabine A. Eming1,2,4

Mammalian target of rapamycin (mTOR), a regulator of growth in many tissues, mediates

its activity through two multiprotein complexes, mTORC1 or mTORC2. The role of mTOR

signalling in skin morphogenesis and epidermal development is unknown. Here we identify

mTOR as an essential regulator in skin morphogenesis by epidermis-specific deletion of

Mtor in mice (mTOREKO). mTOREKO mutants are viable, but die shortly after birth due to

deficits primarily during the early epidermal differentiation programme and lack of a

protective barrier development. Epidermis-specific loss of Raptor, which encodes an essential

component of mTORC1, confers the same skin phenotype as seen in mTOREKO mutants.

In contrast, newborns with an epidermal deficiency of Rictor, an essential component

of mTORC2, survive despite a hypoplastic epidermis and disruption in late stage

terminal differentiation. These findings highlight a fundamental role for mTOR in epidermal

morphogenesis that is regulated by distinct functions for mTORC1 and mTORC2.
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Cologne, Am Sportpark Müngersdorf, Cologne 50933, Germany. 4 Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases
(CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany. 5 Biozentrum, University of Basel, Klingelbergstrasse 50/70,
Basel CH-4056, Switzerland. 6 Institute for Genetics, University of Cologne, Zülpicherstr. 47a, Cologne 50674, Germany. 7 European Molecular Biology
Laboratory, Meyerhofstr. 1, Heidelberg 69117, Germany. 8 Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne 50931, Germany.
9 Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK. Correspondence and
requests for materials should be addressed to S.A.E. (email: sabine.eming@uni-koeln.de).

NATURE COMMUNICATIONS | 7:13226 | DOI: 10.1038/ncomms13226 | www.nature.com/naturecommunications 1

mailto:sabine.eming@uni-koeln.de
http://www.nature.com/naturecommunications


T
he epidermis as the outer layer of the skin serves as a
primary interface between the body and its environment
and protects the organism from dehydration and external

insults. The epidermis is a stratified squamous epithelium that
fulfils its functions through a lifelong self-renewal process that is
precisely coordinated by regenerative pathways, which in part
recapitulate those that are activated in epidermal morphogenesis1.
Therefore, elucidating mechanisms of skin development provides
the understanding for molecular principles of skin physiology and
disease development throughout life.

A complex network of signalling pathways and factors
contribute to skin morphogenesis, epidermal stratification and
protective barrier formation including p63, Wnt, Notch and the
PI3K-Akt cascade2,3. These factors govern the dynamics between
progenitor cell division in the epidermal basal layer, delamination,
oriented cell divisions and terminal differentiation of daughter cells
within suprabasal layers4. The exact mechanisms that orchestrate
this fine-tuned balance between cell proliferation and commitment
to differentiation remain to be determined5–7. The role of
mammalian target of rapamycin (mTOR), a regulator of cell
growth and proliferation, has not been investigated in epidermal
morphogenesis. mTOR is a conserved serine-threonine kinase that
acts primarily via the regulation of protein synthesis8,9. Multiple
upstream signals regulate the mTOR pathway, including the
‘classical’ mTOR regulators, such as the receptor tyrosine kinase-
PI3K-Akt signalling cascade10,11, and the more recently described
inputs from keratin 17 or the Wnt and Notch pathways12–15.
These pathways are critical in epidermal morphogenesis, and we
therefore hypothesized that mTOR might serve a role in skin
development and epidermal barrier formation.

mTOR mediates its functions through the assembly of
two structurally distinct multiprotein complexes, mTORC1 and
mTORC2 (refs 10,11,14). The regulatory-associated protein
of mTOR (Raptor) and the Rapamycin-insensitive companion of
mTOR (Rictor) are both mTOR-associated adaptor proteins,
and are required for the formation and function of mTORC1 and
mTORC2, respectively. mTORC1 regulates mRNA translation
by phosphorylating the translational regulators ribosomal protein
S6 kinases (S6K 1 and 2) and eukaryotic initiation factor
4E-binding protein 1 (4E-BP1)16–18. Functions of mTORC2 are
less well defined than those of mTORC1, and one of the best
characterized downstream targets is Akt/protein kinase B, which
is phosphorylated on S473, and which contributes primarily to
maintenance of cellular size and viability19–21. In addition, there is
evidence for a role for mTORC2 in remodelling of actin
architecture through PKCa and Rac GTPase22,23.

Germline deletion of Mtor or genes encoding essential
components of mTOR complexes, such as Rptor or Rictor leads
to early embryonic lethality in various organisms21,24. The recent
availability of conditional mouse lines has made it possible to
address cell-type-specific functions of mTOR signalling
components and has revealed their roles in homeostasis of a
wide range of organs25,26. Knowledge on the function and
regulation of mTOR pathway components in skin maintenance
and homeostasis is limited. In pre-clinical and
clinical studies, roles of mTOR signalling in wound healing
of cutaneous or mucosal injuries15,27,28, epidermal stem cell
homeostasis13 and epidermal carcinogenesis29,30, have
been described. Whereas mTOR inhibitors appear to be tolerated
by healthy skin, wound complications are one of the most
frequent side-effects of mTOR-inhibitors used in the clinic and
can lead to therapy interruption31.

Here we examine the role of the mTOR pathway in skin
morphogenesis in mice by inactivating mTOR or its adaptor
proteins Raptor or Rictor specifically in the epidermis. The
findings revealed essential and distinct functions of mTORC1 and

mTORC2 in skin morphogenesis that have implications for the
understanding of skin physiology.

