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Abstract 

The effects of the catalyst pore network structure on multiphase reactions in catalyst pellets are 

investigated by using the experimentally validated pore network model proposed in our recent 

work (AIChE J. 2016, 62, 451). The simulations display hysteresis loops of the effectiveness factor. 

The hysteresis loop area becomes significantly larger, when having small volume-averaged pore 

radius, wide pore size distribution, and low pore connectivity; however, the loop area is insensitive 

to pellet size, even though it affects the value of the effectiveness factor. The hysteresis loop area 

is also strongly affected by the spatial distribution of the pore size, in particular for a bimodal pore 

size distribution. The pore network structure directly influences mass transfer, capillary 

condensation, and pore blocking, and subsequently passes these influences on to the hysteresis 

loop of the effectiveness factor. Recognizing these effects is essential when designing porous 

catalysts for multiphase reaction processes. 
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Introduction 

When mesoporous catalysts (pore diameter ranging from 2-50 nm, according to IUPAC) are 

used under conditions close to the boiling point and the associated saturated vapor pressure of a 

liquid, both liquid and vapor are present in the mesopores, because capillary condensation and 

evaporation may occur in some pores, depending on their diameter. Because of the different 

contact angles of condensing liquid and evaporating liquid on a surface1,2, the degree of wetting of 

a catalyst pellet can be different at the same operating conditions, depending on whether the pellet 

follows the course of continuous condensation or evaporation. As a result of the different diffusion 

and reaction rates in vapor and liquid filled pores, the apparent catalyst activities, and thus the 

effectiveness factors, are different. This causes complicated hysteresis phenomena, such as 

inconsistent steady state branches, observed in experiments3-7 when changing reaction conditions 

in different directions. Understanding these hysteresis phenomena is essential in designing 

catalysts for multiphase reactions, as well as gas/liquid/solid reactors, such as trickle-bed 

reactors.8,9 

A somewhat similar phenomenon of hysteresis due to capillary condensation, which has been 

studied extensively, is observed in the different nitrogen adsorption and desorption isotherms of 

porous sorbents and catalyst supports at 77 K, the normal boiling point of nitrogen. Seaton and his 

coworkers10-13 determined pore network connectivity from the adsorption/desorption hysteresis by 

using percolation theory in which the percolation threshold is tightly linked to the connectivity. 

Ramírez et al.14 and	Ramírez and Sierra15 found that PSD and pore network connectivity could 

influence the extent of hysteresis, by running simulations with a numerically constructed pore 
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network model. For catalytic reactions accompanied by capillary condensation, it can be more 

difficult to interpret the effect of pore network structure on hysteresis, because of the compounded 

complexity of local vapor-liquid equilibrium in individual pores, different reaction rates in liquid 

phase and vapor phase, and different pathways for diffusion.  

To understand the influences of pore network structure on the hysteresis phenomena of 

multiphase reactions, a practical approach is to experiment with model catalysts that have 

controllable pore network structures. Hessari and Bhatia6 probed the effects of a bimodal pore size 

distribution, namely a structure containing both mesopores and macropores, on the apparent 

reaction rate for hydrogenation of cyclohexene in Pd/γ-Al2O3 catalysts. They observed a sharper 

evaporation branch of the reaction rate hysteresis loop when the bimodal structure contained more 

macropores. Wu et al.16 evaluated the effects of pellet radius on the apparent reaction rate for 

hydrogenation of benzene in Ni/γ-Al2O3 catalysts. They found that the reaction rate hysteresis loop 

expands when increasing the pellet radius, and attributed this to the effects of a bimodal pore 

structure. Nevertheless, a general conclusion cannot be drawn for other pore structures. For this 

reason, simulations using a pore network model with variable structural parameters is an easier 

way to obtain more general conclusions, and provides more fundamental information to understand 

the complex process in a catalyst pellet.  

