
221

Chapter 16

A Gene Ontology Tutorial in Python

Alex Warwick Vesztrocy and Christophe Dessimoz

Abstract

This chapter is a tutorial on using Gene Ontology resources in the Python programming language. 
This entails querying the Gene Ontology graph, retrieving Gene Ontology annotations, performing gene 
enrichment analyses, and computing basic semantic similarity between GO terms. An interactive version of 
the tutorial, including solutions, is available at http://gohandbook.org.

Key words Gene Ontology, Tutorial, Python

1  �Introduction

One of the main goals of developing a formal ontology is to facili-
tate computational analysis. The purpose of this chapter is to pro-
vide a hands-on introduction to handling GO terms and GO 
annotations in Python. This tutorial also shows how Python can be 
used to perform GO term enrichment analyses, as well as how to 
compute the similarity between GO terms.

This tutorial uses Python, but other popular languages com-
monly used to perform GO analyses include Java, R, Perl, and 
Matlab. The Gene Ontology consortium website maintains a list of 
software libraries, accessible from

ftp://ftp.geneontology.org/pub/go/www/GO.tools_by_type.
software.shtml

An interactive version of this tutorial, with model solutions to 
all the questions, is available from the book homepage at http://
gohandbook.org.

2  �Querying the Gene Ontology

A fundamental first step is to retrieve the Gene Ontology and anal-
yse that structure (Chap. 3 [1]).

Christophe Dessimoz and Nives Škunca (eds.), The Gene Ontology Handbook, Methods in Molecular Biology, vol. 1446,
DOI 10.1007/978-1-4939-3743-1_16, © The Author(s) 2017

http://gohandbook.org/
ftp://ftp.geneontology.org/pub/go/www/GO.tools_by_type.software.shtml
ftp://ftp.geneontology.org/pub/go/www/GO.tools_by_type.software.shtml
http://gohandbook.org/
http://gohandbook.org/
http://dx.doi.org/10.1007/978-1-4939-3743-1_3


222

One convenient Python package available to query the GO is 
GOATOOLS [2]. This package can read the GO structure stored 
in OBO format, which is available from the GO website (see 
Chap. 11 [3]). After loading this file, it is possible to traverse the 
GO structure, search for particular GO terms, and find out which 
other terms they are related to and how.

This package is available on the Python Package Index (PyPI), 
a standard repository of python libraries. As such, it is possible to 
install it locally using the command1:

              pip install goatools

The GOATOOLS package contains the functions necessary to 
parse the GO in OBO format, to query it, and to visualise the 
ontology. Using the function obo_parser.GODag() from 
GOATOOLS, the GO file can be loaded. Each GO term in the 
resulting object is an instance of the GOTerm class, which contains 
many useful attributes, such as:

●● GOTerm.name: textual definition;
●● GOTerm.namespace: the ontology the term belongs to (i.e., 

Molecular Function [MF], Biological Process [BP], or Cellular 
Component [CC]);

●● GOTerm.parents: list of parent terms;
●● GOTerm.children: list of children terms;
●● GOTerm.level: shortest distance to the root node;

1
 GOATOOLS version 0.6.4 was used to write this tutorial and the exercises. 

To install this exact version, use pip install goatools==0.6.4

Exercise 2.1
Download the GO basic file in OBO format (go-basic.obo), and 
load the GO using the function obo_parser.GODag() from 
GOATOOLS. Using this library, answer the following questions:

(a)	 What is the name of the GO term GO:0048527?

(b)	 What are the immediate parent(s) of the term GO:0048527?

(c)	 What are the immediate children of the term GO:0048527?

(d)	 Recursively find all the parent and child terms of the term 
GO:0048527. Hint: use your solutions to the previous two ques-
tions, with a recursive loop.

(e)	 How many GO terms have the word “growth” in their name?

(f)	 What is the deepest common ancestor term of GO:0048527 and 
GO:0097178?

(g)	 Which GO terms regulate GO:0007124 (pseudohyphal growth)? 
Hint: load the relationship tags and look for terms which define 
regulation.

Alex Warwick Vesztrocy and Christophe Dessimoz

http://dx.doi.org/10.1007/978-1-4939-3743-1_11


223

GO:0048627
myoblast development

GO:0044699
single-organism process

GO:0044763
single-organism cellular process

is_a

GO:0044767
single-organism developmental process

is_a

GO:0048869
cellular developmental process

is_a is_a

GO:0048468
cell development

is_a

GO:0008150
biological_process

is_a

GO:0009987
cellular process

is_a

GO:0032502
developmental process

is_a

is_a is_a

GO:0048856
anatomical structure development

is_a

is_a

is_a

Fig. 1 Selected parts of the Gene Ontology can be visualised using the GOATOOLS library [2]

Exercise 2.2
Using the visualisation function in the GOATOOLS library, answer the 
following questions:

(a)	 Produce a figure similar to that in Fig.  1, for the GO term 
GO:0097190. From the visualisation, what is the name of this term?

