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Abstract 

Quality assurance is a vital part of modern radiation therapy. This thesis deals with the 

development of a detector system for the quality assurance (QA) of modern external 

beam radiation therapy. The system consists of a plastic scintillator, a commercial 

camera and a computer. 

Different available organic scintillators were initially evaluated to select the most 

suitable scintillator for our design. Subsequently, many optical artefacts in our 

prototype design were evaluated and possible correction methods were presented to 

reduce the impact of the optical artefacts. The basic characteristics of the system (e.g. 

the reproducibility and response to changes of dose) were assessed in a series of low 

energy x-rays and high energy proton irradiations. Photographs of the scintillation light 

distributions were acquired using the detector system for low and high energy photons, 

electrons and protons and compared with the depth-dose curves measured with an 

ionisation chamber. During proton irradiation, there was a reduction in the light 

intensity in the Bragg peak region because the protons‘ high linear energy transfer 

(LET) leads to quenching where less light is produced than expected. We developed an 

approach which used Birks equation to correct for the quenching using the Monte Carlo 

code, Geant4. LET was modelled in Geant4 and was combined with the measured 

scintillation light to calculate Birks‘ constant. We then used the derived value of Birks 

constant to correct the measured scintillation light distribution for quenching using 

Geant4.  
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The results show that the light output increased linearly with the x-rays and proton 

dose with a correlation coefficient greater than 0.99. The system is stable and provides 

reproducible results to within 1% in all type of radiation. Good agreements were 

obtained between the scintillation and the ionisation chamber depth dose curves for 

both photon and electron beams if depth-scaling factor was considered for the depth 

dose for electrons. However, energy dependence was seen with low energy x-rays due 

to the mechanism of interaction at these energies depending on the material‘s mean 

atomic number. For protons, no energy and dose rate dependencies were observed for 

the dose rates and energies used in this work. The results show that Geant4 simulation 

offered an effective way to correct for quenching for any desired energy. The quenched 

simulated scintillation results are in good agreement with the measured scintillation 

results and with the variation in the position of the Bragg peak is less than 0.7%.  

The results show that the system has the advantage of providing 2D visualisation of 

individual radiation fields and responded linearly to dose for low energy x-ray beam 

(50-100 kV) but suffers from energy dependency. The detector system provides 

acceptable depth dose curves for high energy photons and electron beams but could be 

enhanced if the optical artefact is corrected for. In addition, we developed an effective 

way to correct for quenching during proton irradiation. The technique provides a 

convenient method for rapid, convenient, routine quality assurance for clinical proton 

beams. 



Table of contents 

 

6 

 

CONTENTS 

ACKNOWLEDGMENTS ............................................................................................... 3 

ABSTRACT ...................................................................................................................... 4 

LIST OF FIGURES ....................................................................................................... 10 

LIST OF TABLES ......................................................................................................... 16 

1. INTRODUCTION AND LITERATURE REVIEW ............................................ 17 

1.1 INTRODUCTION ....................................................................................................... 18 

1.2 RADIATION THERAPY .............................................................................................. 19 

1.2.1 RADIOTHERAPY ..................................................................................................... 19 

1.2.2 PROTON THERAPY.................................................................................................. 20 

1.2.3 THE BIOLOGICAL EFFECT OF DIFFERENT IONISING RADIATION ............................... 22 

1.3 RADIATION INTERACTION WITH MATTER .............................................................. 24 

1.3.1 PHOTONS ............................................................................................................... 25 

1.3.2 ELECTRONS .......................................................................................................... 28 

1.3.3 PROTONS ............................................................................................................... 30 

1.4 QUALITY ASSURANCE AND DOSIMETRY IN RADIATION THERAPY.......................... 31 

1.4.1 DOSIMETER REQUIREMENTS IN RADIATION THERAPY ........................................ 32 

1.4.2 CURRENT PRACTICE IN THE DOSIMETRY OF RADIATION THERAPY ..................... 33 

1.4.3 THE DEPTH-DOSE DISTRIBUTION AND OFF-AXIS DOSE PROFILE ......................... 35 

1.4.4 CURRENT APPROACHES FOR RADIATION DOSIMETRY ......................................... 37 

1.5 THE THEORY OF SCINTILLATION ............................................................................ 43 

1.5.1 SCINTILLATION MATERIAL..................................................................................... 43 

1.5.2 MECHANISM OF THE ORGANIC SCINTILLATOR ....................................................... 44 

1.5.3 IONISATION QUENCHING EFFECTS IN THE SCINTILLATION PROCESSES .................... 46 

1.6 THE DEVELOPMENT OF THE DETECTOR SYSTEM IN RADIATION THERAPY ........... 49 

1.6.1 EXPERIMENTS EMPLOYING PLASTIC SCINTILLATING FIBRES .................................. 49 

1.6.2 EXPERIMENTS EMPLOYING PLASTIC SCINTILLATORS ............................................. 50 

1.6.3 EXPERIMENTS EMPLOYING LIQUID SCINTILLATORS ............................................... 52 

1.6.4 SCINTILLATORS IN PROTON THERAPY .................................................................... 53 

1.7 THESIS OBJECTIVE .................................................................................................. 55 

1.8 MAJOR RESULTS AND NOVELTY ............................................................................. 56 



Table of contents 

 

7 

 

2. OPTIMAL DESIGN OF A PHOTOGRAPHIC SCINTILLATION 

DETECTOR SYSTEM .................................................................................................. 59 

2.1 INTRODUCTION ....................................................................................................... 60 

2.2 CAMERA SELECTION AND CHARACTERISATION ..................................................... 62 

2.2.1 CAMERA LINEARITY .............................................................................................. 64 

2.3 SELECTION OF THE SCINTILLATOR FOR THE DETECTOR SYSTEM ......................... 65 

2.3.1 INTRODUCTION ...................................................................................................... 65 

2.3.2 SELECTION OF THE PLASTIC AND LIQUID SCINTILLATORS ...................................... 66 

2.3.3 LIQUID SCINTILLATOR VERSUS PLASTIC SCINTILLATOR ......................................... 71 

2.3.4 RESULTS ................................................................................................................ 72 

2.3.5 DISCUSSION ........................................................................................................... 76 

2.4 EVALUATION OF THE OPTICAL ARTEFACTS IN THE CAMERA-SCINTILLATOR 

DETECTOR SYSTEM .......................................................................................................... 77 

2.4.1 INTRODUCTION ...................................................................................................... 77 

2.4.2 DESIGN PRINCIPLE ................................................................................................. 78 

2.4.3 ARTEFACT CHARACTERISATIONS AND CORRECTION METHODS .............................. 79 

2.4.4 RESULTS ................................................................................................................ 92 

2.4.5 OPTICAL ARTEFACTS DISCUSSION ........................................................................ 102 

2.5 PROTOCOL OF USE OF THE DETECTOR SYSTEM ................................................... 103 

2.5.1 PHOTODETECTOR SETUP AND MEASUREMENTS .................................................... 103 

2.5.2 IMAGE ANALYSIS ................................................................................................. 105 

2.6 CONCLUSION ......................................................................................................... 107 

3. SCINTILLATION DETECTOR SYSTEM FOR LOW ENERGY 

RADIOTHERAPY ....................................................................................................... 109 

3.1 INTRODUCTION ..................................................................................................... 110 

3.2 MATERIALS AND METHODS .................................................................................. 113 

3.2.1 THE DETECTOR SYSTEM SETUP ............................................................................ 113 

3.2.2 BACKGROUND NOISE ........................................................................................... 116 

3.2.3 SYSTEM CHARACTERISATION .............................................................................. 118 

3.2.3.1 SHORT-TERM REPRODUCIBILITY AND REPEATABILITY ......................................... 118 

3.2.3.2 LINEARITY ........................................................................................................... 119 

3.2.3.3 COMPARISON OF MEASUREMENTS WITH IONISATION CHAMBER ........................... 119 

3.2.4 MONTE CARLO SIMULATIONS .............................................................................. 120 

3.3 RESULTS ................................................................................................................ 122 

3.3.1 SHORT-TERM REPRODUCIBILITY AND REPEATABILITY ......................................... 122 

3.3.2 LINEARITY ........................................................................................................... 123 

3.3.3 PDD MEASUREMENTS ......................................................................................... 124 



Table of contents 

 

8 

 

3.3.4 MONTE CARLO VALIDATION ............................................................................... 125 

3.4 DISCUSSION ........................................................................................................... 128 

3.5 CONCLUSION ......................................................................................................... 130 

4. SCINTILLATION DETECTOR SYSTEM FOR HIGH ENERGY 

RADIOTHERAPY ....................................................................................................... 132 

4.1 INTRODUCTION ..................................................................................................... 133 

4.2 MATERIALS AND METHODS.................................................................................. 135 

4.2.1 THE DETECTOR SYSTEM SETUP ............................................................................ 135 

4.2.2 TESTING THE WATER EQUIVALENCY OF BC-408 SCINTILLATOR FOR PHOTONS AND 

ELECTRONS ..................................................................................................................... 138 

4.2.3 MEASUREMENT OF SHORT-TERM REPRODUCIBILITY AND REPEATABILITY ........... 141 

4.2.4 THE CENTRAL PDD CURVES FOR PHOTONS AND ELECTRONS ............................... 142 

4.2.5 OFF-AXIS DOSE PROFILE ...................................................................................... 146 

4.3 RESULTS ................................................................................................................ 147 

4.3.1 BACKGROUND SIGNAL CONTRIBUTION ................................................................ 147 

4.3.2 SHORT-TERM REPRODUCIBILITY AND REPEATABILITY ......................................... 149 

4.3.3 THE CENTRAL PDD CURVES FOR PHOTONS AND ELECTRONS ............................... 149 

4.3.4 OFF-AXIS DOSE PROFILE ...................................................................................... 154 

4.4 DISCUSSION ........................................................................................................... 159 

4.4.1 MEASUREMENTS OBSERVATION .......................................................................... 159 

4.4.2 SOURCE OF ERRORS ............................................................................................. 161 

4.5 CONCLUSION ......................................................................................................... 164 

5. SCINTILLATION DETECTOR SYSTEM FOR PROTON THERAPY ........ 166 

5.1 INTRODUCTION ..................................................................................................... 167 

5.2 MATERIALS AND METHODS .................................................................................. 168 

5.2.1 PROTON THERAPY CYCLOTRON ........................................................................... 168 

5.2.2 DETECTOR SYSTEM SET UP .................................................................................. 169 

5.2.3 DARK IMAGE MEASUREMENTS ............................................................................. 170 

5.2.4 DETECTOR SYSTEM CHARACTERISATION ............................................................. 170 

5.2.5 VALIDATION ........................................................................................................ 172 

5.3 RESULTS ................................................................................................................ 173 

5.3.1 BACKGROUND IMAGES ........................................................................................ 173 

5.3.2 BRAGG PEAK MEASUREMENTS ............................................................................. 175 

5.3.3 SHORT-TERM REPRODUCIBILITY .......................................................................... 175 

5.3.4 DOSE LINEARITY ................................................................................................. 176 

5.3.5 SCINTILLATION LIGHT WITH DIFFERENT DOSE RATE ............................................ 178 



Table of contents 

 

9 

 

5.3.6 SCINTILLATION LIGHT WITH DIFFERENT ENERGY ................................................. 178 

5.3.7 MEASUREMENT VALIDATION ............................................................................... 179 

5.4 DISCUSSION ........................................................................................................... 180 

5.5 CONCLUSION ......................................................................................................... 182 

6. ANALYSIS AND CORRECTION OF QUENCHING IN A PROTON BEAM

 184 

6.1 INTRODUCTION ..................................................................................................... 185 

6.2 QUENCHING CORRECTION .................................................................................... 187 

6.2.1 METHODS ............................................................................................................ 187 

6.2.2 RESULTS .............................................................................................................. 193 