Results
mTOREKO mutants fail to form a protective epidermis. To
determine the role of mTOR signalling in the epidermal
compartment of the skin, we specifically deleted Mtor in the
epidermis. Mice carrying a loxP-flanked allele encoding Mtor
(Mtorfl/fl)25 were crossed with a transgenic mouse line expressing
Cre recombinase under the control of the human keratin 14
(K14) promoter32, leading to epidermis-specific Mtor deletion
(mTOREKO) in the progeny (Supplementary Fig. 1a).
Cre-mediated recombination of Mtor floxed alleles was verified
by PCR analysis of genomic DNA extracted from newborn mouse
epidermis, and resulted in effective reduction of mTOR
protein expression in embryonic epidermis as revealed by
western blotting analysis (E17.5) and immunohistochemical
staining (E15.5) (Fig. 1a,b). mTOREKO mice were born (P0)
with a highly fragile and translucent skin morphology (Fig. 1c).
After birth, pups showed signs of severe dehydration and died
rapidly within a few hours (Fig. 1d; Supplementary Fig. 1b).
Except for the obvious skin abnormalities, mTOREKO newborns
were comparable to their littermate controls in body size and
length of limbs (Fig. 1c; Supplementary Fig. 1b). The expected
Mendelian ratio was observed with newborns and embryos
during gestation (Supplementary Fig. 1c). Pups that were
heterozygous for the Mtor deficiency in the epidermis
(Mtorfl/wtK14Cre mice) appeared normal and survived until
adulthood without any obvious phenotype (Supplementary
Fig. 1d,e).

Consistent with the severe macroscopic alterations, histology of
newborn skin in mTOREKO mice revealed severe abnormalities
(Fig. 2a). The epidermis in controls showed a stratified epithelium
consisting of basal, spinous, granular and cornified layers,
whereas the epidermis in mTOREKO mice was reduced to a 1–2
cell layer epithelium lacking signs of stratification (Fig. 2a).
The thickness of the dermis, and both the number and
development of hair follicles were markedly reduced in
mTOREKO pups (Fig. 2a,b). Also the epithelium of the tongue
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Figure 1 | Conditional targeting of Mtor and perinatal lethality of

mTOREKO mice. (a) Western blot analysis for mTOR protein in epidermis

isolated from control and mTOREKO embryos. (b) Representative

mTOR-immunostaining of skin in embryos at E15.5; dashed line indicates

basal membrane; scale bar 25mm; (c) Macroscopic appearance of

newborns. (d) Kaplan–Meier plot illustrating the survival rate of newborns.
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in mTOREKO newborns lacked stratification when compared
with controls (Fig. 2c).

In control mice the cells of the basal layer stained positive for
keratin 14 (K14), and suprabasal cells were positive for
stratification and differentiation markers including keratin 10
(K10), filaggrin and loricrin (Fig. 2d). In contrast, in mTOREKO

mice the basal cell layer stained positive for K14, and individual
cells above it stained occasionally positive for K10, but markers
for terminal differentiation including filaggrin and loricrin, were
virtually absent (Fig. 2d). Keratin 15 (K15) as a marker for
epidermal stem cells and progenitors was detected in controls but
was absent in mutant mice (Fig. 2d).

The alterations in epidermal stratification in mTOREKO

newborns were associated with severe disturbances in barrier
function. Whereas in newborn controls exogenously applied
Toluidine blue dye did not penetrate the skin, in mTOREKO

newborns the dye easily penetrated the skin and the mice
appeared blue (Fig. 2e). Consistent with a loss of barrier function

in mTOREKO mice, mutants lost up to 20% of their initial
body weight within 6 h after birth (Fig. 2f). Together, these results
show severely disturbed functions of both the ‘outside-in’ and
the ‘inside-out’ skin barrier function in mTOREKO mice.
Furthermore, epidermal-mesenchymal communication, which is
required for morphogenesis of hair follicles appeared severely
disturbed.

mTOREKO embryos fail to form a stratified epidermis. To
further dissect the role of mTOR in epidermal morphogenesis
and barrier development, we tested barrier function and per-
formed histological analyses of skin from embryos at various
developmental stages starting from E15.5. Epidermal barrier
function is normally acquired in this late embryonic period,
coinciding with the programme of stratification and hair follicle
formation2–6,33. Macroscopically, E15.5 mTOREKO embryos were
indistinguishable from their littermate controls, but by E16.5 and
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Figure 2 | mTOREKO mutants are viable but fail to form a stratified and protective epidermis. (a) Representative H&E-stained back skin in newborns.

(b) Quantification of hair follicles (HF) on back skin (n¼ 5 mice/genotype). (c) Representative H&E-stained tongue of newborns. (d) Representative

immunostaining of epidermal markers: keratin 14 (K14, green), keratin 10 (K10, red), keratin 15 (K15, red), filaggrin (red) and loricrin (red) of back skin in

newborns, (DAPI stain, blue), dashed line indicates basal membrane. (e) Toluidine blue dye penetration assay with newborn mice. (f) Perinatal weight loss

of newborns. e, epidermis; d, dermis; hf, hair follicle; m, muscle; scale bar, (a,c) 50mm, (d) 25mm. Data represents mean±s.d.; non-paired t-test was used

to calculate P value. **Po0.01.
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E17.5 the skin of mTOREKO embryos was fragile and appeared
shiny (Fig. 3a). As revealed by the Toluidine blue dye penetration
test at E16.5, the epidermis of control embryos initiated a barrier
formation programme at the dorsum, preventing outside-in
penetration of the dye, which at E17.5 was almost complete
(Fig. 3b). In contrast, at all stages the epidermis in mTOREKO

embryos failed to form a functional barrier and the dye
penetrated the entire embryonic skin (Fig. 3b).

