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Abbreviations  

AD   Alzheimer’s disease 

PCASL Pseudo-continuous arterial spin labeling 

CBF  Cerebral blood flow 

MCI   Mild cognitive impairment 

MMSE  Mini mental state examination 

MRI  Magnetic resonance imaging 

PVC  Partial volume corrected 

SCD  Subjective cognitive decline 

WMH   White matter hyperintensities 
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1. Introduction 

Alzheimer’s disease (AD) is the most common neurodegenerative disease that causes 

dementia. Hallmark of AD is severe cognitive impairment with interference in daily living. In 

addition to structural brain changes such as volume loss, AD patients have decreased 

cerebral blood flow (CBF) [1–3]. Regional CBF mapping can be accomplished with MRI-

based arterial spin labeling (ASL). ASL is a non-invasive MRI-technique that uses 

magnetically labeled water as a tracer for blood flow.  

Decreased CBF is thought to reflect neuronal dysfunction and synaptic failure, the latter is 

considered to be the best correlate of cognitive decline in AD [4–7]. Decreased CBF as a 

reflection of synaptic failure is possibly one of the determinants of cognitive impairment. In a 

former study, we found that in mild cognitive impairment (MCI) and AD patients lower ASL-

measured CBF was related to more severe global cognitive impairment (measured with the 

Mini-Mental State Examination (MMSE)) [3]. Several previous studies have investigated the 

association between CBF and cognitive impairment and found a relationship between lower 

CBF and worse cognitive performance [3,8–11]. Comparability is hampered however, by 

small sample sizes and the use of only a cognitive screening test, or a few 

neuropsychological tests to evaluate cognitive impairment.  

Based on earlier findings, we hypothesized that whole-brain and regional CBF would 

correlate with cognitive functioning in a memory clinic population. We expected this 

association most prominently in AD providing support for ASL-CBF as a measure for disease 

severity. To test this hypothesis, we investigated the associations between ASL-CBF and 

performance in specific cognitive domains in a large sample of patients with subjective 

cognitive decline (SCD), MCI and AD using an extensive and standardized 

neuropsychological test battery.  
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2. Methods 

2.1 Subjects 

We included 399 patients (143 SCD, 95 MCI, 161 AD patients) with available ASL and 

standardized neuropsychological assessment from the memory clinic based Amsterdam 

Dementia Cohort [12]. All patients visited our memory clinic between October 2010 and 

November 2012 and underwent standardized brain MR imaging at 3T, organized in a one-

day standardized dementia screening that included medical history, physical and 

neurological examinations, screening laboratory tests and neuropsychological assessment. 

Clinical diagnosis was established by consensus in a multidisciplinary team [12]. AD patients 

met the NINCDS-ADRDA criteria (proposed by National Institute of Neurological and 

Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders 

Association) for probable AD [13], and also met the core clinical criteria for probable AD 

proposed by the National Institute on Aging-Alzheimer’s Association (NIA-AA) workgroup 

[14]. Diagnosis of MCI was based on the Petersen and NIA-AA criteria for MCI [15,16]. 

Patients were considered to have SCD when they presented with cognitive complaints, and 

results of clinical assessments were normal (i.e. criteria for MCI or psychiatric disorder were 

not fulfilled and other underlying neurological or psychiatric diseases were ruled out) [17,18].   

For all patients, the presence of vascular risk factors (i.e. hypertension, 

hypercholesterolemia, and diabetes mellitus) was determined based on self-reported medical 

history and medication use. Smoking status was defined as never, former or current. Level of 

education was classified according to the system of Verhage ranging from 1 to 7 (low to 

highly educated) [19]. The study was approved by the medical ethics committee of the VU 

University Medical Center. All patients provided written informed consent for their clinical 

data to be used for research purposes.  
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2.2 Neuropsychological assessment 

Cognitive functioning was assessed by a standardized neuropsychological test battery. We 

assessed global cognition and five cognitive domains. For global cognition, we used the 

MMSE [20].  For memory, we used the Visual Association Test (VAT) and the total 

immediate recall and delayed recall of the Dutch version of the Rey Auditory Verbal Learning 

