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Abstract; 

Hybrid mesoporous silica SBA-15, with surface incorporated cross-linked long 

hydrophobic organic bridges was synthesized using stepwise synthesis. The synthesized 

materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic 

resonance spectroscopy, nitrogen adsorption, X-rays diffraction, thermogravimetry and scanning 

and transmission electron microscopy. The functionalized material showed highly ordered 

mesoporous network with a surface area of 629.0 m2 g-1. The incorporation of long hydrophobic 

amine chains on silica surface resulted in high drug loading capacity (21% Mass/Mass) and 

prolonged release of ibuprofen up till 75.5 h. The preliminary investigations suggests that the 

synthesized materials could be proposed as controlled release devices to prolong the therapeutic 

effect of short life drugs such as ibuprofen to increase its efficacy and to reduce frequent dosage.   
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1. Introduction 

Among porous materials, mesoporous silica (SiO2) has attracted much attention in the 

recent years due to their highly ordered porous network, extremely high surface area 1500 m2 g-1, 

large pore volume and tunable/uniform pore and particle size. The high surface silanol (Si-OH) 

density of these materials permits the tailoring of the surface properties such as hydrophilicity, 

and binding of molecular entities. The surface functionalization of SiO2 with organic molecules 

is emerged as one of the most important research areas in the field of advanced functional 

materials [1]. The versatile nature of mesoporous SiO2 attracted great deal of attention in various 

applied fields such as adsorption [2], catalysis [3], drug and gene delivery [4,5], imprinting for 

molecular recognition [6] etc.  

Controlled release systems have been devised to enable superior control of drug exposure 

over time, to assist drug in crossing physiological barriers, to shield drug from premature 

elimination, and to shepherd drug to the desired site of action while minimizing drug exposure 

elsewhere in the body. These carriers systems may also increase patient compliance by reducing 

frequency of administration, and may add commercial value to marketed drugs by extending 

patent protection. Mesoporous silica materials have been intensively investigated as a carrier for 

controlled and targeted drug release, gene and enzyme immobilization [7-9], enabling them to 

retain their activity after reaching to the specific targeted site. These materials have the 

significant advantage of being free from various biochemical attacks and bioerosions. In addition 

to their high drug loading capacity and controlled/sustained release pattern, their biocompatible 

and nontoxic nature has attracted a great deal of research attention for various controlled release 

systems [10].  

The physiochemical properties, such as surface charge, surface topography of 

biomaterials has great influence on its biocompatibility [11,12]. In mesoporous silica the surface 

exposed silanol group (about 6% of the total of the particles) can interact with cellular membrane 

lipids and proteins [13]. Mesoporous silica would rapidly associate with serum opsonin, and then 

could be removed from circulation by macrophages in reticuloendothelial system (RES) after 

entering into the blood stream [14]. Some studies also suggest that surface modification plays 

pivotal role in altering the surface reactivity, improving the biocompatibility and increasing in 

vivo circulation time [15]. The in vitro cellular uptake and cytotoxicity, in vivo biodistribution 

and excretion of mesoporous SiO2 can be regulated by surface modification with functional 
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groups such as amino (-NH2), carboxyl (-COOH), phenyl (-Ph), and methyl phosphonate (-PO3
−) 

groups [14]. Modified mesoporous SiO2 with amino groups, could manipulate the particle 

endocytosis [15]. 

Among mesoporous silicas, SBA-15 with large surface area up to 1500 m2 g-1, pore 

volume (~1.5 cm3 g-1) and facile surface modification promise great opportunities to obtain 

functional biomaterials with improved and tailored properties [16]. The large pore diameter of 

this silica is also important and beneficial for accommodation of large molecular weight enzymes 

and proteins. SBA-15 has two-dimension hexagonal pore channels that allow loaded drug 

molecules to directly diffuse outwards. Moreover, both the opposite potential and the similar 

hydrophilicity between silica and drug molecules also favor the sustained/prolonged release of 

drugs. Compared to the negatively charged silica, the positive-charge modified silica materials 

exhibited remarkably sustained release profiles [17].  