6.2.2.1 DETERMINATION OF BIRKS CONSTANT ................................................................ 193 

6.2.2.2 QUENCHING CORRECTION .................................................................................... 194 

6.3 SYSTEM VALIDATION ............................................................................................ 196 

6.3.1 METHOD .............................................................................................................. 197 

6.3.2 RESULTS .............................................................................................................. 197 

6.4 DISCUSSION ........................................................................................................... 201 

6.5 CONCLUSION ......................................................................................................... 202 

7. OVERALL CONCLUSIONS ............................................................................... 204 

7.1 ACCOMPLISHED WORK ......................................................................................... 205 

7.2 POTENTIAL QA APPLICATIONS OF THE SCINTILLATOR DETECTOR SYSTEM ...... 208 

7.3 FUTURE DIRECTION .............................................................................................. 209 

APPENDICES .............................................................................................................. 214 

APPENDIX A: CAMERA CONTROL PRO SOFTWARE ...................................................... 214 

APPENDIX B: RADIATION IMPACT ON THE CAMERA .................................................... 216 

APPENDIX C: CORRECTION FOR THE MAGNIFICATION AND REFRACTION ARTEFACTS IN 

THE 60 MEV PROTON BEAM .......................................................................................... 217 

APPENDIX D: DEFINITION OF THE BC-408 SCINTILLATOR IN GEANT4 ....................... 218 

BIBLIOGRAPHY ........................................................................................................ 220 



Figures 

 

10 

 

 

List of Figures 

Figure 1: Schematic drawing of components in the head of the linac and the MLC 

collimator image of Varian linacs [8] .............................................................................. 20 

Figure 2: The depth-dose distribution for 60 MeV proton beam measured by ionisation 

chamber in water at the Clatterbridge proton therapy facility ......................................... 21 

Figure 3: The relationship between LET and RBE [20] .................................................. 24 

Figure 4: The impact of E and Z on the occurrence of the photoelectric effect, Compton 

effect and pair production [3]. .......................................................................................... 27 

Figure 5: The mechanisms of electron interactions a) ionisation b) excitation c) 

Bremsstrahlung photon production d) characteristic x-photon production...................... 29 

Figure 6: The measured or simulated depth dose distributions for photons, electrons and 

protons (and practical range (Rp) in protons) in water obtained in this thesis ................. 36 

Figure 9: Schematic description of the bond benzene molecule. The scintillation 

mechanism happens in the dashed lines indicating the delocalised π-electrons between 

the carbon atoms .............................................................................................................. 44 

Figure 10: Electron energy levels of an organic molecule possessing a π-electron ........ 45 

Figure 11: The scintillation light response of a liquid scintillator (expressed in equivalent 

electron energy deposition) to different energies of proton beam [3]. ............................. 48 

Figure 12: 3 mm long cylindrical scintillating fibres inserted vertically into a plastic 

water slab and perpendicular to the detection plane [33]. ................................................ 50 

Figure 13: The scintillation sheet detector [79] ............................................................... 51 

Figure 14: The IMRT dose verification system a) The phantom outer box with camera b) 

the inner mirror at 45° to the scintillator sheet [45]. ........................................................ 52 

Figure 15: The LSD system (the z-direction goes from the gantry towards the tank) [42]

 .......................................................................................................................................... 53 

Figure 16: Scintillation image by which the data for depth-dose and off-axis profile 

measurements can be extracted, obtained by a BC-408 scintillator for a 60 MeV proton 

beam used in this thesis at the Clatterbridge Cancer Centre. ........................................... 54 

Figure 17: Linearity of light intensity as a function of current measured by the camera. 

Error bars demonstrate the standard deviation and some of the error bars are smaller than 

the point size at certain points. ......................................................................................... 64 

Figure 18: The setup of the detector system based on the liquid scintillator or plastic 

scintillator. ........................................................................................................................ 72 



Figures 

 

11 

 

Figure 19: The light profiles obtained by a) liquid scintillator in PMMA container; b) 

liquid scintillator in glass container; c) plastic scintillator .............................................. 73 

Figure 20: A horizontal radiation beam passes through the wall of the contained and then 

interact with the liquid scintillator. .................................................................................. 74 

Figure 21: Interface issue – the PMMA container wall was found to be scintillating 

when left empty. ............................................................................................................... 76 

Figure 22: The detector system components .................................................................... 79 

Figure 23: Demonstration of the vignetting correction for the entire camera image. ...... 81 

Figure 24: The comparison of off-axis dose profile obtained by the detector system and 

the ionisation chamber for 15 MeV electron beam. A variation between the two profiles 

appears at the low dose region (black circles). ................................................................ 82 

Figure 25: Schematic flow process of a Geant4 simulation. ............................................ 83 

Figure 26: The geometry used in the simulation to predict the optical behaviour of the 

scintillator. ........................................................................................................................ 84 

Figure 27: Demonstration of the geometrical magnification for the experiment geometry 

used in this work. The camera would detect the integrated scintillation light along the 

line of sight by which the light near the camera contributes a higher intensity and covers 

a wider field of view than light generated from behind the midline. ............................... 87 

Figure 28: The refraction of light traveling from the scintillator into air bending away 

from the normal at the flat interface ................................................................................. 90 

Figure 29: Demonstration of the refraction experiment setup showing the camera and the 

PMMA container. ............................................................................................................. 91 

Figure 30: The scintillation compared to the Cerenkov light for 10 × 10 cm
2
/6 MeV 

electron beam ................................................................................................................... 93 

Figure 31: The resulting image of the sum of images of all planes with 100 steps across 

the 10 × 10 cm
2 

field
 
size after applying the geometry and the intensity changes 

assuming the distance left between the camera and the scintillator is 10 cm (top) and 

comparison of the profile of the central plane or axis and the profile of the sum of all 

plane (bottom). The results are normilised to the maximum values of each data sets. .... 95 

Figure 32: The resulting image of the sum of all planes with 100 steps across the 

10 × 10 cm
2 

field
 
size after applying the geometry and the intensity changes assuming 

the distance left between the camera and the scintillator is 92 cm (top) and comparison 

of the profile of the central plane or axis and the profile of the sum of all plane (bottom).

 .......................................................................................................................................... 96 

Figure 33: The resulting image of the sum of all planes with 30 steps across the 

3 × 3 cm
2 

field
 
size after applying the geometry and the intensity changes when the 

distance left between the camera and the scintillator is 92 cm (top) and comparison of 

the profile of the central plane or axis and the profile of the sum of all plane (bottom). 97 

Figure 34: Magnification effects in off-axis profile of the ionisation chamber for a 10 × 

10 cm
2
 field size when r is 92 cm. For illustrative purposes, three profiles are shown in 

the top figure (a). .............................................................................................................. 98 



Figures 

 

12 

 

Figure 35: Magnification effects in off-axis profile of the ionisation chamber for a 3 × 3 

cm
2
 field size when r is 92 cm. ........................................................................................ 99 

Figure 36: Demonstration of the impact of the absorption in the measured scintillation 

light in Geant4. The simulation used 10
7 

electrons. ....................................................... 100 

Figure 37: The resulting image of the two overlaid images of the ruler when the 

container was empty and filled was enlarged at the 1 cm point of the ruler. The distance 

between the phantom and the camera was 23 cm. ......................................................... 101 

Figure 38: The distance to pixel calibration image ........................................................ 104 

Figure 39: Demonstration of two widths of the ROIs selected for a 60 MeV proton 

image to extract the scintillation light depth distributions ............................................. 106 

Figure 40: The scintillation light depth distributions of the two widths of the ROI and the 

difference between the distributions .............................................................................. 106 

Figure 41: Approximate sketch diagram showing the spectrum of kilovoltage x-rays 

(100kVp) acquired using the x-rays ............................................................................... 110 

Figure 42: a) The effect of increasing the current b) The effect of increasing the applied 

voltage. ........................................................................................................................... 111 

Figure 43: Schematic of the setup used in this experiment ............................................ 114 

Figure 44: Main window of SpekCalc ........................................................................... 115 

Figure 45: The impact of subtracting the background signal in the measured depth dose 

distribution. Error bars demonstrate the standard deviation of three repeated 

measurements. ................................................................................................................ 118 

Figure 46: The scintillation light as a function of x-ray tube current for different applied 

voltages. Error bars demonstrate the standard deviation of three repeated measurements

 ........................................................................................................................................ 123 

Figure 47: Comparison of measured scintillation light distribution and PDD curves by 

ionisation chamber for 50 kVp beam. Error bars demonstrate the standard deviation of 

three repeated measurements. ........................................................................................ 124 

Figure 48: The simulated PDD curves for water, PMMA and BC-408 scintillator at the 

same irradiation parameters (50kVp) ............................................................................. 125 

Figure 49: The simulated PDD curves for the BC-408 scintillator and liquid water for 

different applied voltages ............................................................................................... 127 

Figure 50: The percentage maximum difference between the depth-dose distributions 

deposited in water and scintillator for different applied voltages Error bars demonstrate 

the combined statistical deviation of the simulation results........................................... 128 

Figure 51: The Linac and the reference water tank used in this experiment ................. 136 

Figure 52: The scintillator setup in the case of a) photons and b) electrons .................. 137 

Figure 53: a) SDD adjustment b) pixel to distance calibration ...................................... 137 

Figure 54: Comparison of simulated PDD curves obtained in water and BC-408 

scintillator, for a 15 MV photon beam. Error bars demonstrate the statistical deviation of 

the simulation results and some of error bars appears smaller than the point size at 

certain points of the curve. ............................................................................................. 139 



Figures 

 

13 

 

Figure 55: Comparison of PDD curves obtained in water and BC-408 scintillator for 6, 

12 and 15 MeV electron beams with 10 × 10 cm
2
 field size. Error bars demonstrate the 

statistical deviation of the simulation results. ................................................................ 140 

Figure 56: Comparison of PDD curves obtained in water and corrected scintillation 

obtained in BC-408 scintillator for 6, 12 and 15 MeV electron beam with 10 × 10 cm
2
 

field size. ........................................................................................................................ 141 

Figure 57: Demonstration of two scintillation images for 15 MV photon beam for two 

field sizes ........................................................................................................................ 143 

Figure 58: Regions of validity of the criteria, showing (1) the depth dose directly 

measured by the camera (solid blue line); and (2) the measured ionisation chamber depth 

dose (red dashes). ........................................................................................................... 144 

Figure 59: The characterisation of the PDD curve for an electron beam in ICRU (1984). 

The blue continuous line is measured from the camera-scintillator detector system and 

the dashed line is measured with an ionisation chamber in water. ................................ 145 

Figure 60: Scintillation images for four energies of an electron beam. ......................... 146 

Figure 61: Profiles comparison, showing (1) the depth dose directly measured by the 

camera (solid blue line); and (2) the measured ionisation chamber depth dose (red 

dashes) ............................................................................................................................ 147 

Figure 62: Comparison of the raw image and analysed image for photon beam and effect 

of background signal in the analysed image compared to the raw image. ..................... 148 

Figure 63: Comparison of the raw image and analysed image for electron beam and 

effect of background signal in the analysed image compared to the raw image. ........... 149 

Figure 64: Comparison between the PDD values, of a 10×10 cm
2 

field, obtained by: the 

scintillation detector system (continuous line) and the ionisation chamber as a function 

of the depth in water (dashed line) for the 6 MV and 15 MV photon beams. Error bars 

demonstrate the standard deviation of three repeated scintillation measurements of 

photon beams and some of error bars appears smaller than the point size at certain points 

on the curves. ................................................................................................................. 151 

Figure 65: Comparison of depth dose profile between ionisation chamber measurement 

and scintillation measurements, for a 6, 10, 12 and 15 MeV electron beams. Error bars 

demonstrate the standard deviation of three repeated scintillation measurements of 

electron beams and some of error bars appears smaller than the point size at certain 

points along the curves. .................................................................................................. 153 

Figure 66: Comparison of normalised cross profiles obtained by the scintillator detector 

and the ionisation chamber for 3× 3 cm
2 

and 10 × 10 cm
2
 and 6 MV and 15 MV photon 

beam at 5 cm depth . Error bars demonstrate the standard deviation of three repeated 

scintillation measurements of photon beams and some error bars appear smaller than the 

point sizes at certain points on the curves. ..................................................................... 156 

Figure 67: Comparison of normalised cross-beam profile at depth of maximum dose 

between ionisation chamber measurements and scintillation measurements, for a 6, 10, 

12 and 15 MeV electron beams. The field size was 10 × 10 cm
2
. Error bars demonstrate 



Figures 

 

14 

 

the standard deviation of three repeated scintillation measurements of electron beams 

and some error bars appear smaller than the point size at certain points along the curves.