Test (RAVLT) [21,22]. To examine language, we used the VAT naming, category fluency 

(animals), the Dutch version of the Controlled Oral Word Association Test (COWAT) [letter 

fluency], and the comparative questions and naming condition of the Arizona Battery for 

Communication Disorders (ABCD) [21,23–26]. For attention we used the Trail Making Test 

(TMT) part A, the Letter Digit Substitution Task (LDST), the forward condition of the Digit 

Span and the Stroop Test card I and II [27–30]. To examine executive functioning, we used 

the TMT part B, the backward condition of the Digit Span, Stroop Test card III and the Frontal 

Assessment Battery (FAB) [27–29,31]. To assess visuospatial functioning we used three 

subtests of the Visual Object and Space Perception (VOSP) battery, namely (i) incomplete 

letters, (ii) dot counting and (iii) number location [32].  

Neuropsychological data were standardized into z-scores. TMT A and B and the Stroop Test 

scores were log-transformed due to non-normal distribution and inverted by computing -1*z-

score, so that higher scores imply a better performance. In patients where the TMT B was 

aborted (n = 81), we estimated TMT B by multiplying the time needed to complete TMT A 

with the mean B/A index. The mean B/A index for all patients who completed both TMT A 

and B (n = 318) was 2.99. On the other tests, 1 to 11% of the test scores were missing and 

these scores were not imputed. Raw neuropsychological test scores were standardized into 

z-scores across the entire group. Subsequently, available test scores were averaged to 

create five cognitive domains (i.e. memory, language, attention, executive functioning and 

visuo-spatial functioning).  

 

2.3 MRI protocol 

MR imaging was performed on a 3T whole body MR system (Signa HDxt, GE Medical 

Systems Milwaukee, WI, USA) using an 8-channel head coil. The MRI protocol included T1-

weighted, T2-weighted, fluid attenuated inversion recovery (FLAIR) and gradient echo T2*-

weighted images. Global cortical atrophy (GCA) was defined on axial FLAIR images (range: 

0-3) [33] and the severity of white matter hyperintensities (WMH) using the Fazekas scale 

was determined on the FLAIR sequence (possible range: 0-3) [34], both were dichotomized  

into absent (0-1) or present (2-3). Medial temporal lobe atrophy (MTA) was determined on 

coronal T1-weighted images using the Scheltens scale (range: 0-4) [35], the mean of left and 

right MTA scores were dichotomized into MTA absent (<1.5) or MTA present (≥1.5). Lacunes 
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were defined as deep lesions (3-15mm) with CSF-like signal on all sequences. Lacunes were 

scored as absent or present.  

Pseudo-continuous ASL (pcASL) perfusion images (3D-FSE acquisition with background 

suppression, post-label delay 2.0s, echo time=9ms, repetition time=4.8s, spiral readout 8 

arms x 512 samples; 36x5.0mm axial slices, 3.2x3.2mm in-plane resolution, reconstructed 

pixel size 1.7x1.7mm, acquisition time 4 minutes) were calculated using a single 

compartment model after the subtraction of labeled from control images [36].  

 

2.4 Pre-processing and MRI data analysis 

Both T1-weighted and pcASL images were corrected for gradient non-linearities in all three 

directions. Further data analyses were carried out using FSL (version 4.1; 

http://www.fmrib.ox.ac.uk/fsl).  Pre-processing of T1 images consisted of non-brain tissue 

removal [37], linear registration to standard space [38] and tissue segmentation [39]. PcASL 

images were linearly registered to the brain-extracted T1 images. The brain mask was used 

to calculate uncorrected mean whole-brain CBF. Partial volume estimates were transformed 

to the ASL data space and used in a regression algorithm [40], using a Gaussian kernel of 

9.5mm full width at half maximum, to create partial volume corrected (PVC) cortical and 

white matter CBF maps. Partial volume estimates were subsequently used as a weighting 

factor to calculate mean cortical CBF. Additionally, the MNI152 atlas and the Harvard-Oxford 

cortical atlas (both part of FSL) were used to create regions-of-interest (ROIs) of the frontal, 

parietal, temporal and occipital brain areas, to extract mean regional uncorrected and PVC 

CBF values (Figure 1).   