Drug loading, generally is a quite complex issue and much efforts were focused on 

improving drug loading capacity and prolonged therapeutic effect. Surface modification is one of 

such ways to achieve high drug loading capacity and prolonged/controlled release over an 

extended time period. Similarly, the diffusion rate of the drug molecules depends on the carrier 

type [18]. Ibuprofen is an extensively prescribed analgesic and anti-inflammatory drug with a 

relatively narrow therapeutic range that rapidly eliminate from the body. The efficacy of this 

drug would be enhanced by protecting it from physiological degradation before absorption. The 

structure of ibuprofen contains one carboxylic acid group, which can form the stronger bonding 

with many functional groups such as amines via acid base reaction. Ibuprofen has been also 

reported as a model drug to study the loading and release profiles from porous systems such as 

mesoporous silica based carriers. The good pharmacological activity and the suitable molecule 

size of about 1.0 × 0.6 nm [19], ensures its easy diffusion into or out of the mesoporous channels 

of mesoporous silica. Thus the efficacy of this drug would be enhanced by loading it to 

mesoporous channels of silica to protect it from physiological degradation before absorption. 

Hence the aim of this work is to synthesize mesoporous silica SBA-15 with hydrophobic 

organic functionality for controlled release of ibuprofen. For this purpose modified silica, SBA-

15TPA with long hydrophobic chains of tetraethylenepentamine (TPA) was synthesized and 

tested for the in vitro controlled release of ibuprofen. The sustained/controlled release capacities 
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of the ibuprofen-loaded materials were investigated. The structure and synthesis route of 

functionalized silica is illustrated in scheme 1.  

 

2. Experimental 

2.1. Reagents 

All reagents and solvents were of analytical grade and used as received. 

Tetraethylorthosilicate (TEOS), 3-chlropropyltriethoxysilane, tetraethylenepentamine (TPA), co–

block polymer Pluronic P123, sodium hydroxide (NaOH), sodium chloride (NaCl), sodium 

bicarbonate (NaHCO3), sodium carbonate (Na2CO3), potassium chloride (KCl), potassium 

phosphate dibasic trihydrate (K2HPO4.3H2O), magnesium chloride hexahydrate (MgCl2.6H2O), 

calcium chloride (CaCl2), sodium sulphate (Na2SO4), and tris(hydroxymethyl)aminomethane 

(NH2C(CH2OH)3, were Sigma Aldrich products. Ethanol, Xylene and HCl were Synth products. 

Ibuprofen (IBU) was donated by Galena Pharma Campinas-Brazil and deionized water was used 

throughout the experiment. 

 

2.2. Synthesis of mesoporous silica 

Mesoporous silica SBA-15 was synthesized according to a reported method [20]. Briefly, 

for the synthesis of 1.0 g of SBA-15, 2.0 g of surfactant polymer Pluronic P123 was dissolved in 

12.0 cm3 of deionised water at 313 K, followed by the addition of 60.0 cm3 of hydrochloric acid 

(2.0 mol dm–3) and the solution was stirred for 4 h. After this step, 4.0 g of TEOS was added 

drop wise on stirring and the resulted white suspension was kept in an autoclave for 

crystallization, under static conditions in a polypropylene bottle for 24 h at 373 K. The white 

suspended SBA-15 silica was then filtered, washed several times with deionized water and dried 

at room temperature and calcined in air at 873 K for 6 h to remove the template. 

To obtain amine grafted SBA-15TPA silica, 36.0 mmol (5.4 cm3) of 3-

chloropropyltriethoxysilane was reacted with 18.0 mmol (3.4 cm3) of tetraethylenepentamine in 

50.0 cm3 of ethanol. This mixture was stirred for 72 h at 323 K under anhydrous nitrogen 

atmosphere.  The resultant bridged silylating agent (Scheme 1) was then transferred to a three-

necked round bottom flask, containing 1.0 g of the prepared SBA-15 (calcined), suspended in 

xylene. The reaction mixture was kept on stirring under dry nitrogen for another 72 h at 348 K 



5 

 

and the resultant solid of modified silica (SBA-15TPA) was filtered, washed and dried under 

vacuum at room temperature.  

Please insert scheme 1 here. 

 

2.3. Drug loading  

The drug loading was achieved by soaking the silica samples each 0.5 g into 50 cm3 of 

ibuprofen solution (10.0 g dm3) prepared in hexane in tightly closed flasks. After 3 days each 

drug-loaded material was filtered and dried at 333 K. To measure the drug loading, 3.0 cm3 of 

each filtrate was diluted to 50.0 cm3 and the absorbance of these samples was measured at 

UV/Vis spectrometer at 265 nm. Pure drug powder was used to prepare calibration standards of 

known drug concentration, which was set up with each assay. The drug loading content (% 

Mass/Mass) [21] was calculated with Equation 1.               