Wood and Gladden17 and Wood et al.18 used a pore network model to investigate the influences 

of network topology and pore size distribution on the effectiveness factor for 

hydrodesulphurization of diethyl sulphide in catalyst pellets. However, they did not consider the 

different critical radii of condensation and evaporation at the same temperature and pressure, and 

they did not show how the pore network structure affects hysteresis of the effectiveness factor. In 

addition, reaction and diffusion in liquid-filled pores and in vapor-filled regions trapped by liquid 
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were neglected, whereas, for some catalytic reactions, the reaction rate is considerable, even when 

a catalyst is totally filled by liquid. 

Recently, we have shown that even a simplified pore network model (3D, cubic topology) can 

predict the experimentally observed hysteresis of the effectiveness factor very well19. The key is 

to consider the different critical radii of condensation and evaporation, as well as the reaction and 

diffusion in the liquid-filled pores. An additional bonus of this approach is that the distribution of 

liquid is clearly visualized, explicitly showing the pore blocking phenomenon that contributes 

significantly to the unstable behavior of catalysts for multiphase reactions. However, our previous 

work did not investigate the dependence of the hysteresis loop on various parameters, like pore 

network connectivity, or describe the effects of a bimodal pore size distribution and the spatial 

distribution of pores (uniform or not), all of which are very important in practice to understand 

multiphase catalytic processes. 

In this article, by using our pore network model, the influence on the hysteresis loop of the 

different parameters characterizing the pore network structure, such as the pore size distribution, 

the pore connectivity, the spatial distribution of the pore size, a bimodal pore size distribution, and 

pellet size are quantified and explained. The results provide valuable insights to help the 

interpretation of nonlinear hysteresis phenomena for multiphase reactions. It also provides useful 

guidelines for the optimal design of porous catalysts, as essential input to multiphase reactor design. 

 

Modeling 

Model assumptions 

Hydrogenation of benzene to cyclohexane over Pd/γ-Al2O3 is chosen as the reaction system due 

to its industrial and academic significance. Because we concentrate only on the process inside the 

catalyst pellet, we can neglect any external mass transfer limitations. The temperature gradient in 
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the catalyst pellet is assumed negligible, because of the large thermal conductivity20 and small size 

(RP~4 mm) of the pellet19. The internal mass transfer rate is assumed to be governed by molecular 

diffusion and Knudsen diffusion, based on other studies that have been experimentally validated7. 

The pressure gradient in the catalyst is negligible4,7 even when its radius is larger than 8 mm21, so 

that viscous flow contributions are excluded from description of transport in macropores, while 

also transport through mesopores is dominated by diffusion4,7. The model reaction system is treated 

as a binary mixture (cyclohexane and benzene as one component mixed with hydrogen) when 

describing diffusion and capillary condensation, because of the close physical properties of 

cyclohexane and benzene. We refer to our previous article in the Journal for more details on the 

model19. 

 

Pore network  

A three-dimensional pore network with a regular topology is used to represent the pore network 

structure of a porous catalyst particle (see Fig. 1S). This pore network is confined in a spherical 

domain to reflect the shape of a real spherical catalyst particle commonly used in industry. The 

nodes are treated as zero-volume intersections, and are connected by cylindrical pores to their 

neighbors, according to the connectivity, which is assumed to be at most 6 (the connectivity of the 

original, fully connected cubic lattice). The radius of each pore is assigned to meet predefined 

statistical and spatial distributions. The cylindrical pore shape could easily be substituted by a more 

realistic morphology, such as a tortuous channel with fractal surface roughness22,23, however this 

requires additional parameters that should be derived from experimental characterization data. 

 

Reaction and diffusion 
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The pore model is similar to the one in our previous paper19; we therefore only summarize the 

principal equations. 