 

Figure 1: Regions-of-interest (ROIs) of the frontal (yellow), parietal (green), temporal (blue) 

and occipital lobe (red) following the MNI152 atlas and the Harvard-Oxford cortical atlas.  

 

2.5 Statistics 

PASW Statistics 22.0 for Mac (SPSS Inc., Chicago, IL) was used for all statistical analyses. 

Analyses of variance (ANOVA) and Pearson χ2 tests were performed to compare groups 

when appropriate. ANOVA’s were performed with age, gender and education as covariates.  

We then used linear regression analyses with CBF as independent variable, and cognitive 

domains as dependent variables (separate models for each cognitive domain). We adjusted 

for diagnosis (using dummy variables), age, gender, education, WMH and lacunes. To check 

if associations with CBF differed according to diagnostic group, interaction terms (dummy-

diagnosis*CBF) were included in the model. When we found an interaction between 

diagnosis and CBF (p≤0.05), results were subsequently stratified for diagnosis and the 

standardized beta (stβ) was displayed for each diagnostic group separately. When no 



	
	

7 

significant interaction was found, the interaction term was removed from the model and we 

report overall stβ. The level of significance was set at p<0.05. 

 

3. Results 

Demographic data and MRI results are summarized per diagnostic group in Table 1. Patients 

with SCD were younger than MCI and AD patients. Furthermore, AD patients were more 

often female than patients with MCI and SCD and were less educated than patients with 

SCD.  

AD patients had more severe GCA and MTA than patients with MCI and SCD. Furthermore, 

AD and MCI patients had more often WMH than patients with SCD, and MCI patients had 

more often lacunes than AD and SCD patients. Whole-brain PVC cortical CBF differed 

between groups (p<0.01).  Post-hoc comparisons showed that AD patients had lower PVC 

cortical CBF than MCI patients, who in turn had lower PVC cortical CBF than individuals with 

SCD. When we evaluated regional CBF, results were comparable.  

 

Figure 2: Examples of uncorrected whole-brain CBF maps in subject with SCD (56-year-old 

man, MMSE: 30, mean uncorrected CBF: 41 mL/100g/min), patient with MCI (63-year-old 

woman, MMSE: 25, mean uncorrected CBF: 30 mL/100g/min), and patient with AD (51-year-

old man, MMSE: 18, mean uncorrected CBF: 25 mL/100g/min). Red to yellow/green colours 

represent CBF in millilitres per 100 g per minute.  

 

Table 2 shows the raw neuropsychological test results and the z-scores of the cognitive 

domains per diagnosis. Adjusted for age, gender and education, AD patients had lower 

scores on all neuropsychological tests than patients with MCI and SCD. In addition, patients 

with MCI scored worse than SCD-patients on memory, attention, language and executive 

functions, but not on visuo-spatial functioning. 

 

3.1 Association between PVC cortical CBF and cognitive domains 

Table 3 shows the associations between whole-brain and regional PVC cortical CBF and 

performance in specific cognitive domains.  

Adjusted for diagnosis, age, gender, education, WMH and lacunes in linear regression 

analyses, we found associations between whole-brain PVC cortical CBF and all cognitive 

domains (stβ’s = 0.07-0.14, all p<0.05). These associations were attributable to a 

widespread reduction in CBF as we found associations between regional CBF with global 

cognition, memory, attention, visuo-spatial functioning, executive functioning and CBF. 

These associations were found for all regions, except for a trend between PVC occipital CBF 

and memory (stβ = 0.06, p=0.06), and for frontal CBF and attention (stβ = 0.07, p=0.08).  
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There were significant interactions between PVC cortical CBF in all regions and diagnosis for 

language (p<.01). After stratification, we found strong associations in AD patients (significant 

associations in all brain regions; stβ = 0.24-0.32, p<0.001), but not in MCI or SCD.  