     

𝑤𝑡 % =
𝑚1−

50

𝑣
𝐶𝑉

𝑚2+(𝑚1−
50

𝑣
 𝐶𝑉)

100                          (1) 

 

where m1 is the initial mass of the drug, m2 is the initial mass of silica, C is the concentration of 

each filtrate diluted in 50.0 cm3 volumetric flasks, v is sampled volume from filtrate and V is the 

volume of solvent used for drug loading.  

 

2.4 In vitro drug release 

In vitro drug release testing is an experimental methodology which is used to characterize 

and compare the release properties of modified formulations. To provide an accurate estimate of 

the ibuprofen release from the prepared silicas in-vitro release test/dissolution test was performed 

using physiological condition. For this purpose different pH solutions i.e. simulated gastric fluid 

(SGF/ 0.10 mol dm-3 HCl, pH 1.2, without pepsin) simulated body fluid (SBF, pH 7.2) and 

simulated intestinal fluid (SIF/Phosphate Buffer, pH 6.8, USP 25) were used as drug 

release/dissolution media to simulate normal blood/tissue environment [22]. The simulated 

gastric fluid (0.10 mol dm-3) of pH 1.2 was prepared by mixing appropriate volume of HCl in 1.0 

dm3 of deionized water. The simulated body fluid (SBF pH 7.2, USP ) was prepared by 

dissolving NaCl (7.996 g), NaHCO3 (0.350 g), KCl (0.224 g), K2HPO4.3H2O (0.228 g), 
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MgCl2.6H2O (0.305 g), 1.0 mol dm-3 HCl (40 cm3), CaCl2 (0.278 g), Na2SO4 (0.071 g), 

tris(hydroxymethyl)-aminomethane (NH2C(CH2OH)3 (6.057 g) in 1.0 dm3 of deionized water. 

While 0.05 M buffer solution of potassium dihydrogen phosphate was used as SIF with 

pancreatin (USP 26).  

To check drug release pattern, each 50.0 mg of the loaded samples (pressed disks at 

pressure 5.0 MPa) were putted in 500 cm3 of each simulated fluids placed in three different 

plastic vials. The tightly closed vials were then placed in an orbital shaking incubator (MA-420 

MARCONI-Brazil) at a stirring rate of 75 rpm in a light-sealed condition at 37 ± 0.5 ºC (Ph. Eur. 

4/ USP 26). At a predetermined time interval of 0.5; 1.0; 3.5; 7.0; 8.5; 21.0; 24.0 and 72.5 h, 3.0 

cm3 of the release media were taken out for measuring the concentrations of the drug released. A 

corrected method [21] was used to estimate the real amount of the drug released from 

mesoporous silica (Equation 2). The absorbance of the samples was measured using UV/Vis 

spectrophotometer.   

 

𝐶𝑡−𝑐𝑜𝑟𝑟 =  𝐶𝑡 +  
𝑣

𝑉
∑ 𝐶𝑡

𝑡−1
0                                      (2) 

 

where Ct-corr is the actual concentration of drug released at time t, Ct is the measured 

concentration of the release fluid sampled at time t, v is the sampled volume taken at a 

predetermined time interval, and V is the total volume of release fluid.  

 

2.5. Characterization 

Fourier transform infrared spectra were obtained by accumulating scans on a Bomem MB-

series spectrophotometer with KBr pellets, in the 4000 to 400 cm-1 range, with  an accumulation 

of 32 scans and 4 cm-1 of resolution. Elemental analysis was performed on a Perkin-Elmer PE-

2400 instrument. Nuclear magnetic resonance spectra (in solid state) were recorded on a Bruker 

Advance 3-300 MHz spectrometer at room temperature. For each run approximately one gram of 

solid sample was compacted in 4 mm zirconium oxide rotors and the measurements were 

obtained at frequencies of 59.63 and 75.47 MHz with a spinning magic angle of 10 MHz, for 

silicon and carbon atoms, respectively. 29Si and 13C CP/MAS spectra were obtained with pulse 

repetitions of 3 s for both nuclei and contact times of 4 ms. Nitrogen sorption was performed 
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with a Micromeritics ASAP 2000 or Quantachrome Autosorb using nitrogen at 77 K and the 

samples were degassed for 8 h at 363 K before taking the measurements. Small angle X-ray 

analyses were performed using synchrotron light on the D11A-SAXS line with a wavelength of 