 ........................................................................................................................................ 158 

Figure 68: Scintillation image obtained in the scintillator for 6 MV photon beams and 

the glow in the area surrounding the edges of the radiation showing light (or dose) not 

being detected by the ionisation chamber Scintillation light images. ............................ 162 

Figure 69: 1D plot of the blurring function of the CCD chip [83] ................................. 163 

Figure 70: The experimental setup. The camera was positioned at 50 ± 0.5 cm 

perpendicular to the proton beam. .................................................................................. 169 

Figure 71: The SOBP modulator wheel ......................................................................... 171 

Figure 72: The PMMA sheets placed in the way of the proton beam to obtain different 

energies .......................................................................................................................... 172 

Figure 73: Background signals in three different situations .......................................... 174 

Figure 74: Comparison between the raw and corrected image ...................................... 174 

Figure 75: Measurements of dose distributions produced by a 60 MeV proton beam. . 175 

Figure 76: Scintillation light depth distributions of seven repeated measurements to 

deliver 4.5 Gy in top graph and the difference between the measurements to the mean in 

the bottom graph. ........................................................................................................... 176 

Figure 77: The impact of the radiation dose on the scintillation light on PBP and SOBP 

irradiations. Error bars demonstrate the standard deviation of three repeated scintillation 

measurements and some error bars appear smaller than the point size at certain points.

 ........................................................................................................................................ 177 

Figure 78: The scintillation light after delivering 5MU at different dose-rates ............. 178 

Figure 79: The impact of the beam energy on the scintillation light. The images 

represent each curve in the figure and protons came from the left. ............................... 179 

Figure 80: Scintillation light profile measured with the camera-scintillation detector 

system along the depth of the beam and compared to ion chamber depth dose curve 

measurements. ................................................................................................................ 180 

Figure 81: LET values simulated by Geant4, depth dose profile simulated in Geant4, and 

the measured scintillation light distribution as a function of depth for a 60 MeV proton 

beam in a BC-408 scintillator ........................................................................................ 188 

Figure 82: The depth- dose simulated in water and BC-408 scintillator. ...................... 190 

Figure 83: Validation of the simulated scintillation light with ionisation chamber 

measurements. ................................................................................................................ 191 

Figure 84: simulation and measurements validation of the transverse profile of 2.5 cm
2 

proton beam. ................................................................................................................... 191 

Figure 85: The summary of the quenching correction procedure .................................. 192 

Figure 86: The measured scintillation light vs simulated LET for the 60 MeV proton 

beam. .............................................................................................................................. 194 

Figure 87: Percentage depth dose curves at 38.94, 46.77, 53.86 and 60.00 MeV, showing 

(1) the simulated depth dose (blue crosses); (2) the depth dose directly measured by the 



Figures 

 

15 

 

camera (solid black line); (3) the simulated quenched light output (blue bars); and (4) the 

measured light output after correction for quenching (red dashes)................................ 195 

Figure 88: The simulated ideal and quenched scintillation depth distribution using 

Geant4, the measured scintillation depth distribution, the ionisation chamber depth-dose 

and the corrected scintillation depth distribution of the SOBP beams used at the 

Clatterbridge Cancer Centre. .......................................................................................... 196 

Figure 89: Linearity of the scintillation detector system as a function of dose for a 

60 MeV proton beam. .................................................................................................... 198 

Figure 90: The response of the scintillation detector system after delivering 4.5 Gy at 

different dose-rates for a 60 MeV proton beam. Vertical bars on the right hand graph 

give the measurements error of three repeated scintillation measurements. .................. 199 

Figure 91: The response of the scintillation detector system with the proton energies 

used in this study. ........................................................................................................... 200 

Figure 92: Comparison between the range measured by the scintillation detector system 

and the tabulated range by ICRU in plastic scintillator of different proton beams. ....... 200 

Figure 93: Telecentric lens arrangement [184] .............................................................. 210 

Figure 95: The dual-camera detector system design ...................................................... 212 

Figure 96: Experimental setup of the proposed optical dosimetry system .................... 213 

Figure 97: Camera Control Pro2 software ..................................................................... 215 

Figure 98: Measured scintillation data after correction for magnification was applied, 

compared with simulated scintillation distribution and actual measurement. ............... 217 



Tables 

 

16 

 

 

List of Tables 

Table 1: The cross section of each mechanism varies with atomic number and photon 

energy [24] ....................................................................................................................... 28 

Table 2: Review of the above dosimeters evaluated in external photon therapy ............. 42 

Table 3: Properties of different scintillators [75], [76], [114], [115] ............................... 67 

Table 4: The range and stopping power of different materials ........................................ 75 

Table 5: Artefacts could be present in the scintillation detector system. Adopted from 

[117] ................................................................................................................................. 80 

Table 6: The properties of the BC-408 plastic scintillators [76] ...................................... 85 

Table 7: The magnitude of Cerenkov photons relative to the scintillation photons in the 

scintillator ......................................................................................................................... 92 

Table 8: The characteristics of the x-ray beams............................................................. 116 

Table 9: The fractional weight of component of the materials used in the simulation .. 121 

Table 10: The reproducibility of results of six images for three set of applied voltage 122 

Table 11: The requirements of the performance of a clinical QA system ..................... 130 

Table 12: The difference values between the ionisation chamber and the scintillation 

detector system, obtained at 90% and at 70 mm. ........................................................... 152 

Table 13: The electron beam characteristics for the ionisation chamber and the 

scintillation detector system ........................................................................................... 154 

Table 14: The difference values between the cross beam profiles obtained by ionisation 

chamber and profile obtained by the scintillation detector system, for different photon 

beam energies and field sizes ......................................................................................... 157 

Table 15: The difference values between the cross beam profiles obtained by ionisation 

chamber and profiles obtained by the scintillation detector system, for different electron 

beam energies ................................................................................................................. 159 

Table 16: The requirements of the performance of a clinical QA system ..................... 160 

Table 17: The requirements of the performance of a clinical QA system ..................... 181 



 

17 

 

 

 

 

 

 

 

 

 

 

CHAPTER 1   

1. INTRODUCTION AND LITERATURE REVIEW 



1. Introduction and Literature Review 

 

18 

 

 

1.1 Introduction  

Cancer is a threatening and potentially lethal disease affecting one in three people in 

the UK. The procedures used in efforts to treat cancer are surgery, chemotherapy, and 

radiation therapy [1]. A cancer patient may be assigned to all three treatments or just 

one of them, depending on the stage and how much the disease has spread in the 

individual‘s body. With the recent development and progression of many diagnostic 

modalities, including screening and imaging, more patients are expected to be eligible 

for loco-regional treatment including surgery and /or radiation therapy. This is due to 

the fact that the cancer tumour is now more likely to be diagnosed in an early stage. 

This also has an impact in utilising a better physical conformation of the dose to the 

tumour, resulting in higher cure rates and improved avoidance of the healthy tissues, 

thus enhancing patients‘ the quality of life [2]. In order to achieve the best possible 

results, radiation therapy dosimetry is necessary to determine the correct radiation dose 

for different radiation delivery machines and radiation delivery techniques with 

various equipment and techniques. The recent development of proton therapy delivery 

machines has encouraged many countries such as the UK and Saudi Arabia to look for 

other dosimeter systems, as not all dosimetric requirements can be fulfilled by a single 

dosimeter system [3]. In addition, there is ongoing research in radiation detecting 

materials and techniques to improve existing methods in dosimetry. One particular 

area of radiation therapy dosimetry, which is the concern of this thesis, is scintillation 

dosimetry. The work presented in this thesis explains the development and the 

characterisation of plastic scintillator for dosimetry in radiation therapy.  
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1.2  Radiation therapy  

The key purpose behind radiation treatment is to deposit sufficient radiation in the 

tumour to damage the cancer cells and minimise radiation to the surrounding tissues in 

order to avoid any serious complications resulting from treatment. Radiation can be 

delivered via several methods and can be external (i.e. radiotherapy or proton therapy), 

or internal (i.e. brachytherapy).  

 

1.2.1 Radiotherapy  

Radiotherapy has been used to treat cancer using many delivery techniques such as 

conventional radiation therapy using two-dimensional (2D) beams of electrons or 

photons. A linear accelerator (Linac) is widely used to deliver high energy beams in 

radiotherapy. A treatment plan is produced for each individual based on computed 

tomography (CT) images of the patient. Sometimes, if it is necessary to identify the 

position of the tumour more precisely, other diagnostic modalities could be used to 

provide additional ‗functional‘ information, such as positron emission tomography 

(PET) and magnetic resonance imaging (MRI) [4], [5].  

The gantry of the Linac as shown in Figure 1 has different collimators that allow 

modulation of the photon beam. Primary and secondary collimators shape the beam to 

create rectangular fields. Subsequently, the beam travels through the last collimator 

consisting of typically 120 individually controlled leaves, called the multi-leaf 

collimator (MLC), for full modulation of the shape of the treatment site during the 



1. Introduction and Literature Review 

 

20 

 

irradiation [6]. In addition, clinical research has led to the utilisation of more 

complicated radiation delivery techniques which have had a huge impact on reducing 

treatment time; examples of these techniques are intensity modulated radiation therapy 

(IMRT) and volumetric modulated arc therapy (VMAT) [7]. These techniques aim to 

deliver a dose distribution that conforms to the target volume, and minimise doses to 

surrounding normal tissues. Current developments of Linacs and the different 

techniques of treatment delivery enable improved dose conformity. 

 

 

Figure 1: Schematic drawing of components in the head of the linac and the MLC collimator 
image of Varian linacs [8] 

 

1.2.2 Proton therapy  

Proton beam therapy has become widely studied in recent years due to its high 

precision dose localisation performance compared to conventional radiotherapy. This is 

achieved by the Bragg peak effect, in which protons deposit most of their energy at the 

end of their path due to the resulting energy loss of the protons is inversely 
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proportional to the squared velocity of the protons [9]. Figure 2 demonstrates how the 

protons lose their energy as they penetrate the medium [10]. In the protons‘ depth-dose 

curve, a sharp dose peak is known as the Bragg peak. 

 

 

Figure 2: The depth-dose distribution for 60 MeV proton beam measured by ionisation chamber 
in water at the Clatterbridge proton therapy facility 

 

In radiation therapy, protons can improve the conformity and uniformity of dose 

delivery, whereas photons deposit their energy within absorbed material without 

causing direct chemical or biological damage. Instead, photons transfer their energy to 

secondary electrons that can cause chemical and biological damage [11], [12]. Therefore, 

protons are defined as direct ionising radiation whereas photons are defined as indirect 

ionising radiation [13].  
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The available techniques to deliver the proton beams are either passive scattering 

beams or spot scanning beams [14]. In the passive scattering delivery technique, a 

scatterer is placed in the path of the initial pencil proton beam to broaden the beam 

(more commonly double scatterers are used) and collimators are required to provide 

uniform dose profiles (i.e. single Bragg peaks). Range modulator wheels or thicknesses 

are also employed in the beamline to form a spread out Bragg peak (SOBP) to 

appropriately cover a target volume. In spot scanning beams, magnets are used to 

deflect and steer the pristine pencil proton beam to scan the narrow beam across the 

patient. Two methods are commonly used in scanning protons which can be either 

single field uniform dose (SFUD) to deliver a uniform dose distribution to the target or 

intensity modulated proton therapy (IMPT) to deliver multiple fields of variable energy 

and intensity [15]. 