Additionally, we found interactions between PVC parietal CBF and diagnosis for global 

cognition and executive functioning.  After stratification we again observed strong 

associations in AD patients (PVC parietal CBF ~ global cognition: stβ = 0.23, p<0.001 and 

PVC parietal CBF ~ executive functioning: stβ = 0.25, p<0.001), while there were no 

significant associations in SCD or MCI.   

 

Figure 3: Scatterplot of PVC parietal CBF against executive functioning.  

 

3.2 Association between uncorrected CBF and cognitive domains 

Subsequently, we repeated the analysis for whole-brain and regional uncorrected CBF 

estimations (table 4). These analyses largely showed a similar pattern of associations, with 

an even stronger preference for the strongest associations between decreased CBF and 

cognitive impairment to occur in the dementia stage. Moreover, these associations appeared 

to be more prominent than for PVC CBF.  

 

4. Discussion 

The main finding of this paper is that reductions in CBF are associated with cognitive 

functioning in all cognitive domains and across the full spectrum of cognitive decline, but 

most prominently in the stage of AD dementia. We observed these associations for both 

whole-brain and regional CBF and using both PVC cortical and uncorrected estimates of 

CBF.  

 

Among the limitations of this study may be the use of partial volume correction. Although in 

theory it might be preferred to use PVC cortical CBF maps, the main drawback is no 

consensus on which method is best to correct for PVE [41]. The presence of cerebral atrophy 

in AD makes interpretation of ASL data complicated. An observation of cortical 

hypoperfusion could simply mirror cerebral atrophy. Therefore, in this study we used both 

uncorrected CBF, as well as PVC cortical CBF (actual grey matter CBF) to determine if the 

associations between CBF and cognition remained after correcting for PVE. In our previous 

work, we showed that CBF consistently increased after PVE but the proportional differences 

remained similar across groups [3]. In the present study, the uncorrected and PVC cortical 

CBF also yielded comparable results, which suggests that the detected associations of CBF 

with cognitive functioning are not merely a result of cerebral atrophy. Moreover, the most 
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important difference between PVC cortical and uncorrected CBF estimates was that the 

specificity of the associations for the AD stage was even more clear in the uncorrected 

estimates. This provides further proof that the uncorrected CBF estimates measure more 

than atrophy, since associations between atrophy and cognition tend to be more strong in the 

earlier, non-demented disease stages. Our results show a strong association between 

uncorrected CBF estimates (as available from the scanner in clinical practice) and disease 

severity, suggesting that PVE is not necessary to monitor disease severity in AD patients. 

ASL-MRI may therefore be a promising tool in the clinical practice.  

Other possible limitations include that we did not scan with several delay times to account for 

differences in travel times between groups. However, we did use an age-adjusted delay time 

of 2.0 [42], which is assumed to be suitable to account for delayed blood arrival to the brain 

tissue. No correction for possible confounders on ASL-measured-CBF such as caffeine-

intake, smoking and vasoactive medication were applied. Furthermore, we used large ROIs 

which may have obscured subtle regional associations. On the other hand, the use of smaller 

ROIs give less accurate and less reliable CBF estimates, because of the limitations of the 

low signal-to-noise ratio (SNR) and spatial resolution of ASL and results of larger ROIs may 

considered to be more robust [43]. The inclusion of relatively young patients could limit the 

generalizability of our findings to elderly AD patients and although we view the groups of 

SCD, MCI, and AD in some way as a continuum, this is not self-evident, as some of these 

patients will remain stable or develop non-AD dementias. Finally, the cross-sectional design 

prevents us from drawing conclusions about the future disease course of these patients, 

especially for the MCI-patients in this cohort. Among the strengths are the large cohort of 

SCD, MCI and AD patients with available pseudo-continuous ASL-MRI, which was obtained 

according to a standardized protocol. The use of a standardized neuropsychological test 

battery allowed looking at specific cognitive domains.  

 

We found consistent associations of ASL-CBF and cognitive impairment in AD, while 

associations in MCI and SCD were less obvious. Previous literature suggests that functional 

and metabolic markers, such as glucose metabolism and CBF, show increasing changes 

during the progression from pre-dementia stages to MCI and finally the dementia stage of AD 

[2,3,44,45]. Our findings suggests that CBF may be less sensitive to early brain changes, but 

may have particular value in reflecting disease severity in more advanced disease stages. 