Histological analysis of controls showed the development of
a stratified epithelium with formation of a stratum corneum
by E17.5 (Fig. 3c). In contrast, E15.5 mTOREKO embryonic skin
consisted of a thin layer of flattened basal epithelial cells and a

further suprabasal layer losing the typical cuboidal shape of basal
epithelial cells in E15.5 control skin (Fig. 3c). E16.5 mTOREKO

epidermis appeared hypoplastic and disorganized and had not
stratified further by E17.5. Consistently, qPCR analysis of
epidermal tissue at E17.5 revealed attenuated expression of
both basal and suprabasal markers in mTOREKO embryos
(Supplementary Fig. 2a). To further characterize the
developmental abortion and the fate of cells in which the
stratification programme arrests, we performed in epidermis
of E17.5 mTOREKO mutants mRNA expression and immuno-
histochemical analyses of simple epithelia markers keratin 8 (K8)
and keratin 18 (K18). Expression of K8/18 was significantly
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Figure 3 | mTOREKO embryos fail to initiate epidermal stratification. (a) Macroscopic appearances of mTOREKO and control embryos. (b) Toluidine blue

dye penetration assay and the quantification of the blue stained area (n¼ 5 embryos/genotype). (c) Representative H&E-stained back skin of embryos and

the quantification of epidermal thickness at indicated time points (n¼ 5 embryos/genotype). (d) qRT–PCR analysis and representative immunostaining of

keratin 8/18 (K8/K18) in mTOREKO and control epidermis at E17.5 (n¼ 5 embryos/genotype). (e) BrdU-immunostaing and quantification of basal BrdUþ

cells in embryo epidermis at E16.5 and E17.5 (n¼ 5 embryos/genotype). (f) Representative TEM of epidermis at E15.5 reveals an atypical epithelial cell

morphology of basal cells with loss of the typical cubical morphology recognizable in E15.5 control epithelium (n¼ 3 embryos/genotype). Scale bar,

(c–e) 25 mm, (f) 2 mm. Data represents mean±s.d.; non-paired t-test was used to calculate P value. *Po0.05, **Po0.01, ***Po0.001.
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increased in mutants versus controls, and co-immunostaining
with K14 revealed that K8/18 was expressed in basal and
suprabasal cell layers, the latter most likely representing
the residual periderm (Fig. 3d). The fact that in mutants
K8/18-K14-double-positive cells are maintained suggests that in
mTOR-deficient cells the keratin switch is delayed/impaired, and
halted at a stage where both keratins are expressed.

In control embryos, hair follicle formation started to be visible at
E16.5 (Fig. 3c) and hair buds stained positive for P-cadherin
at this stage (Supplementary Fig. 2b)34. As judged by
P-cadherin expression in E17.5 epidermis, the number of hair
follicles in mTOREKO embryos was significantly reduced and
their maturation delayed suggestive for disturbed epidermal–
mesenchymal interactions (Supplementary Fig. 2b).

The morphological and functional abnormalities of mTOREKO

embryonic skin resembled those described in p63-null mice35,36.
p63 is a transcription factor that is expressed in basal
keratinocytes, that controls progenitor cell proliferation and
epidermal stratification4,37,38. Immunostaining and western
blotting analyses showed attenuated p63 expression in
mTOREKO epidermis (Supplementary Fig. 2c). qRT–PCR
analysis further confirmed that the mRNA expression of
DNp63 isoforms
was significantly reduced in mTOREKO epidermis versus
controls. Consistently, mTOREKO epidermis also showed
reduced expression of Irf6, Gata3 and Ikka, and upregulated
expression of Runx2, which represent activated or repressed
targets by p63, respectively, that are critical in epidermal
morphogenesis (Supplementary Fig. 2c)39–42.

To examine whether the hypoplastic epidermis in mTOREKO

mice resulted from reduction in cell proliferation, we performed
BrdU incorporation assays with E16.5 and E17.5 embryos. Both
in control and mutant mice incorporation of BrdU was detectable

in the cells of the basal layer (Fig. 3e). However, the number of
BrdUþ cells was reduced by 42.2%±12.7 and 52%±17.2 in
mTOREKO embryos at E16.5 and E17.5, respectively. To clarify
whether apoptosis contributed to epidermal hypoplasia in
mTOREKO embryos, we performed TUNEL assays, caspase-3
stainings and transmission electron microscopy (TEM) analysis.
No obvious signs of apoptosis in the skin of mTOREKO embryos
or controls were found (Fig. 3f; Supplementary Fig. 2d). In
summary, the defects observed in the skin of newborn mTOREKO

mice developed during the early epidermal differentiation
programme, were in part caused by defects in proliferation and
may involve disturbed p63 signalling.

mTOR deficiency alters downstream mTORC1 and mTORC2
signalling. To determine whether mTOR function in epidermal
morphogenesis is mediated by mTORC1 or mTORC2 we
examined downstream targets for each multiprotein complex.
The epidermis of E17.5 mTOREKO and control embryonic skin
was separated and analysed by western blotting analysis (Fig. 4a).
Expression levels of Raptor and Rictor were comparable in
controls and mutants. In contrast, the phosphorylation of the
mTORC1 targets S6K at T389, S6 at S240/244 and 4E-BP1 at
T37/46 was markedly reduced in the epidermis of mTOREKO

embryos (Fig. 4a). The phosphorylation of the mTORC2
target Akt at S473 was also substantially attenuated. The
phosphorylation of FoxO1 at T24 and S256, of GSK3a at S21 and
GSK3b at S9, all known downstream targets of Akt-pS473, were
comparable in controls and mutants (Fig. 4a). These findings
demonstrate that genetic loss of Mtor in the epidermis attenuates
signalling pathways of both mTORC1 and mTORC2.