 However, no internationally accepted standards are available for dosimetry of 

proton beams. Many dosimeters have been reported for the use of clinical proton 

dosimetry such as ionisation chambers and diodes [16], [17].  

 

1.2.3 The biological effect of different ionising radiation 

Different radiation types of the same energy can deposit different doses. The 

absorbed dose (D) in equation 1.1 is the most fundamental parameter in radiotherapy 

and gray (Gy) is the unit of absorbed dose (1 Gy= 6.24×1012 MeV/kg= 1 J/kg=100 rad). 

 
  

           

         
           

Eq 1.1 
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In radiobiology and radiation protection, two quantities should be considered when 

defining the quality of an ionising radiation beam and the damage the radiation caused. 

These quantities are relative biological effectiveness (RBE) and linear energy transfer 

(LET). The definition of LET is the linear rate of energy absorption by the medium 

when a charged particle passes through the medium [18]. 

 
    

                                  

                                                     
               

   

  
  

Eq 1.2 

 

 

Radiation of higher LET causes more biological damage. This means that higher LET 

results in a higher RBE. The RBE, describing the amount of dose from a test radiation 

source required to produces the same biological damage as a standard radiation source, 

is defined by the following ratio [19]:  

    
  

  
 

 Eq 1.3 

 

 

where    is an absorbed dose from standard radiation x which is usually 250 kV x-

ray and    is the dose from radiation type R that produces the same amount of 

biological damage. RBE differs depending on the type of radiation and type of tissue. 

Figure 3 shows the relationship between RBE and LET [20]. 
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Figure 3: The relationship between LET and RBE [20] 

 

1.3  Radiation interaction with matter 

For the purposes of this thesis, it is worth mentioning some of the basic and 

predominant physical processes that occur when photons, electrons, and protons 

penetrate matter and their resulting impacts for radiation therapy. The interaction of 

photons, electrons, and protons is different within tissue. For example, the energy loss 

is higher in small increments for an electron beam as it traverses tissue compared to a 

photon beam in radiotherapy.  

 



1. Introduction and Literature Review 

 

25 

 

1.3.1 Photons 

Attenuation of photons: an exponential law (Eq 1.4) called the Lambert-Beer law 

describes the attenuation of a photon beam intensity (I) passing through distance ( ) of 

a material. 

 
             

Eq 1.4 

 

with μ denominating a material-dependent attenuation coefficient and incident 

intensity (Io). Three main interactions lead to this behaviour: 

 

Photoelectric effect: The most dominant attenuation mechanism for incident photons 

with low energies occurring with inner shell electrons is the photoelectric effect. In this 

mechanism, the incident x-ray photon gives all its energy to one of the bound electrons 

which is then ejected from the atom as a photoelectron [21]. This allows measurement 

of the photon energy. The energy of the incident photon has to be greater or equal to 

the binding energy of the electron. The kinetic energy (Ee-) of the electron is represented 

as follows: 

 
Ee- = hν - Eb 

Eq 1.5 

 

 

where (hν) represents the photon energy and Eb is the binding energy of the electron in 

its shell [22]. 
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Compton scattering: When the incoming photon collides with an electron in the 

atom, an inelastic collision takes place in which the electron obtains energy and the 

scattered photon has energy less than that of the incoming photon. The energy of the 

incident photon must be large as compared to binding energy of the electron. The 

energy of the scattered photon hν΄ in terms of the scattering angle θ is given by the 

following equation [22], [23]:  

 

 
    

  

  (
  

     )         
 

Eq 1.6 

 

 

where hν is the initial energy of x-rays and moc2 is the rest mass energy of the electron 

(0.511 MeV). The kinetic energy Ee of the electron after collision is given by:  

 
          

Eq 1.7 

 

Pair production: The incident photon interacts with the Coulomb field of the nucleus 

of the absorbing material. This creates an electron-positron pair of the entire photon 

energy. This interaction requires high energy photons with energy greater than 

2moc2=1.02 MeV [23]. When the positron comes into rest, it combines with an electron to 

produce two 511 keV annihilation radiation photons. 

The dominance of each interaction depends on energy (E) and the atomic number (Z) 

of the medium as shown in Figure 4. The dominant interaction mechanism at low 

energies in water is the photoelectric effect, resulting in either a partial or complete 

transfer of energy from a photon to an electron. Table 1 illustrates the probability of 
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occurrence of each mechanism (i.e. the cross section) according to E and Z [24]. In a 

photon beam, a specific material can be described as tissue or water equivalent if the 

average fractional amount of incident photon E transferred to kinetic energy of charged 

particles is equivalent to that of water or tissue. This is highly dependent on Z and E of 

the incident beam [25], [26].  

 

Figure 4: The impact of E and Z on the occurrence of the photoelectric effect, Compton effect and 
pair production [3]. 
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Table 1: The cross section of each mechanism varies with atomic number and photon energy 

[24] 

Mechanism Cross section ( ) dependency Energy range in water 

Atomic number (Z) Energy (E) 

Photoelectric           1-30 keV 

Compton independent       30 keV – 20 MeV 

Pair production              above 20 MeV 

 

1.3.2 Electrons 

Coulomb electric fields surrounding atoms in the tissue interact with incoming 

electrons by four prevailing mechanisms, depending on the energy of the incident 

electrons as depicted in Figure 5. As an electron interacts with orbital electrons, some of 

the initial incident energy of the electron is dissipated by depositing some of its energy 

in the medium which causes either ionisation or excitation depending primarily on the 

atomic number of the interaction medium. As a result, the atom may be ionised and 

eject the orbital electron (Figure 5a) or excite an electron to a higher energy level as seen 

in Figure 5b, causing the excess energy to be emitted as light or heat when the atom 

returns to its stable state [27]. Alternatively, the incident electron shown in Figure 5c is 

suddenly deflected from its trajectory by the nuclear Coulomb field. Subsequently, 

electromagnetic radiation is emitted, called Bremsstrahlung or braking x-ray radiation. 

Another mechanism for electromagnetic radiation emission shown in Figure 5d occurs 

when the bombarding electrons have sufficient energy to eject an electron from the 



1. Introduction and Literature Review 

 

29 

 

inner shells of the atoms. An electron from a higher energy states then fills the vacancy 

in the lower atomic energy levels emitting characteristic x-ray photons [27]. For electron 

dosimetry, a specific material would be water equivalent if it matched the stopping 

power of water [26]. The energy loss of an electron beam in collisional interactions such 

as ionisation and excitation is proportional to the electron density (Z/A). It is 

proportional to the energy and Z2 in radiation losses interactions, as in Bremsstrahlung 

[27]. 

 

Figure 5: The mechanisms of electron interactions a) ionisation b) excitation c) Bremsstrahlung 
photon production d) characteristic x-photon production 
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1.3.3 Protons 

Mechanisms for proton energy loss and scattering will be briefly explained to 

understand the protons‘ dose distribution when the protons travel through a medium. 

As a proton travels through matter, it loses its energy continuously because of Coulomb 

collisions (i.e. collisions between protons and electrons or protons and nuclei 

interacting through their own electric field) that cause ionisation or excitation of the 

matter, causing multiple Coulomb scattering. The protons deposit energy in inverse 

proportion to the square of their velocity. When they enter the tissue, their energy is 

relatively high, so they deposit little energy. As they gradually slow, they increasingly 

deposit more energy and continue to slow, so that most of the energy of the proton is 

deposited at the end of its range.  

The stopping power or the mean energy loss by a charge particle per unit thickness (

dx

dE
 ) can be determined by using the Bethe-Bloch equation [28], [29]:  

 
 

Eq 1.8 

 

where C=4π×NA(Avogadro number=6.022×1023 mol−1)× re2 (electron radius= 2.8 fm)× 

me (electron mass= 511 keV)× c2 (speed of light)=0.307 MeVg-1 cm2, 
om  is the rest mass 

of the electron ,  is relative particle velocity, (ν/c), Emax is maximum energy 

transferred in a single collision, I indicates the excitation energy (eV), γ is Lorentz factor 

((1-β2)-2) and Z and A are the atomic number of the absorber and the atomic weight of 

the absorber respectively [30]. 
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The range of protons can be identified by integrating 
dx

dE
  from 0 to E: 

 
  ∫  (

  

  
)
  

   
 

 

 
Eq 1.9 

 

 

where E is the particle energy (MeV) and x is the path length (cm). However, not all 

protons that start with the same energy will have precisely the same range due to 

statistical fluctuations in the energy loss process [31], [32]. The mean range of the 

protons R in a medium can be defined as the depth in a medium after which one half of 

protons have stopped and R corresponds to the distance at which the dose decreased to 

80% of the maximum, beyond the Bragg peak [14]. 

 

1.4  Quality assurance and dosimetry in radiation therapy 

Quality assurance (QA) procedures aim to ensure that a treatment machine provides 

the desired level of accuracy by performing dose evaluation prior to treatment and 

comparing it to standard measurements. Optimisation is an essential element of 

advanced radiation therapy treatment techniques for achieving positive outcomes from 

quality treatment. In actual radiation therapy treatments, QA of the dose is necessary as 

many individual beams with variable intensities and energies are used to target the 

tumour. This is achieved by the latest generation of treatment machines which can offer 

significant reductions in treatment times, with many radiation beams delivered to the 

tumour site in each treatment course. As a result of these complex beam delivery 

techniques, a high precision QA is required to ensure that the planned treatment dose 
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distribution matches the delivered dose distribution to avoid any possible errors and 

uncertainties (e.g. machine output fluctuations) in the treatment process that could 

affect the patient's health. In other words, real-time dosimeters with high spatial 

resolution, sensitivity and accuracy are necessary in order to achieve good results from 

treatment [33].  

Dosimetry is the practice of measuring radiation doses resulting from ionising 

radiation and modelling the particle interactions within the tissue [34]. As previously 

mentioned, the interaction of photons with matter is indirect as they contribute to 

produce charged particles (e.g. electrons) and the electrons then do the ionisation along 

their tracks. However, charged particles produce the ionisation directly as well as via 

secondary particles. The mechanism of radiation interaction with matter differs 

depending on the type of radiation. Hence, different detectors are recommended for 

use depending on the application and the type of radiation. 

 

1.4.1 Dosimeter requirements in radiation therapy 

Two main tasks in dosimetry for external radiation therapy must be examined fully 

in order to acquire accurate knowledge of: 

 Beam characterisation to measure the absorbed dose to water at a point 

 Determination of dose in the patient 

 These tasks need a dosimeter which can accurately measure and characterise the 

incident radiation beam [35]. Although different dosimetry detectors are available, 

several issues should be considered when selecting a particular detector type and its 
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uses such as the energy range and radiation type. For example, external radiation 

therapy can be generally summarised as: 

 Kilovoltage therapy: x-rays range from 50 to 300 kV used in treating skin 

lesions up 2 cm depth such as Lentigo Maligna [36]. 

 Photon therapy: x-rays range from 4 MV to 25 MV (e.g. used for prostate 

cancer treatment [37]) 

 Electron therapy: electrons range from 6 MeV to 20 MeV (e.g. to treat 

pancreatic cancer intraoperatively [38]). 

 Proton therapy: protons range from 30 MeV to 200 MeV (e.g. to treat ocular 

melanomas cancer [9]). 

The specific requirements of a dosimeter should be assessed to study its feasibility. 