This suggests that CBF alterations and hypometabolism continue to change along the 

disease process of AD, without reaching a plateau in an early disease stage [44,46].  

 

In this study we had an extensive and standardized neuropsychological test battery, covering 

five major cognitive domains. We found that CBF, both whole-brain and in specific regions, 
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was associated with functioning in all cognitive domains. Earlier studies describing 

associations between CBF and cognitive impairment often focused merely on screening 

instruments (MMSE) or a few neuropsychological tests only [3,8–10]. Chao et al. [11] 

investigated associations between ASL-CBF and cognitive domains, but only in MCI-

patients. They found that MCI patients with a different pattern of cognitive impairment (i.e. 

memory or executive functioning) exhibited specific patterns of hypoperfusion. In our study, 

we expected to find associations of reduced CBF in a specific anatomical region and 

cognitive impairment in a specific domain. By contrast, our results suggest a more global or 

nonspecific effect of CBF on cognitive domains, indicating that decreased CBF in a particular 

region does not have a localized effect on a cognitive domain. These results support the 

hypothesis that global cognitive impairment in AD patients is related to widespread brain 

changes. The strongest associations were observed in the stage of AD, when a lot of 

damage to the brain has occurred, and the relationship between cognitive impairments and 

the regional distribution of disease is less obvious. A second explanation of our results could 

be that although cognitive tests are selected to measure a specific cognitive domain, reality 

is that each test taps on more than one cognitive domain. For example worse performance 

on the Trail Making Test B not only measures executive functioning, but also requires 

attention and relies heavily on intact visuo-spatial functioning. The latter could explain the 

association between reduced CBF in the posterior regions and executive functioning. 

Another example is that tests to assess visuo-spatial functioning (i.e. Visual Object and 

Space Perception (VOSP) battery) tap on a variety of abilities, such as visual and color 

discrimination, visuo-perceptual organization, visual construction and visual neglect. In 

addition, they require intact planning, organization and sequencing (i.e. executive 

functioning). This long list of cognitive functions may explain widespread associations 

between VOSP tests and reduced CBF.   

 

In particular for parietal CBF, we found that associations with global cognition and executive 

functioning were most prominent in AD patients. This seems in line with previous findings 

that [18F]FDG-PET-hypometabolism in AD is most pronounced in the posterior regions [47]. 

Moreover, these findings also seem in line with previous longitudinal findings that the 

posterior regions are associated with cognitive decline in AD patients [48,49]. Changes in 

CBF and glucose metabolism are closely linked, and a decrease in CBF is thought to reflect 

synaptic failure [5,6]. Synaptic failure is thought to cause network disturbance and 

connectivity research shows that the posterior brain region is a highly active network region 

[50]. Probably the association that we found between parietal CBF and cognitive impairment 

reflects network disruption. Finally, we found a strong association between lower CBF in all 

regions and worse performance on language in AD patients. These results are consistent 
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with earlier findings and provides further evidence for the reflection of network disruption in 

AD [50], or that multiple brain regions contribute to different aspects of cognitive processes.  

 

Earlier studies have well established the association between decreased CBF and AD. 

However, it is still not completely clarified whether decreased CBF is a cause, consequence 

or epiphenomenon of underlying AD pathology. Future research with repeated 

measurements of CBF could explore the relationship between change in CBF and cognition 

in the earlier non-demented disease stage and in more advanced disease stages. ASL could 

be of additional value in this line of research. In addition, whereas the detection of amyloid in 

living patients has a large diagnostic value, the level of deposition does not correlate well 

with cognitive impairment [51]. It is therefore not certain whether amyloid represents a useful 

outcome measure in clinical trials. Our results suggest that ASL-measured-CBF is a 

functional marker of disease severity. In addition to the absolute units of CBF measurement, 

ASL-measured-CBF could be a possible useful imaging marker of therapeutic efficacy in 

clinical trials. Finally, future research could exploit the potential for a (non-)pharmacological 

treatment for the regulation of CBF and prevention of AD. Identifying the possible mechanism 

underlying the effect of decreased CBF on cognition, could support the recommendation of 

changing lifestyle factors, such as regular exercise, as a preventative therapy to prevent or 

delay dementia.   