(b)	 Using this figure, what is the most specific term that is in the parent 
terms of both GO:0097191 (extrinsic apoptotic signalling pathway) 
and GO:0038034 (signal transduction in absence of ligand)? This is 
also referred to as the lowest common ancestor (see Chap. 12 [4]).

Furthermore, other tag-value lines such as the “relation-
ships” can be loaded with an optional argument of, e.g., 
optional_attrs=['relationship'].

The GOATOOLS library also includes functions to visualise the 
GO graph. For instance, it is possible to depict the location of a par-
ticular GO term in the ontology using the method GOTerm.draw_
lineage(). For example, the plot in Fig. 1 showing the lineage of 
the GO term GO:0048527 was created using this function.

As an alternative to GOATOOLS and OBO files, it is possible 
to retrieve information relating to a specific term from a web ser-
vice. One such service is the EMBL-EBI QuickGO resource (see 

A Gene Ontology Tutorial in Python

http://dx.doi.org/10.1007/978-1-4939-3743-1_12


224

Chap. 11; [3, 5]), which can provide descriptive information about 
GO terms in OBO-XML format. It is possible to request this 
OBO-XML file over HTTP, using a URL of the form

http://www.ebi.ac.uk/QuickGO/GTerm?id=<GO_ID>& 
format=oboxml

where <GO_ID> is replaced with the GO identifier for the term of 
interest. In Source Code 2.1, an example function to automate this 
in Python is listed, which uses the urllib library to request the OBO-
XML and the xmltodict library to parse the XML into an easy to use 
dictionary structure. Both libraries are available to install using pip, 
if required. Note that the future library was used to ensure that the 
function is both Python 2 and 3 compatible.

The dictionary structure that is returned can vary based on what 
information is available in the database. One example of an informa-
tion-rich term is GO:0043065. A visualisation of the dictionary 

Source Code 2.1. get_oboxml() function for Python 2 and 3.
from future.standard_library import install_aliases
install_aliases()
from urllib.request import urlopen
import xmltodict

def get_oboxml(go_id):
    """
	� This function retrieves the OBO-XML for a 

given Gene Ontology term, using EMBL-EBI's 
QuickGO browser.

	 �Input: go_id - a valid Gene Ontology ID, 
e.g. GO:0048527.

    """
	� quickgo_url= "http://ebi.ac.uk/QuickGO/GTerm?id="+ 

go_id+"&format=oboxml"
	 oboxml = urlopen(quickgo_url)

	 # Check the response
	 if(oboxml.getcode() == 200):
	 obodict = xmltodict.parse(oboxml.read())
	 return obodict
	 else:
	� raise ValueError("Couldn't receive OBOXML 

from QuickGO. Check URL and try again.")

Fig. 2 Visualisation of the keys in the hierarchical dictionary structure returned by 
get_oboxml('GO:0043065')

obo

header term

format-version auto-generated-by synonymtypedef default-namespace remark id name namespace def comment synonym xref is_a relationship

id name scope defstr type to

Alex Warwick Vesztrocy and Christophe Dessimoz

http://dx.doi.org/10.1007/978-1-4939-3743-1_11
http://www.ebi.ac.uk/QuickGO/GTerm?id=<GO_ID>&format=oboxml
http://www.ebi.ac.uk/QuickGO/GTerm?id=<GO_ID>&format=oboxml


225

structure for this term, created with the visualisedictionary 
package available from PyPI (using pip), has been included in Fig. 2.

The main advantage of using a web service, such as QuickGO, 
is that there is no requirement to download and parse the entire 
Gene Ontology structure; only the information required is retrieved. 
This is therefore more efficient if only a few particular terms are 
involved in an analysis. By contrast, for analyses involving many 
terms, the file-based approach described above is more suitable.

3  �Retrieving GO Annotations

This section looks at manipulating the Gene Association File 
(GAF) standard, using a parser from the BioPython package [6].

Firstly, a GAF file, which contains GO annotations, shall be 
downloaded from the UniProt-GOA database [7]. Their website 
(https://www.ebi.ac.uk/GOA/downloads) lists a number of vari-
ants. For this tutorial the reduced GAF file containing only the gene 
association data for Arabidopsis thaliana is going to be used.

Annotations from GAF files can be loaded into a Python diction-
ary using an iterator from the BioPython package (Bio.UniProt.
GOA.gafiterator). Source Code 3.1 shows a simple example 
of this being used, in order to print out the protein ID for each 
annotation.

Exercise 2.3
Using the function get_oboxml(), listed in Source Code 2.1, answer 
the following questions:

(a)	 Find the name and description of the GO term GO:0048527 (lat-
eral root development). Hint: print out the dictionary returned by 
the function and study its structure, or use the visualisation in Fig. 2.