 The continuity equation for component i in a single pore is: 
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where Ri is the reaction rate per pore surface area of component i, and Ji,n, ln and rn are the diffusion 
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below are used to calculate the reaction rate per pore surface area of component i for vapor-filled 
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Here, vi is the stoichiometric coefficient of component i, PB is the partial pressure of benzene, PH 

is the partial pressure of hydrogen, R is the universal gas constant, and S = 246.6 m2/g is the surface 

area of the Pd/γ-Al2O3 catalyst.7 For the same reaction conditions, the rate of reaction in the liquid 

phase is smaller than in the gas phase, because hydrogen is dissolved. Ji,n is calculated by Fick’s 

law, because a pseudo-binary mixture can be assumed for this reaction system24: 

,
, ,

i n
i n i n

n
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J D

dl
= -                                                           (4) 

Here, Di,n and Ci,n are the effective diffusivity and the concentration of component i in pore n, 

respectively. Di,n for vapor-filled and liquid-filled pores are calculated by the Bosanquet equation, 

combined with the Wilke approximation21,25 and the Tyn and Calus method26, respectively. 
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For the inner nodes, Kirchhoff’s law is used: 

2
,1
0n Z

n i nn
r Jp=

=
=å                                                           (5) 

where Z is the connectivity. For the boundary nodes, Dirichlet boundary conditions are given: 

, ,i n i bC C=                                                               (6) 

where Ci,b is the bulk concentration of component i. 

 

Phase change 

The critical pore radius of capillary condensation (rc) is calculated by Eq. (7): 

c kr t r= +                                                                (7) 

where t is the thickness of the adsorption layer that can be calculated by using a modified Halsey 

equation27 and rk is the Kelvin radius, calculated by: 
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where b is 1 for condensation and 2 for evaporation, M is the average molecular weight of the 

adsorbate, δ is the surface tension of the adsorbate, and r is the density of the adsorbate. 

A pore is filled with vapor or liquid, according to whether its radius is larger or smaller than rc. 

However, during evaporation, liquid in a pore may not evaporate if it is prevented to do so by 

liquid in its adjacent pores, which we call “pore blocking” (see Fig. 2S)28-30. An extended Hoshen-

Kopelman (H-K) algorithm31 is used to determine pore blocking, due to the clustering of liquid-

filled pores. 

 

Implementation 
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The simulation is implemented in MATLAB 2010b using the algorithm illustrated in Fig. 3S. 

The simulation starts with calculating mass transfer and reaction in the vapor-filled pore network. 

Then, capillary condensation and pore blocking are applied to identify the liquid-filled pores. The 

simulation runs repeatedly with reaction and diffusion in both liquid phase and vapor phase with 

the updated phase distribution in the pore network, until convergence. Finally, the effectiveness 

factor (h ) of the catalyst is calculated: 
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where N is the total number of pores and RC is the rate of producing cyclohexane per unit pore 

surface area.  

The number of nodes in the pore network simulations is 5649; a higher number did not have 

appreciable effects on the results (Fig. 4S)19. The specific pore volume of all model catalysts is 

0.47 cm3/g.7 The particle temperature (415-460 K) and bulk pressure of benzene at the catalyst 

surface (2.5-7.5 bar) cover the range of research interest, where hysteresis phenomena occur. The 

pressure of cyclohexane at the external catalyst surface is 0 bar, and the total pressure is 10 bar. 

Results and Discussion 

The area of a hysteresis loop reflects the effects of the pore network structure on the multiphase 

reaction. It can be calculated by Eq. (10) and (11), for bulk benzene pressure and temperature 

effects, respectively: 

( ), , ,P c P e P B bS dPh h= -ò                                                        (10) 

( ), ,T c T e TS dTh h= -ò                                                          (11) 
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where ch  and eh  are the effectiveness factors of the condensation branches (see the solid lines in 

Fig. 1) and evaporation branches (see the dashed lines in Fig. 1), respectively.  