We also performed immunohistochemical stainings in embryo-
nic skin at E16.5 or E17.5 for S6-pS240/244, 4E-BP1-pT37/46 and
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Akt-pS473 (Fig. 4b,c). In control epidermis a clear signal for
S6-pS240/244 and 4E-BP1-pT37/46 was detected in the suprabasal
or basal epidermal layers starting at E16.5, respectively, suggesting
activation of mTORC1 during epidermal stratification. pS6 and
p4E-BP1 staining was virtually undetectable in mutant embryonic
epidermis (Fig. 4b). Consistent with previous observations,
phosphorylation of Akt at S473 became detectable in control
spinous and granular layers at E17.5 (Fig. 4c)43. In mTOREKO

embryonic epidermis phosphorylation of Akt-S473 was
significantly reduced, although in individual cells above the
stratum basale staining was occasionally detected (Fig. 4c).

mTOR controls proliferation and differentiation through
mTORC1. To dissect the roles of the two mTOR complexes in
epidermal morphogenesis, we generated mice with epidermis-
specific deletion of Rptor or Rictor26 (Fig. 5a; Supplementary
Fig. 3a). Newborn RapEKO mice were viable but the skin was
fragile, shiny, translucent and the barrier function was severely
compromised (Fig. 5b,c). Like mTOREKO pups, newborn RapEKO

mice showed signs of severe dehydration and died rapidly within
a few hours of birth (Supplementary Fig. 3b).

Histological analysis of newborn RapEKO mouse skin revealed
multiple defects that resembled those seen in mTOREKO mice:
absence of the normal epidermal stratification in both back skin
and tongue (Fig. 5d; Supplementary Fig. 3c); a hypoplastic dermis
and a significantly reduced number and development of hair
follicles in the back skin (Fig. 5d); absence of terminal
differentiation markers such as filaggrin and loricrin, whereas

K14 was detectable, as was K10, albeit at minimal levels; absence
of K15 staining (Fig. 5e).

Furthermore, as in mTOREKO embryos, epidermal morpho-
genesis in RapEKO embryos was severely impaired as shown by a
translucent skin (Fig. 6a) and increased penetration of Toluidine
blue dye at E17.5 (Fig. 6b), loss of epidermal stratification at E16.5
and E17.5 (Fig. 6c), attenuated formation of hair follicles and
retained expression of K8/18 in K14-positive basal cells and in
periderm (Supplementary Fig. 3d,e). Similarly, expression of
DNp63 isoforms and their target genes Irf6 and Gata3 were
downregulated, and Runx2 upregulated (Supplementary Fig. 3f).
The BrdU incorporation assay revealed significantly fewer
proliferative cells in the basal layer of RapEKO embryos (Fig. 6d).

mTORC1 has key roles in mRNA translation10,11. To examine
whether the disturbed epidermal differentiation phenotype in
RapEKO embryos might in part be caused on the translational level,
we compared differentiation marker RNA and protein expression
levels in epidermal extracts of RapEKO and control embryos
(E17.5). qRT–PCR and western blotting analysis of epidermal
tissues showed a significant reduction of differentiation markers
(K1, K10, loricrin, filaggrin) at the transcriptional and also at
the protein level in RapEKO mutants when compared with
controls (Fig. 6e,f). Hence, based on these findings we have no
evidence that aborted epidermal differentiation in TORC1-
deficient epidermal tissues is particularly due to reduced
translation of the tested differentiation markers.

To determine which downstream targets of mTORC1 could
contribute to epidermal morphogenesis we performed western
blotting analysis in E17.5 embryonic skin of RapEKO mice. Whereas
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Raptor protein was absent, expression of Rictor was not affected.
Phosphorylation of the mTORC1 targets S6K, S6 and 4E-BP1 was
reduced in mutants (Fig. 6g). In contrast, we did not detect obvious
alterations of phosphorylated Akt on residues T308 and S473 in
mutants (Fig. 6g). Disturbances of the mTORC1 pathway in
RapEKO mice during epidermal morphogenesis were further

corroborated by immunohistochemistry of E16.5 and E17.5
embryonic epidermis. Whereas phosphorylation of pS6-pS240/
244 and Akt-pS473 was easily detectable in suprabasal cell layers
of control embryos, in RapEKO embryos phosphorylation for
S6-pS240/244 was absent but Akt-pS473 was detectable in the few
suprabasal cells present in RapEKO epidermis (Fig. 6h).
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mTORC2 controls stratification and barrier formation. We
further generated epidermal-specific Rictor knockout mice
(RicEKO) (Fig. 7a; Supplementary Fig. 4a). RicEKO mice were born
at the expected Mendelian ratio and presented a body size that
was comparable to control littermates (Fig. 7b; Supplementary
Fig. 4b). Although the majority of RicEKO newborns
survived through adulthood, up to 20% of the mice died within 3
months. The skin of newborn RicEKO mice was characterized by a
shiny, translucent and more finely wrinkled morphology
(Fig. 7b). Although, the macroscopic defects in RicEKO newborns
were less severe than those in mTOREKO and RapEKO pups,
they were nevertheless clearly distinguishable from control lit-
termates (Fig. 7b; Supplementary Fig. 4b).

The epidermis of RicEKO newborn skin was stratified, but the
epidermal thickness was reduced by 46%±4. This was primarily
due to a reduced granular cell layer and thinner stratum corneum
(Fig. 7c,d). Analysis of newborn skin by TEM did not reveal
obvious alterations at the subcellular level (Supplementary

Fig. 4c). Also the tongue displayed a hypoplastic epithelium in
RicEKO newborns (Supplementary Fig. 4d). The dermal thickness
and both the number and size of hair follicles were comparable
between the control and RicEKO mice (Fig. 7c,d). Toluidine blue
dye penetration assays showed that the outside-in barrier
function was overall intact, although occasionally, RicEKO pups
showed small erosions, which might have occurred due
to mechanical stress of the skin during birth (Fig. 7e)
perhaps indicating skin fragility in the mutant mice.
Trans-epidermal water loss in RicEKO mice was increased
1.5-fold compared with controls (Fig. 7f), suggesting an
impairment of the epidermal inside-out barrier function.