0.1488 nm. Thermogravimetric analyses were performed with thermal balance model 1090 B, 

under argon, with a flow rate 30 cm3 s-1, from room temperature to 1200 K, with heating rate 

0.167 K s-1. SEM images were taken with (SEM) with JEOL JS 6360-LV and TEM was 

performed with JEOL FE6 2700 equipment. The zeta potential was measured with Malvern-

Nano-ZS Zetasizer. For pH measurements SevenEesy Metter Toledo pH meter was used. The 

drug sorption and release experiments were monitored by using a Shimadzu Multispec-1501 

UV/Vis spectrophotometer. To monitor the drug concentration at specific intervals, the mixture 

was centrifuged at 4000 rpm using a Rotina 38 Hittich Zentrifugen centrifuge. The drug release 

experiments were performed in an orbital shaking incubator model MA-420-MARCONI-Brazil. 

  

3. Result and discussion 

 

3.1  Elemental analysis 

The carbon and nitrogen contents of the modified silica were found 9.14% and 3.58%, 

respectively. The mmol g-1 (Lo) quantities of carbon and nitrogen were calculated with Equation 

3 and estimated to be 7.62 mmol g-1 and 2.75 mmol g-1 respectively.  

 

𝐿𝑂 =  
% 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 × 10

𝑚𝑎
                                   (3) 

 

where is ma is the atomic mass of element. A very close agreement was observed between the 

theoretical (C/N 2.8) and experimental carbon and nitrogen molar ratios (C/N 2.8). The degree of 

functionality (δ) was calculated by dividing the mmol g-1 of nitrogen with the number of nitrogen 

atoms present in the single bridged chain. The modified silica SBA-15TPA, showed a good 

degree of functionality (δ) of about 0.55 mmol g-1, which suggests the modification of SBA-15 

silica. 

 

3.2. Infrared Spectroscopy  
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Typical bands associated with the inorganic backbone of mesoporous silica, as well as with 

the anchored TPA bridges are shown in Figure 1. Band appeared at 3500 cm-1 can be attributed 

to OH stretching frequency, while the bands in the 1620 to 1630 cm-1 interval can be assigned to 

OH bending vibration of water molecules sorbed onto the solid surface through hydrogen bonds, 

reinforcing the free silanol groups [23]. The bands in the 1000 to 1100 cm-1 interval can be 

assigned to Si-O-Si stretching vibrations and the band appeared at 961 cm-1 represents the free 

silanol groups (Si-O-H), which is less intense in the case of silica SBA-15TPA. This expected 

decrease in band intensity is related to the replacement of silanol groups with organic TPA 

bridges on silica surface to form the inorganic Si-O-Si bond. The presence of a small band at 

2800-2931 cm-1 in the spectrum of SBA-15TPA was assigned to v(C-H) stretching, while a new 

band at 1469 cm-1 (stretching band of C-N group) indicates that the organic group was covalently 

attached to silica surface [24] (Figure 1b). Peaks appeared in the range 1000-1100cm-1 was 

assigned to Si-O-Si stretching bands.  

Please insert Figure 1 here. 

 

3.3. NMR spectroscopy 

Resonance of the 29Si nuclei allows the determination of its configuration based on 

different chemical shifts. The resonance at -92, -100 and -110 ppm in the 29Si CP/MAS NMR 

spectrum of SBA-15 (Figure 2a) reflect the surface silanol groups, Q2 [(OSi)2(OH)2], Q3 

[(OSi)3(OH)] and Q4 [Si(OSi)4)] [25]. While the signals at -64 ppm and -56 ppm in the spectrum 

of SBA-15TPA can be assigned to T2 (R-Si-(SiO)2-ROH ) and T3 (R-Si-(SiO)3) species (Figure 

2a), where R is the organic molecule anchored to silylating agent. The appearance of these 

signals confirms the modification process. The above results suggest that the silylating agent 

with TPA bridges is connected to the inorganic network of silica SBA-15 in both bi and 

tridentate way, i.e. all of alkoxy groups suffered a condensation reaction. The intensity of these 

signals is related to surface coverage with silylating agents bearing organic groups.  

The 13C CP/MAS spectrum of the modified silica with bridged TPA chains is shown in 

Figure 2b. The chemical shifts at 9.3; 22; and 48 ppm can be attributed C-Si, C-C, and C-N and 

assigned to C1-C14 of the inserted proposed structure in Figure 2b, which suggest the successful 

modification of silica surface.  