The pore network structure affects the hysteresis loop by directly changing capillary 

condensation and pore blocking, which are believed to be the root causes of the hysteresis4,5 and 

cause the differences in surface areas accessible to vapor or internal volumes filled by vapor (see 

Fig. 5S). To decouple the influences of capillary condensation and pore blocking on the hysteresis, 

we exclude the extended Hoshen-Kopelman algorithm31 from the pore network model to obtain 

evaporation branches with pore blocking excluded (see dotted lines in Fig. 1). The loop area caused 

by capillary condensation alone (SCC_P and SCC_T) is the area between the condensation branch 

(solid line) and evaporation branch with pore blocking excluded (dotted line); the loop area caused 

by pore blocking (SPB_P and SPB_T) is the area between the two evaporation branches. The 

percentage of the loop area caused by pore blocking (fPB=SPB_P/SP or fPB=SPB_T/ST) reflects the 

level of importance of pore blocking in affecting the hysteresis. 

 

Influence of global parameters describing the pore network structure 

The influence of the volume-averaged pore radius (ra), standard deviation (σ), connectivity (Z), 

and pellet radius (RP) are studied in this section. The radius of each pore is randomly assigned, 

according to a log-normal distribution for the pore radius (r)7: 

( ) ( )2
2

ln ln
exp

22
at r rVf r

r

é ù-
= -ê ú

ê úë ûsp s
                                            (12) 

where Vt is the specific pore volume of the catalyst particle. To avoid undersized or oversized 

pores, pore radii are limited within a reasonable range [rlow, rhigh], where the values of the 

cumulative distribution function of the log-normal distribution are between 0.001 and 0.999. 



 

G. Ye et al., AIChE Journal, 2016 (DOI: 10.1002/aic.15415) 

 10 

Fig. 2 displays the hysteresis loops of the catalyst pellet with different volume-averaged pore 

radius. The hysteresis loops are characterized by their area, range, and steepness, which represent 

usage of catalyst and stability of operation. The hysteresis loop area (SP or ST) decreases from 0.57 

bar to 0.19 bar in Fig. 2a and from 5.5 K to 1.3 K in Fig. 2b, with the increase of volume-averaged 

pore radius from 2.5 nm to 10 nm. The loop area is shrunk, because capillary conditions (pressure 

and temperature) for evaporation are closer to the ones for condensation when the pore radius is 

larger, according to Eq. (8). For example, if most pores in the pore network are macropores (r>25 

nm), the hysteresis loop area approaches 0, because the evaporation branch of the effectiveness 

factor is very close to the condensation branch. Besides, as seen from the tables in Fig. 2, the loop 

area caused by pore blocking (SPB_P or SPB_T) also decreases proportionally with the loop area 

caused by capillary condensation alone (SCC_P or SCC_T), which also contributes to the shrinking of 

the total loop area.  

Fig. 2 also shows that the hysteresis loop moves towards a high bulk pressure of benzene (see 

Fig. 2a) and a low particle temperature (see Fig. 2b) when increasing the volume-averaged pore 

radius. The hysteresis loop covers the same pressure and temperature ranges where capillary 

condensation occurs. The larger volume-averaged pore radius requires a higher pressure of 

benzene and lower temperature for capillary condensation, according to Eq. (8). 

It is worth noting that a non-monotonous change of the effectiveness factor with the particle 

temperature is observed in Fig. 2b as well as in Figs. 3b-8b. If one phase (e.g., liquid) is dominant 

in the pore network, the effectiveness factor decreases with the increase of temperature, because 

diffusion is less sensitive to temperature than reaction kinetics. But when the temperature is high 

enough and the liquid in some of the pores is evaporated, the effectiveness factor increases 

significantly because the reaction rate in the vapor phase is much larger than the one in the liquid 
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phase. After most of the liquid is evaporated, increasing further the temperature would again 

decrease the effectiveness factor. 

In Fig. 3, when increasing the standard deviation from 0.1 to 0.5, the hysteresis loop area 

increases from 0.32 bar to 0.50 bar in Fig. 3a and from 2.3 K to 3.9 K in Fig. 3b. As seen from the 

tables in Fig. 3, a wide pore size distribution strengthens pore blocking effects (fPB) and also 

increases the loop area caused by capillary condensation alone (SCC_P or SCC_T), which is 

responsible for the enlarged total loop area. Besides, when increasing the standard deviation, the 

hysteresis loop expands towards the low bulk pressure of benzene and high particle temperature. 