Immunohistochemical staining for K14 and K15 in the basal
cell layer was comparable in mutants and controls (Fig. 7g). The
differentiation markers K10, loricrin and filaggrin were detected
in RicEKO pups although the overall abundance was reduced
when compared with controls consistent with the epidermal
hypoplasia in RicEKO mutants (Fig. 7g).
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mTORC2 regulates differentiation and asymmetric cell division.
To examine the role of mTORC2 in skin morphogenesis RicEKO

embryos were collected at E17.5 and E18.5 and subjected to the
Toluidine blue dye penetration assay. Whereas blue staining in
control embryos at E17.5 was limited to the distal limbs and
defined areas of the head, in RicEKO embryos the dye penetrated
the entire ventral aspect (Fig. 8a). At E18.5, the control embryos
presented a nearly intact epidermal barrier, whereas in mutants the
dye still penetrated in distal limbs (Fig. 8a). The interfollicular
epidermis of RicEKO embryos at E15.5 through E17.5 was
consistently thinner compared with controls (Fig. 8b). Hair follicle
formation appeared similar in controls and mutants.

To quantify epidermal differentiation markers mRNA and
protein was isolated from epidermal tissues at E17.5 and subjected
to qRT–PCR and western blotting analysis. Whereas mRNA
expression of basal cell markers (K14 and K5) was comparable in
mutants and controls, that of differentiation markers K10, K1 and
filaggrin was significantly reduced in mutants (Fig. 8c). Expression

of loricrin although reduced in mutants did not reach statistical
significant difference compared with controls. Western blot
analysis revealed marked reduction of processed Filaggrin in
mutants when compared with controls, whereas reduction of K10
was less prominent (Fig. 8d).

To determine downstream targets of mTORC2 in epidermal
morphogenesis and to identify factors that may explain the
hypoplastic epidermis in RicEKO mutants, we performed western
blotting analysis of the epidermis in E17.5 RicEKO embryos.
Consistent with the attenuation of mTORC2 pathway
phosphorylation of Akt at S473 and PKCa at S657 was
significantly reduced (Fig. 9a). Phosphorylation of the mTORC2
downstream targets FoxO1-pS256, FoxO1-pT24, GSK3a-p21,
and GSK3b-pS9 appeared similar to controls. Also, phos-
phorylation of the mTORC1 downstream targets S6K-pT389,
S6-pS240/244 and 4E-BP1-pT37/46 was comparable to controls
(Fig. 9a). Immunohisto-chemistry of E16.5 embryonic epidermis
showed that phosphorylation of S6-pS240/244 was easily
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detectable in suprabasal cell layers of controls and in RicEKO

embryos, but phosphorylation for Akt-pS473 was hardly
detectable in the epidermis of RicEKO (Fig. 9b,c).

To provide further mechanistic insight into the hypoplastic
phenotype in RicEKO mice we examined several mechanisms
that have been reported to contribute to stratification in the
developing epidermis4–6. First, we performed BrdU pulse
labelling studies in mutants and controls during E15.5 and
E17.5 to quantify mitotic cells. Whereas at all time points in the
basal compartment the number of BrdUþ cells was comparable
in control and mutant mice, in the suprabasal layer of E15.5
mutant embryos BrdUþ cells were significantly reduced
compared with controls (Fig. 10a). In vitro analysis of
keratinocytes isolated from newborns did not show alterations
in colony forming efficiency or cell proliferation, suggesting that
loss of mTORC2 activity in keratinocytes does not cause a cell
autonomous proliferation arrest (Supplementary Fig. 5).

During the late stage of development, a switch from symmetric
(SCD) towards asymmetric cell division (ACD) in basal
keratinocytes plays a central role in initiating the programme of
epidermal stratification and differentiation4–6. To assess the
cellular division pattern we examined the mitotic spindle
orientation in basal keratinocytes at E16.5 by staining for the
spindle midbody marker Survivin, Par3, a central regulator of
polarization processes, the leucine-glycine-asparagine repeat-
enriched protein (LGN), and the hemidesmosome marker
b4-integrin. Based on the analysis of Survivin staining,
quantification of SCD (0–30�) and ACD (60–90�) in controls
identified 37%±7.6 SCDs and up to 48%±6.8 ACDs (Fig. 10b).
In contrast, only 24%±2.4 of the basal cells in RicEKO embryos

underwent ACD (Fig. 10b). Furthermore, whereas in basal cells of
controls Par3 staining was enriched at the apical side in mutants
Par3 staining was disturbed and did not show a distinct
localization to the apical side (Fig. 10c). In addition, the
number of basal cells in which an apical crescent of LGN had
formed was significantly reduced in mutants versus controls
(Fig. 10d), indicative of disturbed basal layer keratinocyte
polarity. We did not detect major changes in E-cadherin
localization or alterations in gene expression of E-cadherin,
Gpsm2, Pard3 and Numa1 (Supplementary Fig. 6a,b). Together,
these findings suggest disturbed cell polarization
and spindle orientation in RicEKO embryos.

Together, these findings show that the function of mTOR is
split between mTORC1 and mTORC2. Whereas mTORC1
mainly controls keratinocyte proliferation within the basal
layer, early epidermal stratification, differentiation and
epidermal–mesenchymal, mTORC2 primarily controls cell
division orientation and late stage barrier formation of the
interfollicular epidermis (Fig. 10e).

Discussion
We have shown that mTOR signalling is essential for proper skin
morphogenesis and for the development of a protective epidermal
barrier. Loss of epidermal mTOR in mice attenuated keratinocyte
proliferation, abrogated the epidermal stratification programme
and the formation of hair follicles. Both mTORC1 and
mTORC2 contributed to effective epidermal morphogenesis
through activation of distinct pathways that functionally cannot
compensate for each other (Fig. 10e). Whereas mTORC1 activity
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is primarily critical during the early phase of epidermal
differentiation, mTORC2 exerts its activity at later stages of
stratification and terminal differentiation.