Please insert Figure 2 here. 
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3.4 Small angle X-ray diffraction 

Small angle diffraction (SAXS) patterns of the prepared materials are shown in Figure 3. 

The obtained diffraction patterns indicated that the grafted organic groups did not affect the 

structural stability of the original mesoporous silica. A sharp reflection at 2θ near to 0.6, indexed 

as (100) and two minor, but distinct reflections at 2θ in the interval 1.0 to 2.0, were indexed as 

(110) and (200), respectively. These peaks were indexed according to two-dimensional 

hexagonal p6mm symmetry, with a well-defined SBA-15 mesostructure (Figure 3a), which is in 

agreement with the previously reported pattern for the same type silica material [23].  

The diffraction patterns of modified silica before and after drug loading (Figure 2b and 

3c) indicate that the long-range hexagonal symmetry of SBA-15 is preserved after modifications 

with TPA chains. A slight decrease in intensity of these characteristic diffraction planes after 

modification or drug loading is due to contrast matching between the silicate framework and the 

anchored TPA bridges or loaded drug molecules [24]. The d100 spacing at the (100) plane was 

calculated using Bragg’s law as given in Equation 4: 

 

 λ = 2 d100 sinθ           (4) 

where, λ is the wavelength and θ is the angle of incidence. The unit cell parameter (a0) was 

calculated using Equation 5 and found to be 15.2 nm for both silicas.  

 

a0 = 2d100/√3           (5) 

Please insert Figure 3 here. 

                                                                                                                             

3.5 Nitrogen Sorption/Desorption 

The nitrogen sorption/desorption isotherms of SBA-15 and modified silica SBA-15TPA 

are shown in Figure 4. The hysteresis loops with sharp adsorption and desorption branches, 

indicatives of a narrow mesopores size distribution and shows a typical characteristic type IV 

isotherm with H1 hysteresis loop [26]. The amount of sorbed volume increased significantly to 

relative pressure (p/p0), which is due to capillary condensation of nitrogen within the mesopores.  

The grafting of long hydrophobic amine chains onto mesoporous surface resulted in a 

noticeable change in the adsorption characteristics of this silica. The BET surface area of SBA-
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15 decreased from 873.0 m2 g-1 to 629.0 m2 g-1 after modification. Similarly, when compared to 

original precursor silica SBA-15, the average pore volume decreased from 1.05 cm3 to 0.93 cm3 

while, the BJH average pore diameter of modified silica (7.1 nm) was not changed significantly 

when compared to original precursor silica (7.2 nm). The pore wall thickness Pw was calculated 

using Equation 5 and were estimated to be 8.0 and 7.9 nm for SBA-15 and modified silica, 

respectively.  

 

 Pw = a0 − Dp 
                 (6) 

where, (Dp) is the pore diameter obtained from nitrogen sorption/desorption and a0 was 

calculated from the XRD data. 

Please insert Figure 4 here. 

 

3.6 Scanning and Transmission electron microscopy 

The surface morphologies of the synthesized materials were investigated with both 

scanning electron microscopy (SEM) and transmission electron microscopy (TEM) as shown in 

Figure 5. The SEM images of SBA-15 (Figure 5A) show a channel-like porous structure with 

long fibrous macrostructures which is a characteristic morphology of SBA-15 type silica [17,24]. 

SEM for modified and IBU loaded silicas showed the same pattern morphological pattern 

(Figure 5B & C). The size, shape of particles and agglomerates suggested highly ordered 

mesoporous fiber like structures and confirm that the original morphology of SBA-15 remained 

preserved after modification.  

TEM image of SBA-15 (Figure 5D) showed bright and dark area correspond to pores and 

walls confirming well-ordered hexagonal arrays of mesopores (1D channel) and 2D 

p6mm hexagonal structure [27]. The distance between mesopores was estimated to be 7 to 10 nm 

for silica SBA-15 (Figure 5D), which is in agreement with SAXS data. 

 

Please insert Figure 5 here. 

 

3.7 Thermogravimetry  

The thermogravimetric curves (TG) recorded for SBA-15 and SBA-15TPA are shown in 

Figure 6. TG curve of SBA-15 showed two distinct mass loss regions:  i) in the temperature 
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range from 314 to 335 K that correspond to 10% of total mass loss and  ii) a slight decrease in 

mass of about 0.51% in the 335-1200 K range. The first event can be attributed to 

evaporation/decomposition of water and solvent molecules and the second event could be 

assigned to silanol condensation [27,28]. 