These include tissue equivalence at the energy range used, resolution, efficiency, count 

rate performance, response time, pressure and temperature independence, ease of use, 

and cost. An important feature of any detector is the linearity of dose response. In 

addition, the detector should be independent of the dose rate [39]. No single dosimeter 

can meet all these requirements. However, in practice, after selecting the most suitable 

dosimeter for a particular application, corrections can be applied to tackle the specific 

limitation of the dosimeter. 

 

1.4.2 Current practice in the dosimetry of radiation therapy 

Ideally, the absorbed dose would be measured directly by a radiation detector in 

radiation therapy. However, no single dosimeter fulfils the whole range of 
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requirements perfectly. Nowadays, most centres use different types of ionisation 

chambers for their reference dosimetry which are calibrated against an absolute 

dosimeter, which in turn is calibrated at a national standards laboratory. The aim of 

absolute dosimetry is to ensure consistency and reproducible results between different 

centres in a reference situation. The calibrated ionisation chamber can then measure the 

signals and convert them to the absorbed dose in the user‘s beam. In radiotherapy, 

relative dosimetry is accurately determined by the use of a calibrated ionisation 

chamber placed in a standardised water phantom. Then, the depth dose distributions 

are exported as inputs to the treatment plan system, and a computer algorithm can then 

estimate the depth dose distribution in each patient‘s treatment plan. The QA of the 

treatment plan of the actual dose (i.e. in vivo dosimetry) is performed to ensure that the 

treatment planning software calculates the predicted dose correctly. Therefore, QA is 

an essential procedure necessary to provide adequate confidence between the 

prescribed dose and the delivered dose as well as to avoid any systemic errors during 

defining the patient setup that may arise from any components of current radiation 

delivery machines, such as machine gantry or gantry stand or support [39]. 

In order to safely deliver a radiation dose to a patient, the performance characteristics 

of the specific machine delivering the radiation must be monitored. Many QA 

examinations (daily, weekly, monthly, annual) of the beam parameters should also be 

performed.  
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1.4.3 The depth-dose distribution and off-axis dose profile  

Measuring percentage depth dose (PDD) and lateral or off-axis profiles at different 

energies and different field sizes is important to validate the machine output and to 

provide data for the treatment planning system. Thus, PDD distribution is important in 

radiotherapy because it helps to determine the absorbed dose in the patient at a specific 

depth. It is widely obtained using an ionisation chamber or diodes placed in a standard 

water tank at various depths in external radiotherapy QA. The PDD distributions are 

normalised to the depth where 100% of the maximum dose (dmax) is deposited [20], [27]. 

The PDD can be calculated as follows:  

 
                

  

           
              

Eq 1.10 

 

where 

                 represents the percentage depth dose at depth (d) resulting 

from field size (A), source to surface distance (SSD) and radiation energy (E) 

    is the absorbed dose at depth (d) 

        is the dose at the depth of maximum dose (dmax) 

PDD curves have a high dependency on field size and it is a very important 

dosimetry procedure to measure the off-axis profile of the dose. The larger the field size 

is, the greater the contribution from scattered photons will be, increasing the dose along 

the central axis. 

In proton therapy, a parallel-plate ionisation chamber is used to measure the depth 

dose in a water phantom. The depth-dose profile contains two regions: the plateau 

region, where the dose increases a little with depth and the Bragg peak region, where 
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the dose increases promptly to the maximum. In proton therapy, the practical range 

(Rp) is defined as the range of the 10% distal dose point of the maximum dose [40].  

Figure 6 shows the physical depth dose distributions for different types of radiation 

measured by either ionisation chamber measurements or the Monte Carlo calculations.  

 

Figure 6: The measured or simulated depth dose distributions for photons, electrons and 
protons (and practical range (Rp) in protons) in water obtained in this thesis 

 

Radiographic films are usually suggested to map the dose distribution to extract the 

flatness and the symmetry information of the proton beam at different depths along the 

central axis.  
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1.4.4 Current approaches for radiation dosimetry 

As there are different treatment parameters to be checked, the choice of a detector 

system depends on the desired QA process. In radiation therapy, depth-dose curves 

and off-axis dose profiles are measured for QA and are used to provide data for the 

treatment plan; the treatment plan is produced based on the obtained measurement. 

Individual verification of dose calculations should then be checked with a detector 

system before delivering it to patients and then compared with a treatment planning 

system [10], [41]. The available detectors for QA of the dose for photons, electrons, and 

protons treatment will be discussed below.  

 

1.4.4.1 Point dosimetry 

The most commonly used dosimeters are ionisation chambers, diodes, and thermo-

luminescence dosimeters (TLD). 

Ionisation chambers are the gold standard detectors when it comes to evaluating the 

accuracy of dose measurement in radiotherapy. Many types of ionisation chambers are 

used in a variety of fields such as standards labs, radiation therapy, and diagnostic 

radiology. They can be precise and accurate in standard conditions with correction for 

temperature and pressure. In addition, they are simple to calibrate, have no dead time, 

and do not suffer from radiation damage. However, due to the shape of IMRT fields, 

and because of their small active volume, ionisation chambers will introduce dose 

determination uncertainty because of partial volume effects [10], [41]. 
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Diodes offer high sensitivity and immediate read-out. However, uncertainties arise 

from energy dependence and dose rate effect and they also depend on the angles of 

incidence of the beam [10], [41]. In radiotherapy, many individual beams with variable 

intensities, energies, and positions are used. Therefore, an ionisation chamber or a semi-

conductor as a point detector would be insufficient and the dose distribution would 

have insufficient representation [42]. 

TLDs are used in both radiation therapy and diagnostic radiology. The main use of 

the TLD is for individual protection against radiation to estimate the ionising radiation 

exposure over a period of time. The advantages of TLDs are maintaining cumulative 

records and their availability in many different sizes and shapes. However, TLDs suffer 

from relatively low precision in daily clinical usage, resulting in high uncertainty on 

dose determination and they are not real time dosimeters [10], [41]. 

 

1.4.4.2 Array detectors  

The demands of a rapid dosimetric system, increased provision of information and 

fewer uncertainties have all had an impact on the development on dosimetric detector 

systems for QA of IMRT. Different two-dimensional (2D) dosimeter arrays composed of 

hundreds of detectors (e.g. diode and ion-chamber arrays) became commercially 

available to measure the variable dose distributions. Examples of the clinically used ion 

chambers detector arrays, as shown in Figure 7, are the 2D-ARRAY seven29 (PTW, 

Freiburg, Germany) and IC PROFILER™ (Sun Nuclear Corporation, Melbourne, USA) 

which offer fast read-out [43], [44].  
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The complexity of IMRT delivery requires an accurate detector, since potential errors 

can cause health problems. Although they have many advantages, these arrays are 

made of non-tissue equivalent materials. In addition, the available systems of diode and 

ionisation chamber arrays for IMRT verification suffer from poor spatial resolution due 

to the separation between the chambers in the array. As discussed above, all these 

systems have inherent drawbacks and their function would be enhanced if they were 

developed to be water-equivalent and angular independent devices [45].  

 

 

Figure 7: Oblique view images of a) The 2D Array Seven29 having 729 ionisation chambers (5 
mm x 5 mm grey squares in the image) in 27 × 27 cm2 b) The IC PROFILER™ array having 251 

ionisation chambers in 32 × 32 cm2 

 

1.4.4.3 Film and flat panel detectors  

Radiographic and radiochromic films and electronic portal imaging devices (EPIDs) 

are available to measure the transmitted dose through the patient and can evaluate the 

dose across the whole field. Films have many applications as radiation detectors, 
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relative dosimeters and an archival medium as they are easy to use, quick, and cheap. 

In addition, they have high resolution and can record the dose distribution 

permanently. They are commonly used in dosimetry for radiotherapy, where the film is 

positioned in a phantom to estimate the 2D dose distribution [46]. However, film 

processing and the procedure of data analysis decide the accuracy of the final result. As 

a result, it can be said that film dosimetry is not a real-time dosimeter. In addition, the 

dose response is considerably nonlinear, particularly if the beam is protons [47].  

Electronic portal imaging devices (EPIDs) are used mainly as image guided tool for 

pre-treatment verification of patient‘s position. EPIDs can be used for QA 

measurements such as multi-leaves collimators (MLCs) movement [48]. However, 

because IMRT treatment verification requires high precision, in order to avoid any 

possible error which could affect the patients‘ health, EPIDs cannot be used for IMRT 

treatment verification. The reasons are due to the light scatter in the detector, which 

means that corrections are required and the depth doses in EPIDs are not equivalent to 

the dose in water. Moreover, the response of such a system depends on the energy [49], 

[50]. 

 

1.4.4.4 Gel detector 

Another detector is dosimetric gel which may be used in radiotherapy in order to 

have better spatial resolution and tissue equivalence, based on radiation induced 

chemical changes in molecules. The gel itself is prepared in a laboratory and placed into 

a desired phantom, which is then irradiated. The read out of dose distribution is 

performed using an imaging modality (e.g. MRI). However, the main disadvantage of 



1. Introduction and Literature Review 

 

41 

 

gels as dosimeters is the difficulty inherent in preparing the polymer gels in the 

hospital as the gels are made from toxic constituents. In addition, gels require lengthy 

processing to manipulate the dose information [10], [41], [51]. 

 

1.4.4.5 Scintillation detector 

Scintillator detectors are used in many ionising radiation-based imaging modalities. 

Recently, there has been an increase in research on characterising and evaluating 

scintillators for use as dosimeters for QA applications [33], [52]–[55]. When a miniature 

plastic scintillating fibre coupled to an optical fibre and attached to a photomultiplier 

tube was exposed to a photon beam, it exhibited high sensitivity, a linear dose 

response, a fast response to ionising radiation, and a low angular dependence [56], [57]. 

In addition, scintillators were also found to have the best energy independence 

compared to other dosimeters used in radiotherapy, and were independent of pressure 

and temperature. However, the detector possessed some optical artefacts such as a 

Cerenkov signal generated in the optical fibre light guide. Cerenkov radiation occurs 

when a charged particle moves faster than light in a transparent medium [58], [59]. 

With the high demand of proton therapy worldwide, most of the detectors 

mentioned above are currently being re-evaluated for use in proton beam dosimetry. 

Extensive research is ongoing in the proton therapy field that may lead to more 

complex delivery techniques requiring accurate dosimeters. Table 2 compares the 

dosimetric properties of many detectors for high energy photon beam radiotherapy 

[20], [27], [57], [60], [61]. Scintillators are shown to have excellent dosimetric properties 

for high energy photon beams. 
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Table 2: Review of the above dosimeters evaluated in external photon therapy  

Dosimeter Ionisation 

chamber 

Diode TLD EBT Film Scintillator 

Required voltage 

supply  ×     

Dose response 
  o   

Real time or 

Instant readout   × ×  

Temperature 

independence o o o  O 

Insensitive to 

optical noise     × 

Energy 

independence  × o o  

Dose rate 

independence  × o o  

Usability 
   ×  

Level of dose 

accuracy (if 2% 

required) 

  o o  

Detector density 

(ρ) and Atomic 

number (Zeff) 

High High High Low Low 

Real-time 
Yes Yes No No Yes 

: good       o: adequate       ×: poor  
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1.5  The theory of scintillation  

 

1.5.1 Scintillation material  

Scintillators are materials that can act as detectors by emitting luminescence in a 

particular wavelength range when irradiated. The history of scintillation began when 

Wilhelm Rontgen witnessed the luminescent behaviour of crystals in the vicinity of his 

cathode ray tube during his discovery of x-rays in 1895 [62]. Scintillation light was 

observed as a coincidence when the x-ray tube was switched on. Luminescence is a 

broad term outlining the emission of radiation– specifically radiation in visible or near-

visible light spectrum [63]. 