Higher standard deviation indicates more small pores, for which a lower pressure and higher 

particle temperature are sufficient to induce capillary condensation. 

Fig. 4 shows how the pore connectivity affects the hysteresis loop. When increasing the 

connectivity from 3 to 5, the hysteresis loop area decreases from 0.43 bar to 0.36 bar in Fig. 4a 

and from 3.1 K to 2.6 K in Fig. 4b. The hysteresis loop area is shrunk, because an increased pore 

connectivity reduces the chances for pore blocking (see fPB in the tables in Fig. 4). However, the 

loop area cannot be shrunk further, if the pore connectivity is sufficiently high (in this case: Z=5). 

The condensation branches for the three connectivities are very close. During condensation, the 

effectiveness factor is only affected by capillary condensation and diffusion; the connectivity 

cannot change capillary condensation and only slightly influences diffusion in this reaction system. 

Similar arguments will be made when discussing the results shown in Figure 6 and 7.  

Fig. 5 shows how the pellet radius affects the hysteresis loop. When increasing the pellet radius 

from 2 mm to 8 mm, the hysteresis loop area stays around 0.37 bar in Fig. 5a and 2.7 K in Fig. 5b, 

although the hysteresis loop obviously moves down, because the lengthened diffusion route 

reduces the effectiveness factor. The hysteresis loop area is insensitive to the pellet radius (Rp<10 
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mm) commonly used for industrial porous catalysts. This indicates that the hysteresis loop area is 

not significantly affected by diffusion alone. However, this loop area can be significantly 

influenced by capillary condensation and pore blocking, as already shown in Fig. 2-4. 

 

Influences of spatial distributions of pore size 

Three archetypical spatial distributions of pore size32 are considered in this work. These 

distributions are a random spatial distribution of pore size (SD1), pore size descending towards 

the center of the spherical catalyst particle (SD2), and pore size ascending towards the center of 

the spherical catalyst particle (SD3), as shown in the inset of Fig 6. To ensure that the spatial 

distribution is the only variable, volume averaged pore size (ra=5 nm), standard deviation (σ=0.3), 

connectivity (Z=4), and pellet radius (Rp=4 mm) are all kept constant. 

As seen in Fig. 6, when large pores are located in the zone close to the catalyst surface (i.e., 

SD2), the hysteresis loop area is the smallest one (i.e., 0.34 bar in Fig. 6a and 2.5 K in Fig. 6b), 

because there is no pore blocking effect (fPB=0, see the tables in Fig. 6). When the largest pores 

are located in the central zone of the catalyst (i.e., SD3), the hysteresis loop area is the largest one 

(i.e., 0.54 bar in Fig. 6a and 4.5 K in Fig. 6b), because the pore blocking effect is the strongest (see 

fPB in the tables in Fig. 6). Therefore, the hysteresis loop area is very sensitive to spatial 

distributions of pore size. 

 

Influence of bimodal pore size distribution 

A bimodal pore size distribution is characteristic for many real porous catalyst pellets, 

commonly consisting of mesopores and macropores. A bimodal pore size distribution of the model 

catalysts is generated by performing the following two steps: first, randomly assigning a pore 

radius to each pore, according to a log-normal distribution (i.e., ra=5 nm and σ=0.3), as described 
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by Eq. (12), to build a unimodal mesoporous structure; second, replacing some mesopores with 

macropores (constant macropore radius: 50 nm) to form a bimodal structure. The value of 50 nm 

is quite arbitrary and does not qualitatively affect the results, because, in contrast to mesopores, 

the capillary condensation conditions for macropores with different pore radii are almost the same. 

The macropores are wide enough not to lead to noticeable viscous flow resistance.  