The DTG curve obtained for the chemically modified silica SBA-15TPA (Figure 6), has 

four distinct mass loss regions: i) about 4.0 % in the temperature range 308 to 336 K, that can 

attributed to the release of the trapped solvent or water molecules from porous network ii) a total 

mass loss of about 19.7 % in the temperature range 336-793 K represents the decomposition of 

organic chains covalently bonded to silica surface. The mass loss above 793 K can be attributed 

to the condensation of the silanol groups to yield Si-O-Si groups. 

 

Please insert Figure 6 here. 

 

3.8 Zeta potential 

The zeta potential of silica SBA-15 and modified silica SBA-15TPA suspended in aqueous 

medium was measured and compared. The ζ changed from -19 to +45.7 mV after modification. 

This high zeta potential value confirmed the modification process and also suggests the coverage 

of silica surface with basic -NH groups.  

 

3.9 Drug loading and in vitro release 

The nature of drug, physiological conditions, drug matrix interaction, surface charges and 

pore diameter in case of porous materials play a vital role in drug loading and release processes. 

At lower pH ibuprofen (pKa 4.91) dissociates to yields negatively charged carboxylate ions 

(COO-) and form strong bonding with free silanol (-Si-OH) or amine groups (_N+) of the 

anchored organic functional groups [28]. The amount of drug loaded by both unmodified (18%) 

and modified (22%) silicas indicated that the attached functional groups and mesoporous 

structure are responsible in the drug loading process.  

In vitro drug release profiles (% Mass/Mass) from silica systems in biological fluids (up 

to 8.5 h and complete release profile up to 75. 5 h) are shown in Figure 7A and 7B. Initially, 

burst release (about 28% in 8.5 h) was observed from unmodified silica SBA-15 in both SBF and 

SIF. After surface modification with amine linkers the drug release was slow and about 19 to 20 
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% of the total drug was released during 8.5 h in SBF and SIF, respectively. While in simulated 

gastric fluid (SGF 0.10 mol dm-3 HCl, pH 1.2) a slow release pattern (>10% Mass/Mass) was 

observed from both unmodified and modified silicas, which could be possible due to i) adhesion 

of drug molecules into micro/mesopores of silica and ii) strong hydrogen bonding between 

surface silanols groups (-Si-OH) of SBA-15 or amine groups (_N+) of the modified silica with 

dissociated drug molecules of ibuprofen in strong acidic medium [29].  

When the release medium was changed to simulated body fluid (SBF, pH 7.2, USP) at 

this pH condition, the low H+ concentration favor the release of drug to medium, resulting in 

high release rate. In simulated intestinal fluid (SIF, Phosphate Buffer, pH 6.8) protons (H+) 

produced from drug dissociation can be partially consumed due to buffer action which can shift 

the equilibrium from surface to the release medium [28,29] and increase the drug solubility in 

comparison to other fluids. From the drug release profiles it is clear that the release equilibrium 

rates of SBA-15 are much faster than that of the modified silica with amine linkers (Figure 7). 

Hydrogen bonding between ibuprofen and parent silica material is relatively weaker, than that of 

–COO– NH+ bond of the modified silica and the release of IBU through the mesoporous channels 

is controlled by diffusion. The drug release process was gradually fallen after 24 and the release 

rate remained constant up to 75.5 h (Figure 7B).  

 

Please inert Figure 7 here. 

3.10  Release mechanism  

The drug release mechanism from mesoporous silicas was investigated with zero order 

and first order kinetic models [30], Higuchi [31], Hixson Crowell [32], Korsmeyer-Peppas [31- 

34] models as given in Equations 7-11.  