Since then, scintillation detectors continued to be studied which led to the production 

of the first inorganic scintillators, made of ZnS. Continuous research of different 

inorganic scintillators has led to the creation of many inorganic scintillators [64]. 

Although they have high light yield, inorganic scintillators have slow decay times. 

Eventually, an organic scintillator (crystalline anthracene (C14H10)) was discovered in 

1947. This organic scintillator has a faster response time and is measured in 

nanoseconds (ns) [65]. However, anthracene cannot be made in large crystals resulting 

in the need to develop more convenient types of organic scintillators, both plastics and 

liquids [66], [67]. 

Scintillators have been applied widely in radiation detection. For example, they are 

used in portal imaging systems to improve patient placement and pre-treatment 

localisation in radiotherapy by their sensitivity and rapid response time [68]. 
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1.5.2 Mechanism of the organic scintillator  

The scintillation mechanism of the organic scintillator selected for this study will be 

briefly explained. The base of an organic scintillator molecule is its carbon atoms that 

determine the electronic structure. The ground state configuration of the carbon is 

1s22s22p2 but the binding ground state configuration would be 1s22s2p3 as it is 

considered that one of the 2s-electrons is excited into a 2p-state. In this configuration, 

carbon can accommodate four valence electron orbitals (i.e. one 2s and three 2p) of 

which a linear combination can contribute to every molecule orbital. To explain the 

luminescence procedure, consider benzene (C6H6), which is the base of a liquid 

scintillator, shown in Figure 8. Here, the carbons bonds would be formed in the s-

orbital with the H atoms and in the p-orbitals with C atoms by which the molecular π-

orbitals are formed [56]. 

 

Figure 8: Schematic description of the bond benzene molecule. The scintillation mechanism 
happens in the dashed lines indicating the delocalised π-electrons between the carbon atoms 
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 The excitation and de-excitation of these delocalised π-electrons is responsible for 

luminescence. The molecular structures of most organic scintillators have a covalent 

bond that is formed by two electrons called the π-electrons of the carbon-carbon bond. 

The energy level states of π-electrons are shown in Figure 9 [69]. 

 

 

Figure 9: Electron energy levels of an organic molecule possessing a π-electron 

 

Scintillation photons result from radiation exposure, by which secondary electrons 

are produced. The energy of the electrons would be lost by ionising and exciting the 

molecules along their paths. In case of excitation, the emission of visible light can be 

caused by many luminescence processes that depend on the spin orientation of the 

excited electron, which separates the electronic states into singlet (anti-parallel 
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orientation) and triplet (parallel orientation) states. Prompt fluorescence is the result of 

transitions in the energy level structure of a molecule. This emission of light occurs 

within ns and is the predominant process. Fluorescence occurs when the ground singlet 

(S0) state is excited to an excited singlet (S*) state, then the decay from the S* state to the 

S0 state results in the fluorescent emission of photons. At the singlet level, the total spin 

of the electron level (±1/2) is equal to zero. In the process of fluorescence, the electron 

does not change its spin direction. Furthermore, most of the deposited energy is wasted 

as non-radiative processes (e.g. vibration).  

Another type of luminescence caused by ionisation of a π-electron is 

phosphorescence, which is distinguished from fluorescence because of its longer 

wavelength and a decay time of more than 10 microseconds (μs) [3]. Luminescence 

happens when the triplet state becomes excited (T1*) (spin equal to 1). This is caused by 

the molecule recombining with an electron trapped in a triplet state; the decay from T1* 

to S0 transition is then referred to as phosphorescence [3].  

To maximise the timing precision, the desired luminance process is fluorescence 

where photons are produced within a short time window after the interaction of 

radiation. Therefore, scintillator developers aim to reduce the probability of other 

luminance processes [70]. 

 

1.5.3 Ionisation quenching effects in the scintillation processes 

The scintillator response is linked directly to ionisation generated by charged 

particles. Photons are uncharged particles but produce secondary electrons which cause 

indirect scintillation. A small fraction of the kinetic energy is emitted as fluorescent 
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light. The remaining energy is transferred mostly into vibrations or heat. Therefore, the 

scintillation efficiency, which is the conversion of the particle energy into fluorescence, 

depends on the scintillator type and the type of charged particle causing the 

ionisation [3].  

For an ideal dosimeter based on a scintillation material, the amount of fluorescent 

light should be proportional to the energy (E) deposited: 

  𝐿

  
 𝐿    

  

  
 

Eq 1.11 

 

   

where L is the scintillation light, dE/dx is the energy loss and 𝐿  is the scintillation 

efficiency (i.e. number of photons per unit energy deposited). However, this is not the 

case if an organic scintillator is irradiated with charged particles with high LET like 

protons [71]. In this case, the light output is suppressed in a process known as 

quenching. This effect is well known and is described by Birks [72].  

Quenching effect is a short-lived process due to molecular damage and occurs when 

particles with high LET such as protons produce a scintillation signal that is not directly 

proportional to the energy deposited by the interactions between the excited and 

ionised molecules produced along the particle track [72], [73]. As protons slow down 

due to the energy loss (dE/dx), more energy is transferred to the medium as the LET 

increases. However, a greater proportion of energy is lost to interactions which do not 

emit light (e.g. heat); hence, L is reduced in the single Bragg Peak and at the end of the 

SOBP. In equation 1.12, kB is Birks constant (with units mm MeV-1), which depends on 

the charged particle type and the scintillation material, and 𝐿  [3], [74].  
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Eq 1.12 

 

 

Lighter particles such as electrons have lower LET and therefore produce more light 

output in an organic scintillator than heavier particles (e.g. protons) of equal energy. 

Figure 10 illustrates the relation between the energy of the protons and luminescence 

[75], [76]. The non-linearity of the light output is most severe when protons have high 

LET at low energy.. 

 

 

Figure 10: The scintillation light response of a liquid scintillator (expressed in equivalent 
electron energy deposition) to different energies of proton beam [3]. 
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1.6 The development of the detector system in radiation therapy 

Developments in scintillation material and high energy physics have led to 

significant improvements in radiation therapy and have led to a variety of applications 

in many areas of life science such as medical imaging. Different detector prototypes 

designed with different scintillation sizes, designs and materials (e.g. liquid) were used 

to examine the feasibility of a scintillator as a relative dosimeter in radiation therapy. 

Some of these experiments will be briefly described below. 

 

1.6.1 Experiments employing plastic scintillating fibres 

Early studies proposed using a point dosimeter containing a miniature scintillator of 

a short length coupled to an optical fibre and then attached to a photomultiplier tube 

(PMT) [77], [78]. However, this system did not appear to be useful in complex 

radiotherapy due to the fact that it was a point detector and was rather slow. Although 

the system did have advantages for small field dosimetry, it was not used in clinical 

settings. The reason for this was the relative ease of use of alternative point detectors 

such as ionisation chambers.  

Scintillation dosimetry in radiotherapy has been extended to 2D by using a plastic 

scintillation detector (PSD) array to assess the dose distributions produced by photons 

[53]. Further modifications of the design were applied to simulate roughly the same 

number of ionisation chambers in an array using 781 PSDs placed in a plane of a water-

equivalent phantom that is imaged by a camera as seen in Figure 11. It would be 
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feasible to have a system of PSDs for the dosimetry of photon beams [33]. The PSD 

system has excellent precision and accuracy, but a disadvantage in the system is its 

angular dependence and the accumulated signals in a megavoltage beam that suffer 

from excess noise (i.e. a Cerenkov signal generated in the optical fibre light guide). The 

production of Cerenkov radiation occurs when a charged particle moves faster than 

light through a transparent medium [58], [59].  

 

Figure 11: 3 mm long cylindrical scintillating fibres inserted vertically into a plastic water slab 
and perpendicular to the detection plane [33]. 

 

1.6.2 Experiments employing plastic scintillators 

An attempt was made to employ a plastic scintillator by using a sheet of scintillator 

placed distally behind a slab of water equivalent material as seen in Figure 12, with the 

scintillation light measured using a charge-coupled device (CCD) camera [79]. The 

system was promising and accurate within 5% for a simple light distribution. However, 

further examination was required for complicated and complex light distribution (e.g. 

IMRT). The same setup was used in the IMRT plan verification and the results showed 

an acceptable agreement between the measured and the calculated dose distributions. 
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On the other hand, such a design was limited to a single 2D imaging plane that was 

perpendicular to the direction of the beam. Furthermore, another disadvantage of the 

system was that the sheet was only 5 mm thick and no depth dose distribution or any 

type of depth information could be measured directly. Due to the many radiation fields 

that are used in IMRT, the scintillation sheet could be missed during the irradiation 

because the scintillation sheet was initially designed for a fixed source and did not 

account for movement of the MLCs during the irradiation [79], [80].  

 

Figure 12: The scintillation sheet detector [79] 

 

It is possible to improve the position of the plastic scintillator sheet, as can be seen in 

Figure 13. In the diagram, a mirror is used to reflect the scintillating photons into the 

camera. However, further development was required since the system was angular 

dependent and suffered from the production of Cerenkov light in the whole volume of 

irradiated water [45]. 
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Figure 13: The IMRT dose verification system a) The phantom outer box with camera b) the 
inner mirror at 45° to the scintillator sheet [45]. 

 

1.6.3 Experiments employing liquid scintillators 

To avoid the system‘s angular dependence, a large tank field of liquid scintillator as 

shown in Figure 14 was tested for 2D dosimetry [42], [81]. The three main components 

of the detector include a scintillation medium, a light tight enclosure or optical fibres 

for light guidance, and a camera. The camera is placed a certain distance away to 

reduce the stray radiation effects and, captures images by which the scintillation light 

depth distributions were extracted. A comparison between the measured (i.e. the 

scintillation detector) and the expected (i.e. the ionisation chamber) depth-dose 

distributions was carried out to show the accuracy of the scintillation detector [82]. This 
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system required corrections because the wall of the container reflected some of the 

light, which added noise to the image [83].  

Overall, the response of a scintillator to megavoltage energy photons for dosimetric 

purposes was found to be in positive agreement with the reference measurements. In 

addition, the use of the system could potentially be quick and accurate. 

 

Figure 14: The LSD system (the z-direction goes from the gantry towards the tank) [42] 

 

1.6.4 Scintillators in proton therapy 

The increased availability of proton beam therapy facilities in recent years has 

encouraged the investigation of scintillation detector systems. For instance, a liquid 

scintillator detector (LSD) system containing a 20 × 20 × 20 cm3 liquid scintillator and 

camera was used for scanning proton beams to obtain the scintillation light 

distributions. The result was then compared to ionisation chamber measurements [42]. 

The results showed a 40% reduction at the Bragg peak in the light depth distributions 

obtained by the LSD and the ionisation chamber due to the quenching effects in the 
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LSD and the optical properties of the imaging system. As a solution, a correction for the 

quenching effect can be achieved via Monte Carlo simulations [81]. Several studies have 

used Birks equation to estimate Birks constant in order to calculate the quenching of the 

measured scintillation data [84]–[86]. Another study investigated the proton range in 

IMPT. The LSD system showed itself to be a successful detector for beam range 

determination [42]. Therefore, this system can be used as both a range and dose 

verification detector. The use of the detector system based on a large scintillator could 

offer fast measurements, as shown in Figure 15. However, further investigation into 

proton beams should also be carried out. There are no successful camera-scintillator 

detector systems available commercially and such systems are still in the 

developmental stages. 

 

 

Figure 15: Scintillation image by which the data for depth-dose and off-axis profile 
measurements can be extracted, obtained by a BC-408 scintillator for a 60 MeV proton beam 

used in this thesis at the Clatterbridge Cancer Centre.  
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1.7  Thesis objective  

In thesis, a tissue equivalent detector system based on a large scintillation material is 

proposed. Through the research and study of relevant literature, it was found that a 

large plastic scintillator which is larger than the beam dimensions has not previously 

been used in external radiation therapy. The primary objective of this work is to 

investigate the potential use of imaging scintillation light in x-ray, electron, and proton 

beams as a general QA tool using a commercial camera. We are looking to achieve the 

following aims by the end of the research:  

 Evaluate the light output profiles obtained by a detector system consisting of a 

plastic scintillator, camera, and computer. 