The developing epidermis in mTOREKO and RapEKO mice
showed remarkable phenotypic similarities, and in both mutants
cell proliferation in the basal layer was considerably reduced
whereas no signs of apoptosis were detected. The mitogenic
function of mTORC1 in the epidermis is consistent with its role
in anabolic growth-promoting processes in most cell types, such
as stimulation of protein synthesis11.

S6K and 4E-BP1 are rate-limiting factors in mRNA
translation8,44. They are the best characterized direct targets of
mTORC1 (refs 8,9). We found that phosphorylation of S6K and
4E-BP1 was significantly reduced in the epidermis of mTOREKO

and RapEKO embryos, whereas it was not affected in RicEKO

embryos. It is likely that reduction of those proteins that control
proliferation of epidermal progenitor cells contributed to the
hypoplastic epidermis in mTOREKO and RapEKO mutants, and
they await identification in future studies. One such protein may be
fibroblast growth factor-10 (FGF-10), a mitogenic factor for
epidermal homeostasis and in carcinogenesis. It was recently
shown that mTORC1-dependent phosphorylation of 4E-BPs is
necessary for the activation of translation of FGF-10 mRNA29.
Furthermore, also perturbed p63 signalling is likely to contribute to
the defects in the early differentiation programme observed
in the skin of mTORC1 mutants. The delayed switch-off from
the simple epithelial keratins K8/18 towards K14 expression, the
prolonged maintenance of periderm and attenuated proliferation
of basal cells are all indicative for impaired p63 activity in the
absence of mTORC1 activity. Our findings of mTORC1
regulated p63 expression is supported by a recent report
describing mTOR-induced STAT3/p63/Jagged signalling cascade
in cell differentiation45.

Interestingly, phosphorylation of S6, a downstream target of
S6K, was primarily detected in suprabasal layers during epidermal
morphogenesis, where cells have withdrawn from proliferation
and are committed to terminal differentiation. Our findings
are consistent with recent studies in adult mice detecting
S6 phosphorylation in suprabasal layers in normal skin,
whereas activation in basal layers required a stress response such
as wounding or carcinogenesis27,29. Together these findings
suggest that in epidermal morphogenesis and postnatal
epidermal maintenance, S6 may play a primary role in
keratinocyte differentiation rather than proliferation. However,
a potential function of S6 in epidermal differentiation must be
different from our observed mTORC2-mediated effects in
keratinocyte differentiation and formation of the cornified
envelope because S6 activation cannot rescue epidermal
differentiation defects in RicEKO mice. mTORC1-mediated
activation of S6-mediated proliferation in keratinocytes might
be more important during a disturbed homeostasis such as in
wound healing or carcinogenesis. Consistent with this view is also
the clinical observation that patients treated with Rapamycin do
not develop obvious skin problems unless they are wounded.

The epidermal phenotypes of mTOREKO or RapEKO embryos
are strikingly similar to those in IGF-1 receptor (IGF-1R) or
Akt1/Akt2 double null mutants. IGF-1-R null mutants display a
hypoplastic epidermis and the number of hair follicles is
reduced46. Similar epidermal defects have also been described
in Akt1/Akt2-deficient mice47. In a variety of tissues, IGF-1
functions as an extracellular growth signal and plays a pivotal
role in activating mTORC1 through the PI3K-Akt
signalling pathway11. These findings propose a critical role
for the IGF-1R-PI3K-Akt1/2 axis upstream of mTOR in
epidermal morphogenesis. Notably, the severity of skin defects
in mTOREKO and RapEKO mice appeared more pronounced

compared with the phenotype in epidermal-specific IGF1R/
Insulin receptor double knockout mice48, implying the existence
of additional signals contributing to mTOR activation in
epidermal morphogenesis.

Epidermal-specific deletion of Rictor caused a hypoplastic
interfollicular epidermis, which although less severely
compromised compared with mTORC1-deficient epidermis,
was associated with perinatal skin fragility and disturbances in
the formation of a functional epidermal permeability barrier,
despite the presence of a functional mTORC1 cascade. Together,
these findings led us to speculate on a disturbed release of
basal cells into the suprabasal layers and subsequent proper
epidermal stratification and terminal differentiation. Intriguingly,
here we might have identified a previously unrecognized function
for mTORC2 in interfollicular epidermal stratification and barrier
formation.

The process how during embryogenesis, murine epidermis
expands from a single layer of unspecified basal layer progenitors
to a stratified, differentiated epidermis is complex and not entirely
resolved2,49. A multistep mechanism has been proposed. Lechler
and colleagues reported on proliferating suprabasal cells during
the early phase of stratification until E15.5 that, although rapidly
differentiating until the end of gestation, might contribute to the
rapid expansion of epidermal layers and the embryo during this
final stage of embryogenesis4. Furthermore, recently Williams
and colleagues unraveled how particularly after E15.5 the
interplay between cell polarity and spindle orientation
directs epidermal stratification6. During the late phase of
epidermal development (after E15.5), a shift in the cellular
division pattern from SCD towards ACD in basal cells is essential
to initiate epidermal stratification, and involves cytoskeleton
dynamics and spindle reorientation2,4–6,48,49.

In RicEKO epidermis we observed multiple cellular alterations
that might account for the hypothrophic epidermal phenotype.
First, we observed attenuated numbers of BrdUþ suprabasal cells
at E15.5. Secondly, at E16.5 cortical immunolocalization of Par3
and LGN was altered in basal keratinocytes. And third, at E16.5
we detected reduced perpendicular spindle orientation within
the stratum basale. How these cellular alterations might converge
and contribute to disturbed epidermal stratification and
differentiation in RicEKO epidermis remains an important
question. Of equal importance is the identification of mTORC2
targets that mediate these stratification programmes and requires
a detailed analysis which is however beyond the scope of this
manuscript.