(b)	 Look at the difference in the OBO-XML output for the GO terms 
GO:00048527 (lateral root development) and GO:0097178 
(ruffle assembly), then generate a table of the synonymous rela-
tionships of the term GO:0097178.

Source Code 3.1
from Bio.UniProt.GOA import gafiterator
import gzip

# filename = <LOCATION OF GAF FILE>
filename = 'gene_association.goa_arabidopsis.gz'

with gzip.open(filename, 'rt') as fp:
    for annotation in gafiterator(fp):
        # Output annotated protein ID
        print(annotation['DB_Object_ID'])

A Gene Ontology Tutorial in Python

https://www.ebi.ac.uk/GOA/downloads


226

Recall that the latest GAF standard, version 2.1, has 17 tab-
delimited fields, which are described in detail in Chap. 3 [1]. Some 
of them include:

●● 'DB': the protein database;
●● 'DB_Object_ID': protein ID;
●● 'Qualifier': annotation qualifier (such as NOT);
●● 'GO_ID': GO term;
●● 'Evidence': evidence code.

4  �GO Enrichment or Depletion Analysis

As discussed in detail in Chap. 13 [8] one of the most common 
analyses performed on GO data is an enrichment (or depletion) 
analysis. In this tutorial, the GOEnrichmentStudy() function 
available in the GOATOOLS library (which has been seen in sec-
tion 2) will be used.

The GOEnrichmentStudy() function requires the follow-
ing arguments:

	 1.	the background set of terms (also known as the “population 
set”), passed as a list of GO term IDs;

	 2.	associations between proteins IDs and GO term IDs, passed as 
a dictionary with protein IDs as the keys and sets of associated 
GO terms as the values;

	 3.	the Gene Ontology structure, i.e., the output by the obo_
parser() function from GOATOOLS;

	 4.	whether annotations should be propagated to all parent terms, 
(defined in terms of is_a tags, only), indicated by setting the 
optional boolean parameter propagate_counts to True 
(default) or False;

Exercise 3.1

(a)	 Find the total number of annotations for Arabidopsis thaliana with 
NOT qualifiers. What is this as a percentage of the total number of 
annotations for this species?

(b)	 How many genes (of Arabidopsis thaliana) have the annotation 
GO:0048527 (lateral root development)?

(c)	 Generate a list of annotated proteins which have the word “growth” 
in their name.

(d)	 There are 21 evidence codes used in the Gene Ontology project. 
As discussed in Chap. 3 [1], many of these are inferred, either by 
curators or automatically. Find the counts of each evidence code in 
the Arabidopsis thaliana annotation file.

Alex Warwick Vesztrocy and Christophe Dessimoz

http://dx.doi.org/10.1007/978-1-4939-3743-1_3
http://dx.doi.org/10.1007/978-1-4939-3743-1_13
http://dx.doi.org/10.1007/978-1-4939-3743-1_3


227

	 5.	the significance level, indicated by setting the optional parameter 
alpha to the desired cut-off (default: 0.05);

	 6.	the foreground set of terms (also known as “study set”), indi-
cated by setting the parameter study to a list of GO term IDs;

	 7.	the list of method(s) to be used to assess significance, indicated 
by setting the parameter methods to a list containing one or 
several of these elements:
(a)	 "bonferroni": Fisher’s exact test with Bonferroni cor-

rection for multiple testing;
(b)	"sidak": Fisher’s exact test with Šidák correction for mul-

tiple testing;
(c)	 "holm": Fisher’s exact test with Holm–Bonferroni correc-

tion for multiple testing;
(d)	"fdr": Fisher’s exact test, controlling the false discovery 

rate (see Chap. 13 [8]).

The function returns the list of over-represented and under-
represented GO terms in the population set, compared to the 
background set.

5  �Computing Basic Semantic Similarities Between GO Terms

In this section, the focus is on computing semantic similarity 
between GO terms, based on ideas presented in detail in Chap. 12 
[4]. Semantic similarity measures enable us to quantify the func-
tional similarity of genes annotated with GO terms.

Recall that semantic similarity measures are broadly separated 
in two categories: graph-based and information-theoretic measures. 
The former relies only on the structure of the Gene Ontology 
graph, whilst the latter also accounts for the information content 
of the terms.

One graph-based measure of semantic similarity, presented in 
Chap. 12 [4], is the inverse of the number of edges separating two 

Exercise 4.1
Perform an enrichment analysis using the list of genes with the “growth” 
keyword from exercise 3.1.c. Use the Arabidopsis thaliana annotation 
set as background, also from exercise 3.1, and the GO structure from 
exercise 2.1.

(a)	 Which GO term is most significantly enriched or depleted? Does 
this make sense?

(b)	 How many terms are enriched, when using the Bonferroni cor-
rected p-value ≤ 0.01?