In conclusion, our study investigated ASL-CBF in the entire cognitive spectrum – from SCD 

to AD – and our results show associations across all cognitive domains. Of note, these 

associations were strongest for AD patients. Our findings support the potential role of CBF as 

a functional marker of disease severity, with ASL as non-invasive, easily-obtained method of 

CBF measurement.  
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Table 1: Demographics and MR imaging findings 

 Total (n = 399) SCD (n = 143) MCI (n = 95) AD (n = 161) 

 
Age  63.53 ± 8.23 59.69 ± 8.69 65.24 ± 7.28a 65.93 ± 7.04a 

Women, n (%) 184 (46.1%) 63 (44.1%) 33 (34.7%) 88 (54.7%)ab 

Education 5.15 ± 1.29 5.45 ± 1.19 5.14 ± 1.35 4.89 ± 1.30a 

MMSE 24.75 ± 4.78 28.22 ± 1.53 26.57 ± 1.93a 20.60 ± 4.76ab 

Vascular risk factors     

Hypertension, n (%) 136 (34.1%) 39 (27.3%) 39 (41.1%)a 58 (36%) 

Hypercholesterolemia, n (%) 106 (26.6%) 26 (18.2%) 36 (37.9%)a 44 (27.3%) 

Diabetes mellitus, n (%) 36 (9%) 12 (8.4%) 13 (13.7%) 11 (6.8%) 

Smoking status:     

Never, n (%) 161 (40.4%) 63 (44.1%) 42 (44.2%) 56 (34.8%) 

Former, n (%) 170 (43.8%) 61 (43.5%) 34 (37.3%) 75 (47.7%) 

Current, n (%) 57 (14.3%) 16 (11.2%) 15 (15.8%) 26 (16.1%) 

MRI characteristics     

  GCA (%) 46 (11.5%) 3 (2.1%) 6 (6.3%) 37 (23%)ab 

  MTA (%) 52 (13%) 0 (0%) 6 (6.3%)a 46 (28.6%)ab 

  WMH (%) 82 (20.6%) 12 (8.4%) 28 (29.5%)a 42 (26.1%)a 

  Lacunes (%) 31 (7.8%) 6 (4.2%) 16 (16.8%)ac 9 (5.6%) 

PVC cortical CBF      

  Whole-brain 44.72 ± 9.87 48.67 ± 9.80 44.28 ± 9.10a 41.47 ± 9.16ab 

Regional PVC cortical CBF     

Frontal 45.35 ± 10.61 49.29 ± 10.47 44.75 ± 10.11a 42.20 ± 9.94ab 

Temporal 41.07 ± 8.83 44.54 ± 8.88 41.32 ± 8.05a 37.83 ± 8.02a 

Parietal 50.13 ± 11.90 55.35 ± 11.53 50.12 ± 10.95a 45.49 ± 10.85ab 

Occipital 50.71 ± 11.91 55.09 ± 11.60 50.32 ± 11.11a 47.06 ± 11.42ab 

AD, Alzheimer’s Disease; MCI, mild cognitive impairment; SCD, subjective cognitive decline; GCA, 

global cortical atrophy; MTA, medial temporal lobe atrophy; WMH, high-signal-intensity areas in white 

matter (based on Fazekas score); MMSE, Mini Mental State Examination; CBF, cerebral blood flow; 

PVC, partial volume corrected. Availability for incomplete data: SCD: Smoking status 140/143, MCI: 

Smoking status 91/95, GCA, 94/95; MTA 94/95; WMH 94/95; AD: Smoking status 157/161.  