Phosphorylation of Akt-S473 is so far one of the best
characterized targets of mTORC2 and was clearly induced during
late stage epidermal morphogenesis in controls, whereas it was
almost absent in the epidermis of RicEKO mice. Our findings
suggest that mTORC2 is a critical regulator of Akt-S473
phosporylation, a process that ultimately affects stratification
and epidermal barrier function, independent of mTORC1. In
liver, mTORC2 has been shown to be critical for Akt-pS473
signalling to FoxO1 and GSK3a/b, which is important for proper
hepatic function and maintenance of whole-body metabolism50.
However, in the developing epidermis of control and RicEKO

mice, phosphorylation of FoxO1 and GSK3a/b was comparable,
and is unlikely to have contributed to the observed phenotype in
RicEKO mice. Along these lines, a recent report revealed a critical
role for insulin/IGF-1-dependent control of FoxO1-mediated p63
activation in coordinating ACD and stratification during
morphogenesis42. The latter finding was corroborated by a
significant attenuation of FoxO1-pS256 phosphorylation in
IGF-1R-deficient epidermis at E16.5 (ref. 42). Here, we did not
detect an alteration of phosphorylated FoxO1 in either RicEKO

epidermis or Rictor-deficient cultured primary keratinocytes.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13226

12 NATURE COMMUNICATIONS | 7:13226 | DOI: 10.1038/ncomms13226 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


Hence, the mechanisms underlying reduced ACD in RicEKO mice
might be independent of FoxO1-pS256.

mTORC2 is also critical for phosphorylation of PKCa-S657
and controlling the stability and activity of PKC proteins21,51.
Consistently, we showed that the protein level of total and
phosphorylated PKCa-S657 was significantly attenuated in
RicEKO epidermis and Rictor-deficient cultured keratinocytes.
Intriguingly, in a previous study, downregulation of PKCa in an
in vitro organotypic epidermis model resulted in a hypoplastic
epidermis, comparable to the RicEKO phenotype52.
These findings suggest that mTORC2 controls epidermal
stratification through PKCa activation. In line with our
hypothesis for a role of mTORC2-PKCa activation in
epidermal cell differentiation are recent reports demonstrating
that mTORC2-mediated PKCa-pS657 activation regulates
tissue differentiation during neuron and mammary
morphogenesis53–55. These studies revealed that mTORC2
controls actin cytoskeleton rearrangement in neurons and
regulates neuron morphology through PKC signalling and the
Tiam1-Rac1-PAK-cofilin pathway53,54. Actin cytoskeleton
rearrangement is important to control epidermal cell shape,
shift of cell division orientation and stratification as has been
demonstrated in the Srf mouse model56. mTORC2 has been
shown to play a vital role in the maintenance of the actin
cytoskeleton22,23. Thus, it is tempting to speculate that mTORC2
promotes ACD and epidermal stratification through regulating
the cytoskeleton.

Our findings in skin development corroborate recent reports of
a dysregulated mTOR pathway as a pathogenic factor in
hyperplastic or inflammatory skin diseases, and hence their
therapy with inhibitors of mTOR signalling57. However, severe
side effects of mTOR inhibition specifically in regenerative
responses often require interrupting the therapy, and a more
detailed understanding of mTOR signalling in skin biology is
critical. Our findings on differential functions of mTOR
complexes in skin morphogenesis provide novel insights into
their role in skin physiology, and may refine drug development
that intervenes in the mTOR pathway.

Methods
Animal. To generate mice with epidermal-specific gene deletion, mice with
homozygous floxed Mtor25, Rptor or Rictor26 alleles were mated to a Cre-transgenic
strain expressing Cre recombinase under control of the human K14 promoter32.
Littermates that either lacked Cre or expressed Cre but carried a heterozygous
loxP-flanked Mtor, Rptor or Rictor allele served as controls. Genotyping was
performed by PCR using specific primers on genomic DNA isolated from tail tips
as previously described25,26. Mice (C57BL/6 background) were maintained and
bred under standard pathogen-free conditions. All animal experiments were
approved by the national animal care committee and the University of Cologne.

Quantification of body weight. Body weight of newborns was monitored every
30 min at room temperature. Weight loss was calculated as percentage of initial
weight.

Skin barrier function assays. For Toluidine blue staining newborn mice were
killed and fixed in methanol for 5 min, washed with PBS and incubated for 5 min in
0.1% Toluidine blue at room temperature; after extensive washing in PBS, images
were taken and the blue stained area (indicating non-functional skin barrier) was
quantified by using ImageJ software58. TEWL was quantified as described
previously using a Tewameter59.

Histological analysis. Tissues were fixed in 4% PFA and embedded in paraffin.
Sections (10 mm) were stained with hematoxylin and eosin following a standard
procedure60 and analysed using a light microscope (Leica DM4000B, Leica
Microsystems, Wetzlar, Germany).

Immunostaining. For immunohistochemical and immunofluorescence stainings
cryosections from Optimal Cutting Temperature compound (OCT, Tissue Tek)
embedded tissues were fixed (4% PFA or in methanol), blocked (10% normal goat

serum in PBS) and incubated with primary antibodies (diluted in blocking buffer)
over night at 4 �C (ref. 60). Bound primary antibody was detected by incubation
with peroxidase-conjugated (EnVision System, Dako) secondary antibody,
followed by incubation with peroxidase substrate (Sigma), or Alexa-Fluor
488- or Alexa Fluor 594-conjugated antibodies (Invitrogen). Nuclei were
counterstained with hematoxylin or 40 ,6-diamidino-2-phenylindole (DAPI,
Invitrogen). After washing slides were mounted in mounting medium. Images were
taken with a Zeiss Meta 710 Confocal Microscope. Used primary antibodies and
their dilutions (Supplementary Table 1): mTOR (Cell Signaling Technology, CST),
S6-pS240/244 (CST); Akt-pS473 (CST); K14 (PROGEN Biotechnik); K10
(Covance); K14 (Covance); K15 (Covance); loricrin (Covance); filaggrin (Covance);
p63 (Santa Cruz Biotech); P-cadherin (Zymed); active Caspase3 (CST); Survivin
(CST), K8/18 (PROGEN Biotechnik); Par3 (EMD Millipore); LGN (EMD
Millipore) and b4-integrin (BD Biosciences).