 Characterise the inherent artefacts in the detector system and provide a possible 

correction method to tackle each source of error.  

 Study the system characterisations (e.g. dose linearity, stability, dose rate 

dependency) by correlating the delivered doses and dose rates to the measured 

image intensities in scintillation light photographs in both low and high energy 

beams.  

 Validate the depth-dose curves of different radiation obtained by the 

scintillation detector system by comparing the measured scintillation light 

distribution to an expected depth dose curve. 

 For protons, there is expected to be a decrease in the light signal in the Bragg 

peak region as a result of a quenching effect. Therefore, a correction for 

quenching will be obtained using a Monte Carlo simulation. 
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1.8  Major results and novelty 

The overall aim of this project is to investigate the suitability of a camera-scintillator 

detector system for use in radiation therapy dosimetry. The possibility of using a 

standard commercial camera to image scintillation light generated from x-rays, 

electron, and proton beams was investigated for fast QA measurement. The 

experimental work in this thesis is separated into five chapters: 

 At the beginning, we needed to decide which organic scintillator to purchase. 

In the chapter 2 of this thesis, the performance of two different scintillator types 

(liquid and plastic) was evaluated, by analysing their scintillation light output. 

It was found that liquid scintillator produced more artefacts than the plastic 

scintillator. The accuracy of the measurements of the scintillation light 

distribution is affected by several optical artefacts which were evaluated and 

potential correction methods were used to remove or mitigate these artefacts. 

 A large plastic scintillator was selected to be evaluated in low energy 

radiotherapy (chapter 3), in high energy radiotherapy (chapter 4), and in proton 

therapy (chapter 5). To date and to our knowledge, large plastic scintillators 

have not been used anywhere in the literature for QA in radiation therapy. 

 The use of specific phantom or detection material in low energy photon beams 

(i.e. x-rays) requires validation to ensure the interaction mechanism is as similar 

as possible to water. The detector system can offer fast and easy measurement 

of the PDD required for QA of therapeutic x-rays, but large liquid or plastic 

scintillators have not been used before. It is not clear whether the scintillator is 

a suitable material, and if not, what the magnitude of errors would be when 
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using the scintillator in low energy x-ray dosimetry. With respect to 

measurements in an x-ray beam, it was found that the measurement obtained 

by the detector system showed a linear response to dose and provided 

reproducible results. However, the results did not match the PDD obtained by 

the ionisation chamber. In addition, Geant4 simulations revealed that that there 

was an overestimation of the scintillator PDD by 23% at very low energy (50 

kVp), compared to water. This discrepancy was decreased by increasing the 

energy until it started to disappear, when a 150 kVp x-ray beam was used.  

 Chapter 4 presents evaluations of the developed prototype scintillation detector 

for use in clinical high energy photon and electron therapy. It discussed the 

scintillation light depth distributions and the off-axis light profiles compared to 

ionisation chamber measurements in water. The results indicated that the 

detector system is suitable for use for photon and electron beams and that the 

uncertainties could be reduced by correcting the optical artefacts.  

 The potential of using a large plastic scintillator in proton therapy for 

dosimetry was explored in chapter 5. A series of experiments was conducted 

using proton beams. The experiments were to investigate and validate the light 

distribution obtained by a camera. The experiment investigated the response of 

the detector system to various dosimetric parameters, including the dose, dose 

rate dependency, energy dependency, and field size dependency. Excellent 

responses of the detector system were seen in various dosimetric parameters 

but a reduction in the scintillation light signal at the Bragg peak was observed 

compared to ionisation chamber due to a quenching effect. The results were 

presented in a poster at the NPL workshop in London ―Proton physics research 
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and implementation group (PPRIG), 2014‖ and at the 8th Saudi Student 

Conference in London (see below A).  

A. Investigation into the Feasibility of a CCD-scintillator Detector 

System for Dosimetry in Proton Therapy 

Mansour Almurayshid, Gary Royle, Jem Hebden, Adam Gibson 

 After demonstrating the limited applicability of the detector system in proton 

therapy in the previous chapter, we attempted to correct for the quenching 

effect caused by high LET protons by using the Birks equation in chapter 6. The 

technique was shown to offer a convenient way to correct for quenching at any 

given energy. The results in chapter 5 and 6 were submitted for publication in 

Medical Physics (under review) (see below B) and for conference proceeding in 

PTCOG 2016 (see below C).  

B. Evaluation of photography of a plastic scintillator for quality 

assurance in proton therapy 

Mansour Almurayshid, Yusuf Helo, Andrzej Kacperek, Jennifer Griffiths, 

Jem Hebden and Adam Gibson 

C. Feasibility of a plastic scintillator and commercial camera system for 

routine quality assurance in proton therapy 

Mansour Almurayshid, Yusuf Helo, Andrzej Kacperek, Jennifer Griffiths, 

Jem Hebden and Adam Gibson 
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CHAPTER 2   

2. OPTIMAL DESIGN OF A PHOTOGRAPHIC 

SCINTILLATION DETECTOR SYSTEM 
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2.1  Introduction 

In quality assurance (QA) tests, and especially for dosimetry in radiotherapy, each 

measured point used in depth distributions is usually assessed using acceptance criteria 

of 3% or 3 mm to quantify whether the dose difference between the measured and the 

anticipated values exceeds the pass/fail criterion [87], [88]. The QA producer‘s 

challenge is to accurately meet the above agreement with current developments of 

different complex techniques of radiation treatment delivery and with increasing 

numbers of proton facilities worldwide. For example, dose verification for narrow 

beams used in scanned proton beam treatments would be a challenge. Ionisation 

chambers cannot measure complex 3D treatment fields. Although there is no widely 

accepted standard dosimeter for proton beams at present, the 2D arrays of many 

ionisation chambers can potentially be used for proton dose verification, however, 

these arrays are limited by the number of ionisation chambers, the number of 

measurement depths, and the ionisation chamber spacing [89], [90].  

Organic scintillators have many desired features. Particularly due to their water 

equivalency tested in high energy photon beams, many organic scintillators used as 

detection materials are increasingly being examined for dosimetric use in radiation 

therapy, which is required by treatment planning systems and for routine dosimetric 

verification prior to treatment delivery [33], [91], [92]. An organic scintillator can be 

plastic, liquid, or crystal. A wide variety of scintillators of each type is commercially 

available at present. Organic scintillators can be produced by dissolving primary 
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scintillating compounds (e.g. polyphenyl hydrocarbons) in a solvent, such as 

polystyrene, and then polymerising the solvent, as in the case of plastic scintillators [3]. 

A common base of scintillating fibre is polystyrene or polyvinyltoluene for plastic 

scintillators. Mineral oil can be used as a base for liquid scintillators. Liquid scintillators 

are often employed in neutron detection application because of their ability to produce 

distinguishable signals between fast neutrons and gamma radiation [93]. Plastic 

scintillators have attractive features for some applications because they are robust and, 

durable, and there is no risk of leaks.  

The two main components of the scintillator detector system are the scintillator 

where the deposited photon energy is converted into light, and the camera where the 

light is imaged and then subsequently analysed by computer. The scintillator can be 

either small (e.g. scintillation fibres to be arranged in 2D arrays) or large (e.g. liquid or 

plastic scintillators). Because the scintillation medium is the main component of the 

detector system, we have to select the optimal scintillator for our detector system. Our 

choice of scintillator was a critical step in our final design. In addition, evaluating 

artefacts in the detector system and optical artefacts caused by the light propagating 

from the scintillator to the camera is essential to accurately estimating the scintillation 

light profiles. 

The aim of this chapter is to select a camera and optimal scintillator, examine many 

optical artefacts in our prototype design for radiation therapy dosimetry, and present 

possible correction methods to reduce the impact of optical artefacts. 
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2.2  Camera selection and characterisation 

Investigations into the use of commercial cameras have been increasingly carried out 

in radiotherapy for the past ~20 years (e.g. in EPIDs for verification of patient 

positioning) [94], [95]. In addition, commercial cameras have been employed for 

photodetection in radiotherapy dosimetry, being used in dosimeters based on detecting 

scintillation and Cerenkov light [96]–[98]. This is because they have become relatively 

inexpensive, provide fast read outs, and can be used to monitor a large field. In 

addition, they are stable and sensitive enough to monitor small doses [59], [99]. The 

performances of commercial complementary metal-oxide-semiconductor (CMOS), 

charge-coupled device (CCD), and intensified charge-coupled device (ICCD) cameras 

were examined in a clinical radiotherapy setting [96]–[98], [100]. ICCD cameras proved 

to be viable specifically for real-time Cerenkov imaging of tissue due to the low 

intensity of the photon signals with ambient room lighting but they were very 

expensive ($55k-$60k) [101]. By comparison, the commercial CMOS and CCD cameras 

have relative low costs of $600 and $3k, respectively, and provide fast and stable results 

for QA applications within ±1%. The CMOS camera provided higher frame rate per 

second (fps) and a better resolution image of 5184 × 3456 pixels compared to the CCD 

camera which had an array of 3326 × 2504 pixels [101]. A CMOS camera provided 

linear responses to the amount of energy incident on the sensor in the visible light 

range (400–700 nm) [102]. The scintillation light yield is high and in the visible range, 

which corresponds with the range to which commercial cameras are sensitive [75].  
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The camera in this work was selected because it was relatively cheap, convenient to 

use in a clinical environment, and provided raw file data with a high resolution to 

avoid compression of the images and hence ensure the reproducibility of the results. 

The spatial resolution is important to distinguish between intensities at closely spaced 

points as it increases as the pixels of the camera get smaller, hence increasing the array 

of pixels in the sensor. The D7100 was the most recent camera widely sold by Nikon in 

2013. Nikon cameras have been used recently to image optical light in radiotherapy 

dosimetry, and they demonstrated high sensitivity to light and provided reproducible 

results to within 1% [103]–[106]. The intensity images of Cerenkov light emission and 

scintillation light acquired by the CMOS camera exhibited excellent linear dose 

agreement with the reference data for photon energies ranging from 6 to 18 MeV [98], 

[107].  

The camera used in this study was a Nikon D7100 camera with a Nikon AF-S DX 

NIKKOR 35mm f/1.8G lens mounted on a tripod. The sensor matrix had one of the 

highest camera resolutions at the time of purchase with 6034 × 4024 pixels. It uses a 

CMOS sensor which has 6034 × 4024 pixels (2.4 cm × 1.6 cm) with a 4 μm pixel size and 

a 14-bit dynamic range. It was used in manual exposure control with a USB 2.0 

connection to transfer the image data to the computer. Continuous shooting speeds of 

up to 6 frames per second are possible. The raw format obtained by the camera is .nef 

(Nikon Electronic Format). The main advantage of acquiring images as raw .nef image 

files is ―that no in-camera processing for white balance, hue, tone and sharpening are 

applied to the NEF file; rather, those values are retained as instruction sets included in 

the file‖ [108].  
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2.2.1 Camera linearity 

Because the sensitivity of the CMOS sensor is uniform over the spectrum of 380–

760 nm [109], an easily available red light-emitting diode (LED) was used to study the 

linearity of the camera‘s sensor to the optical light. Because the relationship between 

the current and the light intensity of an LED is linear, currents ranging from 5 to 20 mA 

were applied to an LED. As the current through the LED increased, the intensity of the 

light emitted by the LED increased and was measured by the lens-free camera to test 

the linearity of the camera‘s sensor itself. Three images were obtained for each current. 