 

Zero order model:  
𝑀𝑖

𝑀𝑡
= 𝑘𝑡                           (7) 

 

First order model:  𝑙𝑛 (1 −
𝑀𝑖

𝑀𝑡
) = − 𝑘𝑡        (8) 

 

Higuchi model:  
𝑀𝑖

𝑀𝑡
= 𝑘√𝑡       (9) 
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Hixson–Crowell model: √1 −
𝑀𝑖

𝑀𝑡

3
 = − 𝑘𝑡        (10) 

 

Korsmeyer-Peppas model:     𝑙𝑛
𝑀𝑖

𝑀𝑡
= 𝑛 𝐼𝑛𝑡 + 𝐼𝑛𝑘               (11) 

 

where in these equations Mi/Mt is the fractional active agents released at time t, k is rate constant 

and n is an indication of such mechanism. The correlation coefficient R2 values obtained with 

Equations 7-11 are given in Table 1. The low R2 values rejected the existence of linear fit of 

these models for both initial (up to 8.5 h) and complete release data up to 75.5 h. The release data 

was further processed with a non-linear fit of Korsmeyer-Peppas [31] using Equation 12: 

 

Korsmeyer-Peppas model: 
𝑀𝑡

𝑀∞
= 𝑘𝑡𝑛                 (12) 

 

where, Mt and M∞ are the masses of drug released at time t and at infinite time respectively, k is 

kinetic constant and diffusional exponent n is used to characterize the mechanism. For tablets, 

(depending on the diameter-thickness ratio) the Fickian diffusion is described by 0.43 < n < 0.50 

and 0.45 <n < 0.89 corresponds to a non-Fickian or anomalous diffusion. The n value of about 

0.89 is an indicative of case II transport and for n > 0.89 is typical zero-order release [29].  

The correlation coefficient (R2), diffusion exponent n and rate constant k values obtained 

from nonlinear fit of Korsmeyer-Peppas model (Equation 12) are given in Table 1. Exponent n 

value less than 0.45 illustrated less Fickian diffusion mechanism of ibuprofen from both silicas. 

The small k values at lower pH condition (pH 1.2) indicate the slow release rate of ibuprofen 

from silica systems (due to protonation of IBU in acidic medium that ultimately increased the 

drug-silica interactions and resulted in slow diffusion rate). The large k values obtained for high 

pH conditions illustrated the unrestricted diffusion of ibuprofen from silica systems to the 

dissolution medium (SBF, pH 7.2 and SIF pH 6.8). The modeling of the Korsmeyer–Peppas 

suggests that the drug release mechanism was more diffusion based due to highly accessible 

nano-reservoir of the silica materials.   

 

Please insert Table 1 here. 
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4 Conclusion   

Mesoporous silica SBA-15 and its derivative SBA-15TPA was synthesized and 

characterized using sol gel method. Surface modification of the precursor silica with the 

synthesized long hydrophobic bridges improved the drug loading capacity and also affected the 

in vitro release profiles. Ibuprofen can make strong bonding with free silanol (-Si-OH) and 

amine groups (-N+) of the anchored organic functional groups this phenomenon was observed at 

pH 1.2 conditions. The slow release kinetics at this pH favors to prevent the premature 

elimination of ibuprofen while passing through stomach that could enhance the drug availability 

at the desired site. The drug release mechanism from synthesized carriers was investigated with 

various kinetic models. The high correlation coefficient (R2) and diffusion exponent n value less 

than 0.45 obtained the nonlinear fit of Korsmeyer–Peppas illustrated less Fickian diffusion 

mechanism for ibuprofen from the proposed carrier systems. The synthesized material with 

porous network and surface functional groups could be proposed as a promising drug vehicle.  
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Table 1.  

 

 

Silica 

 

 

Release 

medium 

  

 

Linear fit 

  

 

Non linear fit 

 Zero 

 order 

First 

order 

Higu

-chi 

Hixson–

Crowell 

Peppas 

Korsmeyer Peppas 

 R2 R2 R2 R2 R2 R2 K n 

SBA-15  

SGF 

0.37 0.38 0.7 0.31 0.66 0.98 6.30 ± 0.43 0.11 ± 0.04 

SBA-15TPA 0.02 0.16 0.50 -0.47 -49.0 0.99 4.90 ± 0.13 0.03 ± 0.02 

SBA-15  

SBF 

0.48 0.49 0.73 0.34 0.61 0.96 14.50  ± 2.7 0.05 ± 0.01 

SBA-15TPA 0.80 0.82 0.95 0.82 0.82 0.95 8.34  ± 1.11 0.41 ± 0.07 

SBA-15  

SIF 

0.64 0.64 0.85 0.62 0.70 0.90 14.20± 2.22 0.33± 0.09 

SBA-15TPA 0.77 0.80 0.93 0.80 0.82 0.95 9.02 ± 1.23 0.39 ± 0.07 
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Figure 3.  
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Figure  4. 
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Figure 6.  
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Figure 7.   
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