Electron microscopy. Freshly isolated skin tissue was fixed in buffer
(2% paraformaldehyde, 2% glutaraldehyde, 0.1 M cacodylate buffer at pH 7.35) and
postfixed with ruthenium tetroxide54.

TUNEL assay. TUNEL assay was performed on tissue sections using the DeadEnd
Fluorometric TUNEL System (Promega) according to the manufacturer’s
instructions. The nuclei were counterstained with DAPI (Sigma).

BrdU assay. Pregnant mice were injected intraperitoneally with 50 mg g� 1 BrdU
(BD Biosciences) 4 h before sacrificing. Tissue samples were OCT embedded and
BrdUþ cells were visualized by staining cryosections with a monoclonal anti-BrdU
antibody (BD). BrdUþ cells were determined within the stratum basale and
suprabasal layers of embryonic back-skin over a distance of 250 mm in five
representative fields/section.

LGN localization and cellular division pattern determination. LGN apical
localization and orientation were determined as described previously4–6. Briefly,
LGN localization was divided into four quadrants: apical, basal and two lateral
quadrants; surface and apical localized LGN was quantified in basal cells of E16.5
epidermis. Measurement of LGN crescent orientation was performed by using the
KEYENCE BZ-9000 microscope and BZ-II Analyzer software. The angle of LGN
crescent orientation was determined by a line transecting the middle of the LGN
crescent through the cell centre relative to the plane of the basement membrane5.

Cell division orientation was determined as described previously5. E16.5
embryo cryosections were stained with surviving to detect anaphase/telophase cells.
The cell division angle was assessed by measuring the angle of the plane transecting
two daughter cells relative to the plane of the basement membrane. For
determining orientation of cell division, radial histograms of cell division angles
were plotted in Origin 8.1 (OriginLab). The different divisions were then
categorized as described (0 and 30 degrees, symmetric cell division; 30–60 degrees,
random; 60–90 degrees, asymmetric cell divisions)4.

Keratinocyte culture. Primary keratinocytes were isolated from newborns and
cultured in low calcium medium60. For colony-forming assay 3,000 cells were
plated in triplicates in collagen-coated 6-well plates (BD BioCoat) and cultured for
14 days in the presence of mitomycin-treated 3T3 feeders48. Feeders were changed
once a week. Cells were fixed with 4% PFA (20 min) and subsequently stained with
0.1% crystal violet in PBS and photographed. For BrdU incorporation, cells were
pulsed with BrdU (10 mM) for 2 or 4 h and BrdU incorporation was analysed by
FACS analysis (BD FACSCalibur, BD Biosciences) using the FITC BrdU Flow Kit
(BD Biosciences).

Real-time PCR analysis. For Real-time PCR epidermis was separated and total
RNA was extracted from tissues using RNeasy Minikit (Qiagen), reverse tran-
scription of isolated RNA was performed using the High Capacity cDNA RT Kit
(Applied Biosystems)60. Amplification reactions were performed with PowerSYBR
Green PCR Master Mix (Applied Biosystems) by using 7300 Real Time PCRsystem
(Applied Biosystems). The comparative method of relative quantification
(2� DDCt) was used to calculate the expression level of the target gene normalized
to GAPDH. Primer sequence information can be found in Supplementary Table 2.

Western blotting. Epidermis was separated from the dermis and dissociated with
a MixerMill homogenizer42. For analysis of filaggrin, loricrin and keratin epidermis
was lysed in 4% SDS lysis buffer. Alternatively cells or tissues were lysed in radio
immunoprecipitation assay (RIPA) buffer, containing protease inhibitor
(Sigma-Aldrich) and phosphatase inhibitor (Roche). Protein concentration was
determined by Micro BCA Protein Assay Kit (Thermo Scientific) and 20 mg protein
per sample was subjected to SDS–PAGE (Invitrogen). Subsequently protein was
blotted to PVDF membranes. After blocking (5% non-fat milk in TBST buffer),
membranes were incubated with primary antibodies. Primary antibodies and their
dilutions included (Supplementary Table 3): mTOR, Raptor, Rictor, Akt,
Akt-pS473, Akt-pT308, GSK3a/b, GSK3a/b-pS9/21, FoxO1, FoxO1-pT24/32,
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FoxO1-pS265, S6K1-pT389, S6, S6-pS240/244, 4E-BP1-pT37/46 and PKCa
(all from Cell Signaling); p63, PKCa-pS657 (Santa Cruz Biotech); loricrin, K10,
filaggrin (all from Covance); K14 (PROGEN Biotechnik); b-actin, a-Tubulin
(Sigma). After incubation with horseradish peroxidase (HRP)-conjugated
anti-mouse, anti-rabbit, anti-guinea pig or anti-goat secondary antibodies (DAKO),
the blot was developed with ECL substrate (Pierce) and X-ray film (Amersham
Biosciences). Not cropped western blotting results are presented in Supplementary
Figs 7 and 8.

Statistics. Statistics was performed using PRISM software (Graph Pad Software).
Significance of difference was analysed with a Student paired or unpaired
two-tailed t-test. All data are presented as mean±s.d., a P value ofr0.05 was
considered significant. The results were presented as the average of at least three
independent experiments unless otherwise stated in the legends.

Data availability. The authors declare that all data supporting the findings of
this study are available within the article and its Supplementary Information Files
or from the corresponding author upon reasonable request.
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