Two spatial distributions of macropores in the bimodal structures are compared. They are a 

random spatial distribution of macropores (BD1) and a spatial distribution (BD2) where all 

macropores form a cluster that is directly connected to the outer surface of the catalyst, as shown 

in the inset of Fig. 7. Apart from this, the effects of the fraction of macropores (fM) in the bimodal 

structures are also investigated. 

Fig. 7 compares the hysteresis loops corresponding to the two distributions. The hysteresis loop 

area of BD1 is much larger than the one of BD2. This is to be expected, since, for BD1, the pore 

blocking effect is more significant, because the liquid in some macropores might be blocked by 

the liquid in adjoining mesopores (see fPB in the tables in Fig. 7); for BD2, the pore blocking effect 

is less important because all the liquid in the macropores is ultimately connected to the exterior, 

thus can readily evaporate. When most macropores are evacuated, the influence of a spatial 

distribution of macropores vanishes, so that the evaporation branches for BD1 and BD2 partially 

overlap. 

Fig.8 shows how the percentage of macropores in a random bimodal structure changes the 

hysteresis loop. For fM =5% and fM =25%, the area of the hysteresis loop is very close (around 0.43 

bar in Fig. 8a and 2.8 K in Fig. 8b), because of two competing factors. When fM is small, the 

contribution of capillary condensation (see SCC_P or SCC_T in the tables in Fig. 8) to the hysteresis 

loop area is relatively important, but the contribution of pore blocking (see SPB_P or SPB_T) is 

relatively small; when fM is larger, but not too large, the contribution of capillary condensation is 
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relatively small but the contribution of pore blocking is relatively large. If fM is very large (e.g., 

fM=50%), beyond the percolation threshold33, the macropores form percolation clusters, and the 

loop area caused by pore blocking (SPB_P or SPB_T) as well as capillary condensation (SCC_P or SCC_T) 

decreases significantly, despite of the increase in the proportion of the loop area caused by pore 

blocking, fPB. Therefore, the hysteresis loop area for fM=50% is the smallest one, i.e., 0.29 bar in 

Fig. 8a and 1.8 K in Fig. 8b. 

 

Conclusions 

In this work, a pore network model has been employed to simulate coupled reaction, diffusion, 

capillary condensation, and pore blocking in Pd/γ-Al2O3 catalysts for the catalytic hydrogenation 

of benzene to cyclohexane. The effects of various parameters characterizing the pore network 

structure on this multiphase reaction were quantified by measuring the hysteresis loop of the 

effectiveness factor.  

When the volume-averaged pore radius is small, the pore size distribution is wide, and the 

connectivity of the pore network is poor, the hysteresis loop expands to a large extent, because of 

the increased contribution of capillary condensation and pore blocking. However, a catalyst with 

a large volume-averaged pore radius and narrow pore size distribution has steep hysteresis loops, 

which may not be favorable for the operation of gas/liquid/solid reactors. The pellet radius only 

changes the overall diffusion rates, but, interestingly, does not influence the hysteresis. The spatial 

distribution of pore size, especially in a pore network with a bimodal pore size distribution, 

changes the hysteresis loop area significantly, due to influences on capillary condensation and pore 

blocking.  

The spatial distribution of active sites (Pd component in this work) over the catalyst pellet may 

also affect the hysteresis loops through changing the local reaction kinetics34, a subject worthy of 
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investigation. In addition, due to the change of the volume-based activity with the volume-

averaged pore radius and distribution, when optimizing industrial catalysts for optimal 

performance in reactors, a compromise among the effective usage of the catalyst (effectiveness 

factor), the stability of operation (steepness and area of the hysteresis loop), and the reactor volume 

(the volume-based activity of catalyst) is necessary. For this purpose, the effects discussed in this 

paper should be integrated in multiphase reactor simulations and optimization.  
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Notation 