One-way ANOVA or χ2 were performed, respectively. Data are presented as mean ± SD, number 

(percentage). Cerebral blood flow (CBF) values in mL/100g/min. Significant difference p <0.05 to 
aSCD, bMCI and cAD. 
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Table 2: Raw neuropsychological test performance of diagnostic groups  

 Total (n = 399) SCD (n = 143) MCI (n = 95) AD (n = 161) 
     
Memory (z-score) -0 ± 0.9 0.8 ± 0.4 0 ± 0.5a -0.8 ± 0.6ab 
  VAT 8.9 ± 3.7 11.6 ± 0.7 10.2 ± 2.4a 5.7 ± 3.8ab 

RAVLT total immediate 32.5 ± 12.8 43.6 ± 9.4 32.3 ± 8.5a 21.9 ± 8ab 
RAVLT delayed 5 ± 4.1 8.9 ± 3 4.2 ± 2.7a 1.8 ± 2.2ab 

     
Attention (z-score) -0 ± 0.8 0.5 ± 0.5 0.1 ± 0.5a -0.5 ± 0.9ab 

TMT A* 60.9 ± 55.4 35.7 ± 13.3 47.5 ± 24 93.6 ± 75.3ab 
LDST 38 ± 13 46 ± 9.5 39.3 ± 10a 27.9 ± 11.7ab 
Digit span (forward) 11.7 ± 3.3 13 ± 3.2 11.5 ± 2.8a 10.5 ± 3.2ab 
Stroop I* 52 ± 17.8 44.3 ± 8.3 48.1 ± 10.2 62 ± 23.2ab 
Stroop II* 75.6 ± 32.8 61.3 ± 13.7 67.5 ± 15.5a 95.5 ± 43.4ab 

     
Language (z-score) -0 ± 0.8 0.3 ± 0.5 0.2 ± 0.6 -0.5 ± 0ab 
  VAT naming 11.6 ± 1.2 11.9 ± 0.4 11.9 ± 0.4 11.1 ± 1.7ab 

Animal fluency 17.1 ± 6.7 21.5 ± 5.7 18.6 ± 5.3a 12.3 ± 5ab 
  Letter fluency 30.1 ± 12.8 34.9 ± 12 31.7 ± 12 24.7 ± 12ab 
  Comparative questions 5.6 ± 0.7 5.8 ± 0.3 5.8 ± 0.4 5.4 ± 1ab 

ABCD naming 17.1 ± 3 18.6 ± 1.4 17.8 ± 2.1a 15.1 ± 3.6ab 
     
 Visuospatial functioning (z-score) -0 ± 0.8 0.3 ± 0.3 0.2 ± 0.3 -0.5 ± 1.1ab 

Number location 8.6 ± 1.5 9.2 ± 1 9 ± 1.14 7.9 ± 1.8ab 
  Dot counting  9.4 ± 1.1 9.8 ± 0.4 9.6 ± 0.5 8.9 ± 1.7ab 

Fragmented letters 17.5 ± 4 19.1 ± 1.4 18.5 ± 1.2 15 ± 5.7ab 
     
Executive functioning (z-score) -0 ± 0.9 0.6 ± 0.4 0.1 ± 0.5a -0.8 ± 0.8ab 
  Digit span (backward) 7.8 ± 2.8 9.4 ± 2.6 7.9 ± 2.5a 6.3 ± 2.4ab 
  TMT B* 182.6 ± 173.9 88 ± 45.4 142.2 ± 91.5a 299.2 ± 219.6ab 
  FAB 15 ± 3.3 16.9 ± 1.4 15.9 ± 1.8 12.3 ± 3.8ab 

Stroop III* 131.4 ± 63.5 98.6 ± 24.1 121 ± 36.3a 180.3 ± 63.5ab 
 
AD, Alzheimer’s Disease; MCI, mild cognitive impairment; SCD, subjective cognitive decline; MMSE, Mini Mental 

State Examination; VAT, Visual Association Test; RAVLT, Rey Auditory Verbal Learning Test; TMT, Trail Making 

Test; LDST, Letter Digit Substitution Test; ABCD, Arizona Battery for Communication Disorders; FAB, Frontal 

Assessment Battery.  

Z-scores allow comparison of neuropsychological test results within patients. Higher z-scores imply better 

performance on all tests.  

Raw neuropsychological data are presented as mean ± standard deviation. Univariate analyses of variances were 

performed with diagnosis as between-subject factor. Gender, age and education are entered as covariates. 