(c)	 How many terms are enriched, when using the false discovery rate 
(a.k.a. q-value) ≤ 0.01?

A Gene Ontology Tutorial in Python

http://dx.doi.org/10.1007/978-1-4939-3743-1_13
http://dx.doi.org/10.1007/978-1-4939-3743-1_12
http://dx.doi.org/10.1007/978-1-4939-3743-1_12


228

terms. It is possible to compute the minimum number of edges 
separating two terms (t1, t2) by first finding the deepest common 
ancestor (tDCA). Then the difference in depth between each term 
and the deepest common ancestor can be used to calculate the 
minimum distance between the terms. i.e.,

	 min_ ,distance depth depth depth DCAt t t t t1 2 1 2 2( ) = ( ) + ( ) − × ( ) 	

Further, one example of an information-theoretic measure (see 
Chap. 12 [4]) is Resnik’s similarity measure—the information con-
tent of the most informative common ancestor of the two terms in 
question. The information content of a term is defined as the nega-
tive logarithm of its probability, which can be estimated from the 
frequency of the term in the annotation database of choice.

Acknowledgements

We thank Adrian Altenhoff, Debra Klopfenstein, and Haibao Tang 
for helpful feedback on the tutorial. CD acknowledges Swiss 
National Science Foundation grant 150654 and UK BBSRC grant 
BB/M015009/1. Open Access charges were funded by the 
University College London Library, the Swiss Institute of 
Bioinformatics, the Agassiz Foundation, and the Foundation for 
the University of Lausanne.

Open Access  This chapter is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits use, dupli
cation, adaptation, distribution and reproduction in any medium 
or format, as long as you give appropriate credit to the original 
author(s) and the source, a link is provided to the Creative 
Commons license and any changes made are indicated.

Exercise 5.1

(a)	 GO:0048364 (root development) and GO:0044707 (single-
multicellular organism process) are two GO terms taken from Fig. 1. 
Calculate the semantic similarity between them based on the inverse 
of the semantic distance (number of branches separating them).

(b)	 Calculate the information content (IC) of the GO term 
GO:0048364 (root development), based on the frequency of 
observation in Arabidopsis thaliana.

(c)	 Calculate the Resnik similarity measure between the same two 
terms as in part a.

Alex Warwick Vesztrocy and Christophe Dessimoz

http://dx.doi.org/10.1007/978-1-4939-3743-1_12
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


229

The images or other third party material in this chapter are 
included in the work’s Creative Commons license, unless indicated 
otherwise in the credit line; if such material is not included in the 
work’s Creative Commons license and the respective action is not 
permitted by statutory regulation, users will need to obtain per-
mission from the license holder to duplicate, adapt or reproduce 
the material.

References

1.	Gaudet P, Škunca N, Hu JC, Dessimoz C (2016) 
Primer on the gene ontology. In: Dessimoz C, 
Škunca N (eds) The gene ontology handbook. 
Methods in molecular biology, vol 1446. Humana 
Press. Chapter 3

2.	Tang H, Klopfenstein D, Pedersen B et  al 
(2015) GOATOOLS: tools for gene ontology, 
Zenodo

3.	Munoz-Torres M, Carbon S (2016) Get GO! 
retrieving GO data using AmiGO, QuickGO, 
API, files, and tools. In: Dessimoz C, Škunca N 
(eds) The gene ontology handbook. Methods in 
molecular biology, vol 1446. Humana Press. 
Chapter 11

4.	Pesquita C (2016) Semantic similarity in the 
gene ontology. In: Dessimoz C, Škunca N (eds) 
The gene ontology handbook. Methods in 

molecular biology, vol 1446. Humana Press. 
Chapter 12

5.	Binns D, Dimmer E, Huntley R et  al (2009) 
QuickGO: a web-based tool for Gene Ontology 
searching. Bioinformatics 25:3045–3046

6.	Cock PJA, Antao T, Chang JT et  al (2009) 
Biopython: freely available Python tools for 
computational molecular biology and bioinfor-
matics. Bioinformatics 25:1422–1423

7.	Huntley RP, Sawford T, Mutowo-Meullenet P 
et al (2015) The GOA database: gene Ontology 
annotation updates for 2015. Nucleic Acids Res 
43:D1057–63

8.	Bauer S (2016) Gene-category analysis. In: 
Dessimoz C, Škunca N (eds) The gene ontology 
handbook. Methods in molecular biology, vol 
1446. Humana Press. Chapter 13

A Gene Ontology Tutorial in Python


	Chapter 16: A Gene Ontology Tutorial in Python
	1 Introduction
	2 Querying the Gene Ontology
	3 Retrieving GO Annotations
	4 GO Enrichment or Depletion Analysis
	5 Computing Basic Semantic Similarities Between GO Terms
	References