Ci,n    concentration of component i in pore n, mol/m3 

Ci,b    bulk concentration of component i, mol/m3 
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Di,n    effective diffusivity of component i in pore n, m2/s 

f(r)   pore size distribution density at radius r, cm3/g/nm 

Ji,n    diffusion flux of component i in pore n, mol/m2/s 

ln       length coordinate of pore n, m  

M      molecular weight, g/mol 

P       pressure, bar 

Pi      partial pressure of component i, bar 

Pi,b    bulk pressure of component i, bar 

Ps       saturation vapor pressure of the adsorbate, bar 

r        pore radius, nm 

ra      volume-averaged pore radius, nm 

rc       critical pore radius of capillary condensation, nm 

rk      Kelvin radius, nm 

rn      radius of pore n, nm 

R      universal gas constant, J/mol/K 

Rp      catalyst pellet radius, mm 

Ri      reaction rate per unit pore surface area of component i, mol/m2/s 

Ri,v     reaction rate per unit pore surface area of component i for vapor-filled pores, mol/m2/s 

Ri,l     reaction rate per unit pore surface area of component i for liquid-filled pores, mol/m2/s 

S      specific surface area of the catalyst, m2/g 

t        layer thickness, nm 

T      temperature, K 

vi      stoichiometric number of component i, dimensionless 
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Vt     specific pore volume of the model catalyst, cm3/g 

Z     pore network connectivity, dimensionless 

Greek Letters 

σ     standard deviation, dimensionless 

δ     surface tension, N/m 

r     density, kg/m3 

η     effectiveness factor, dimensionless 

Subscripts and Superscripts 

B    benzene 

C   cyclohexane 

H     hydrogen 

i, j, n     species type 

P    pressure 

T   temperature 
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List of Figure Captions 

Figure 1. Illustrations of the hysteresis loop areas caused by capillary condensation alone (SCC_P 

or SCC_T) and pore blocking (SPB_P or SPB_T). Simulation parameters: (a) T=433 K, Z=3, Rp=4 mm, 

ra=5 nm, and σ=0.3; (b) PB,b=5 bar, Z=3, Rp=4 mm, ra=5 nm, and σ=0.3; the pore radii are randomly 

distributed in the pore network. The arrows indicate the direction of a change in bulk pressure of 

benzene or a change in particle temperature. 

Figure 2. Effects of the volume-averaged pore radius on the hysteresis loop. Simulation 

parameters: (a) T=433 K, Z=4, Rp=4 mm, and σ=0.3; (b) PB,b=5 bar, Z=4, Rp=4 mm, and σ=0.3; 

the pore radii are randomly distributed in the pore network. 

Figure 3. Effects of the standard deviation on the hysteresis loop. Simulation parameters: (a) 

T=433 K, Z=4, Rp=4 mm, and ra=5 nm; (b) PB,b=5 bar, Z=4, Rp=4 mm, and ra=5 nm; the pore radii 

are randomly distributed in the pore network. 

Figure 4. Effects of the connectivity on the hysteresis loop. Simulation parameters: (a) T=433 K, 

Rp=4 mm, ra=5 nm, and σ=0.3; (b) PB,b=5 bar, Rp=4 mm, ra=5 nm, and σ=0.3; the pore radii are 

randomly distributed in the pore network. 

Figure 5. Effects of the pellet radius on the hysteresis loop. Simulation parameters: (a) T=433 K, 

Z=4, ra=5 nm, and σ=0.3; (b) PB,b=5 bar, Z=4, ra=5 nm, and σ=0.3; the pore radii are randomly 

distributed across the pore network. 
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Figure 6. Effects of spatial distributions of pore size on the hysteresis loop. Simulation parameters: 

(a) T=433 K, Rp=4 mm, Z=4, ra=5 nm, and σ=0.3; (b) PB,b=5 bar, Rp=4 mm, Z=4, ra=5 nm, and 

σ=0.3. The three spatial distributions (i.e., SD1, SD2, and SD3) are shown in the inset. 