Significant difference p <0.05 to aSCD, bMCI and cAD.  
*Higher scores imply worse performance.   
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Table 3: Linear regression models for the association between PVC cortical CBF and cognitive domains  

      
Region Cognitive domain All SCD (n = 143) MCI (n = 95) AD (n = 161) 
Whole-brain Global .10**    
 Memory .07*    
 Attention .09*    
 Executive functioning  .12**    
 Visuo-spatial functioning .14**    
 Language  .01 .11 .28*** 
Parietal Global  .06 .06 .23*** 
 Memory .09**    
 Attention .10*    
 Executive functioning   .07 .09 .25*** 
 Visuo-spatial functioning .18***    
 Language  .01 .10 .32*** 
Frontal Global .10**    
 Memory .08**    
 Attention .07    
 Executive functioning  .11**    
 Visuo-spatial functioning .12*    
 Language  .03 .11 .30*** 
Temporal Global .10**    
 Memory .08**    
 Attention .10*    
 Executive functioning  .12***    
 Visuo-spatial functioning .13**    
 Language  .00 .11 .29*** 
Occipital Global .08*    
 Memory .06    
 Attention .05    
 Executive functioning  .10**    
 Visuo-spatial functioning .18***    
 Language  -.02 .08 .24*** 
We used linear regression analyses with PVC cortical CBF as independent variable and cognitive domains as 

dependent variable. Cognition is expressed as a (composite) z-score. We corrected for diagnosis (using dummy 

variables), age, gender and education, white matter hyperintensities and presence of lacunes.  To check if 

associations with CBF differed according to diagnostic group, interaction terms (dummy-diagnosis*CBF) were 

included in the model. When we found an interaction between diagnosis and CBF (p<0.05), results were 

subsequently stratified for diagnosis and the standardized beta (stβ) is displayed for each group separately. When no 

significant was found, the interaction term was removed from the model and the overall stβ is reported.  

SCD, subjective cognitive decline; MCI, mild cognitive impairment; AD, Alzheimer’s disease.  

*p<0.05, **p<0.01, ***p<0.001 
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Table 4: Linear regression models for the association between uncorrected CBF and cognitive domains  

      
Region Cognitive domain All SCD (n = 143) MCI (n = 95) AD (n = 161) 
Whole-brain Global .11**    
 Memory .08**    
 Attention .11*    
 Executive functioning  .13***    
 Visuo-spatial functioning .15**    
 Language  .01 .12 .31*** 
Parietal Global  .06 .06 .26*** 
 Memory .09**    
 Attention  .04 .12 .25*** 
 Executive functioning   .07 .08 .31*** 
 Visuo-spatial functioning .20***    
 Language  .01 .12 .34*** 
Frontal Global .11**    
 Memory .08**    
 Attention .08    
 Executive functioning  .12**    
 Visuo-spatial functioning .11*    
 Language  .03 .12 .30*** 
Temporal Global .13***    
 Memory .10**    
 Attention .11**    
 Executive functioning  .14***    
 Visuo-spatial functioning .14**    
 Language  .02 .11 .37*** 
Occipital Global  .04 .08 .23*** 
 Memory .06*    
 Attention  .01 .14 .22** 
 Executive functioning  .10**    
 Visuo-spatial functioning  .05 .12 .42*** 
 Language  -.01 .07 .29*** 
We used linear regression analyses with uncorrected CBF as independent variable and cognitive domains as 

dependent variable. Cognition is expressed as a (composite) z-score. We corrected for diagnosis (using dummy 

variables), age, gender and education, white matter hyperintensities and presence of lacunes.  To check if 

associations with CBF differed according to diagnostic group, interaction terms (dummy-diagnosis*CBF) were 

included in the model. When we found an interaction between diagnosis and CBF (p<0.05), results were 

subsequently stratified for diagnosis and the standardized beta (stβ) is displayed for each group separately. When no 

significant was found, the interaction term was removed from the model and the overall stβ is reported.  

SCD, subjective cognitive decline; MCI, mild cognitive impairment; AD, Alzheimer’s disease.  

*p<0.05, **p<0.01, ***p<0.001 

 

 