Figure 7. Effects of spatial distributions of macropores in bimodal pore structures on the hysteresis 

loop. Simulation parameters: (a) T=433 K, Rp=4 mm, Z=4, ra=5 nm, σ=0.3, and fM=5%; (b) PB,b=5 

bar, Rp=4 mm, Z=4, ra=5 nm, σ=0.3, and fM=5%. The illustrations of two spatial distributions (i.e., 

BD1 and BD2) are shown in the inset. 

Figure 8. Effects of the percentage of macropores in bimodal pore structures on the hysteresis 

loop. Simulation parameters: (a) T=433 K, Rp=4 mm, Z=4, ra=5 nm, σ=0.3, and BD1; (b) PB,b=5 

bar, Rp=4 mm, Z=4, ra=5 nm, σ=0.3, and BD1. 
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Figure 1. Illustrations of the hysteresis loop areas caused by capillary condensation alone (SCC_P 

or SCC_T) and pore blocking (SPB_P or SPB_T). Simulation parameters: (a) T=433 K, Z=3, Rp=4 mm, 

ra=5 nm, and σ=0.3; (b) PB,b=5 bar, Z=3, Rp=4 mm, ra=5 nm, and σ=0.3; the pore radii are randomly 

distributed in the pore network. The arrows indicate the direction of a change in bulk pressure of 

benzene or a change in particle temperature. 
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Figure 2. Effects of the volume-averaged pore radius on the hysteresis loop. Simulation 

parameters: (a) T=433 K, Z=4, Rp=4 mm, and σ=0.3; (b) PB,b=5 bar, Z=4, Rp=4 mm, and σ=0.3; 

the pore radii are randomly distributed in the pore network.  
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Figure 3. Effects of the standard deviation on the hysteresis loop. Simulation parameters: (a) 

T=433 K, Z=4, Rp=4 mm, and ra=5 nm; (b) PB,b=5 bar, Z=4, Rp=4 mm, and ra=5 nm; the pore radii 

are randomly distributed in the pore network. 
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Figure 4. Effects of the connectivity on the hysteresis loop. Simulation parameters: (a) T=433 K, 

Rp=4 mm, ra=5 nm, and σ=0.3; (b) PB,b=5 bar, Rp=4 mm, ra=5 nm, and σ=0.3; the pore radii are 

randomly distributed in the pore network.  



 

G. Ye et al., AIChE Journal, 2016 (DOI: 10.1002/aic.15415) 

 27 

 

Figure 5. Effects of the pellet radius on the hysteresis loop. Simulation parameters: (a) T=433 K, 

Z=4, ra=5 nm, and σ=0.3; (b) PB,b=5 bar, Z=4, ra=5 nm, and σ=0.3; the pore radii are randomly 

distributed across the pore network.  
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Figure 6. Effects of spatial distributions of pore size on the hysteresis loop. Simulation parameters: 

(a) T=433 K, Rp=4 mm, Z=4, ra=5 nm, and σ=0.3; (b) PB,b=5 bar, Rp=4 mm, Z=4, ra=5 nm, and 

σ=0.3. The three spatial distributions (i.e., SD1, SD2, and SD3) are shown in the inset.  
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Figure 7. Effects of spatial distributions of macropores in bimodal pore structures on the hysteresis 

loop. Simulation parameters: (a) T=433 K, Rp=4 mm, Z=4, ra=5 nm, σ=0.3, and fM=5%; (b) PB,b=5 

bar, Rp=4 mm, Z=4, ra=5 nm, σ=0.3, and fM=5%. The illustrations of two spatial distributions (i.e., 

BD1 and BD2) are shown in the inset. 
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Figure 8. Effects of the percentage of macropores in bimodal pore structures on the hysteresis 

loop. Simulation parameters: (a) T=433 K, Rp=4 mm, Z=4, ra=5 nm, σ=0.3, and BD1; (b) PB,b=5 

bar, Rp=4 mm, Z=4, ra=5 nm, σ=0.3, and BD1. 

 