A region of 50 × 50 pixels was selected in the middle of the image and was then 

averaged and combined to obtain a cumulative light intensity to be plotted against the 

corresponding current. The light output was found in Figure 16 to be directly 

proportional to the current, with a correlation coefficient of 0.99.  

 

Figure 16: Linearity of light intensity as a function of current measured by the camera. Error bars 
demonstrate the standard deviation and some of the error bars are smaller than the point size at 

certain points. 
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2.3  Selection of the scintillator for the detector system  

 

2.3.1 Introduction  

For photon beams, arrays of different numbers of scintillating fibres have been used 

previously in the literature for 2D dosimetry applications such as depth-dose 

measurements [111], [142], [143]. The active scintillating part of the fibre is usually 1 cm 

long, which is coupled with a non-scintillating fibre as a light guide to the camera. A 

disadvantage of using a prototype based on scintillating fibres was that the production 

of Cerenkov light emission in the optical fibre creates a serious noise factor [58]. The 

Cerenkov light emission in the optical fibres is a major noise source, and the magnitude 

of error in signal caused by Cerenkov is energy- and angle dependent. The cutting 

efficiency of the scintillating fibres affects the light signal because it might be 

compressed during cutting procedure, and the mechanical difficulty of accurately 

coupling many scintillating fibres to optical fibres [110]. The scintillating signals from 

the fibres in array and the light collection efficiency is strongly dependent on the 

diameter and the length of the fibres [110]. The length of the fibres should have the 

exact length required to ensure a uniform signal across the fibres in the array. This 

proved to be difficult to attain [111]. The construction process for manually building a 

single scintillating detector (i.e. a plastic scintillating fibre coupled to an optical fibre) 

takes more than 30 minutes [91]. Furthermore, the spatial resolution of the detector 

would not be better than that of instant ionisation chambers, if arranged in the array. 

The relative ease of use of alternative arrays, such as ionisation chamber arrays 
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discourages further investigation. In addition, the optical fibres could scintillate when 

the incident beam is formed of protons [112].  

Large 3D volume detectors based on liquid scintillators have also been used [80]. 

They have been shown to provide fast and accurate results, and have high resolution 

for photon quality assurance in 3D volume [81]. Therefore, we decided to choose a large 

scintillator material, which could be a plastic or a liquid scintillator. The aim of this 

section is to choose a specific plastic scintillator and liquid scintillator, to evaluate them 

experimentally and from the literature by analysing the light output, and then to select 

a suitable scintillator for our final prototype. 

 

2.3.2 Selection of the plastic and liquid scintillators 

Organic scintillators including plastic and liquids have promising advantages due to 

the simplicity and low cost of fabrication, and they have short decay times (few ns), 

compared to inorganic scintillators, which allow them to be attractive for fast timing 

measurements [113]. They are produced by different companies such as Saint-Gobain 

Crystal Corporation, (USA), Eljen Technology (USA), and Nuclear Enterprises Limited 

(UK). Different scintillators are produced for different applications by modifying the 

amount of organic compounds and adding materials to alter the probability of 

interaction (e.g. gadolinium (Gd) can be added for neutron detection) [75], [76]. Many 

different scintillators are available of for each type, and their properties are shown in 

Table 3. 
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Table 3: Properties of different scintillators [75], [76], [114], [115] 

Type 

 
Scintillator material and  
commercial equivalents  

Light 
output 
percent 

anthracene 
% 

 
 

Emission 
peak (λ), 

nm 

 
 

Decay 
constant 

ns 

 
 

Light 
attenuation 

length 
cm 

H : C 
atomic 
ratio 

 
 
 

Refractive 
index 

 
 
 

Density 
g cm-3 

Principal applications 
Research 

group 
 

Eljen 

 

Saint 
Gobain NE 

P
la

st
ic

 

EJ-200 BC-408 Pilot F 64 425 

 
 

2.1 380 1.104 

 
 

1.58 

 
1.03 Best overall general properties, large, for gamma rays+ fast 

neutron+ charged particles 
 [45] 

EJ-204 BC-404 NE-104 68 408 

 
1.8 160 1.107 

 
 

1.58 

 
1.03 Good general properties, for < 100 keV x-rays+ alphas + 

betas 
  

EJ-208 BC-412 NE-110 60 434 

 
3.3 400 1.104 

 
1.58 

 
1.03 Good general properties, large, for fast neutrons + charged 

particles 
  

EJ-212 BC-400 NE-102A 65 423 

 
2.4 250 1.103 

 
1.58 

 
1.03 General purpose, thin films, for alpha+ beta+ >5 MeV 

gamma 
 [77], [86], 

[116] 

EJ-228 BC-418 Pilot U 67 391 

 
1.4 100 1.107 

 
1.58 

 
1.03 Ultra-fast timing, high pulse pair resolution, for use in small 

sizes 
  

EJ-240 BC-444 NE-115 41 435 

 
230 180 1.109 

 
1.58 

 
1.03 Long decay time, for heavy ion research, particle 

identification, low background counting 
  

EJ-260 BC-428 NE-103 36 490 

 
9.2 150 1.109 

 
1.58 

 
1.03 Green emitting scintillator   

 

L
iq

u
id

 

EJ-301 BC-501A NE-213 78 425 

 
3.2 

250 
1.212 

1.50 0.87 
Fast neutron-gamma discrimination   

EJ-305 BC-505 NE-224 80 425 

 
2.5 

150 
1.331 

1.50 
 

0.87 High light output, fast neutron and gamma rays   

EJ-313 BC-509 NE-226 20 425 

 
3.1 

 
100 0.0035 

1.37 
 

1.61 Hydrogen-free, neutron and gamma studies    

EJ-321L BC-517L NE-235L 39 425 

 
2 500 2.01 

1.47 
 

0.86 Mineral oil based, standard efficiency, large tanks, Fast 
neutron and gamma rays 

  

EJ-325 BC-519 NE-235C 60 425 

 
4 100 1.73 

1.49 
 

0.87 Mineral oil based, pulse shape discrimination, fast neutron 
and gamma discrimination, large tanks 
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EJ-331 BC-521 NE-323 60 425 

 
4 

 
400 1.31 

1.50 
 

0.89 Highest light output, neutron spectrometry (Gd loaded), 
neutrinos 

  

EJ-335 BC-525 NE-313 64 425 

 
3.8 

500 
1.57 

1.50 
 

0.88 Mineral oil based, large tanks, neutron spectrometry, long-
term chemical stability 

  

EJ-339 BC-523 
NE-321 

65 425 

 

3.7 
400 

1.67 
1.41 

 

0.98 Neutron spectrometry, pulse shape discrimination, thermal 
neutrons 

  

 
BC-531 

 
59 425 

 
3.5 

350 
1.63 

1.47 
 

0.87 Mineral oil based, fast neutron, cosmic [81]–[83], [117] 
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The light output of a scintillator, which is a measure of its ability to effectively 

convert ionising radiation into visible light, is an essential feature to consider in any 

scintillator. Light output can be measured by the average number of photons per MeV 

of absorbed radiation or as relative to another scintillator such as anthracene (an 

organic crystal commonly used as the standard for scintillators) [118]. Anthracene light 

output is approximately 50% of a high light output efficiency inorganic scintillator of 

sodium iodide activated with thallium (NaI(Tl)) [119]. Other important features that 

need to be studied from Table 3 are the emission peak and the time profile of the 

scintillation light pulse to be generated, which should be fast allowing rejection of 

random events [120]. Each scintillator has a unique decay time. If a scintillator has a 

long decay time such as that in CsI(Tl) (inorganic scintillator), having roughly 1000 ns, 

it would suffer from the afterglow artefact impacting the background, which will 

change from pre-irradiation to post-irradiation for subsequent irradiations [119]. An 

important consideration when designing plastic and liquid scintillators is minimising 

the attenuation of scintillation photons. Therefore, light attenuation length is an 

important parameter to ensure the scintillation light generated is not re-absorbed by the 

scintillator itself. The scintillator should have little self-absorption [121]. Another 

requirement for the scintillator in our design was that it had to be available in a large 

volume so as to accommodate the desired radiation beam. 

No commercially available scintillator can meet all requirements. Therefore, the 

enhancement of the performance of new scintillators is of continued interest in research 

[120]. One of the key parameters in selecting a suitable scintillator for this research was 

for it to have a good optical quality including a long attenuation length and thus, good 
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light collection. This had to be combined with the effect of a fast response and a high 

light output. A particular scintillator of each type was chosen to be examined in a 

proton beam test to determine the best choice for the fabrication of the final prototype 

of the detector system.  

 

 The BC-525 liquid scintillator, made by Saint-Gobain Crystals Corporation, 

USA, was chosen based on its high light transmission path length, which is 

500 cm, to minimise the self-absorption of the scintillation light generated in the 

scintillator. In addition, it has long-term chemical stability and a refractive 

index of 1.50 similar to that of poly-methyl methacrylate (PMMA) container 

which allows a good coupling efficiency of the scintillation light produced. 

 

 The plastic scintillator used is BC-408 by Saint-Gobain Crystals Corporation, 

USA. Two scintillators can be fabricated in large volumes instead of sheets or 

rods, namely BC-408 and BC-412. The former scintillator was chosen because it 

has long attenuation length (380 cm) and fast decay (2.1 ns). In addition, 

because the camera was to be used as a photo-detector, it was important to 

have the maximum light output near or in the visible light wavelength range. 

The light emission peak was 425 nm. In addition, the light yield emission of 

BC-408 was 64% that of anthracene. 

 



2. Optimal Design of a Photographic Scintillation Detector System 

 

 

71 

 

2.3.3 Liquid scintillator versus plastic scintillator  

We had the chance to visit the Clatterbridge Cancer Centre (i.e. more details of the 

proton experiments will be explained in chapter 5). We decided to test the responses of 

large-volume scintillators being irradiated by a proton beam in order to obtain 

scintillation depth distributions.  

 The BC-525 liquid scintillator was prepared in two containers: one container 

was made of glass (4 cm × 4 cm × 4 cm) and the other container was made of 

PMMA (5 cm × 5 cm × 5 cm), which accommodated the range of a 60 MeV 

proton beam of 3.09 g cm-2 and the field size of 2.5 cm2.  

 The plastic scintillator that we used was BC-408, which is the best general 

purpose scintillator, measuring 20 cm × 20 cm × 10 cm.  

These scintillators were positioned at the isocentre 7 cm from the nozzle of the proton 

source and aligned with the central axis of the proton beam, as shown in Figure 17. A 

60 MeV proton beam was utilised and the camera was used, to acquire scintillation 

images during irradiation. The detector system was placed in complete darkness to 

avoid any contamination by unwanted background noise. For future work, a light-tight 

container or box could potentially be used with the whole detector system placed inside 

it to avoid the dark environment settings, allowing reproducible placement of the 

camera and the scintillator. 
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Figure 17: The setup of the detector system based on the liquid scintillator or plastic scintillator. 

 

2.3.4 Results  

The comparison of the scintillation light distributions obtained in liquid and plastic 

scintillators is illustrated in Figure 18. Protons came from the left. The zero point is the 

boundary of the liquid scintillator container. The scintillator itself is in the plastic 

scintillator.  
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Figure 18: The light profiles obtained by a) liquid scintillator in PMMA container; b) liquid 
scintillator in glass container; c) plastic scintillator 

 

a) 

b) 

c) 
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Figure 18a, shows a hump caused by the scintillation of the wall of the PMMA 

container by a 60 MeV proton beam. As the measurements were taken in a machine that 

has a fixed horizontal gantry, as shown in Figure 19, it was necessary for the proton 

beam to penetrate the wall of the container holding the liquid scintillator, or the face of 

the solid plastic scintillator. This introduced additional uncertainty in the protons‘ 

range in the measured scintillation depth profile of the liquid scintillator due to the wall 

of the container. This has not been previously mentioned in the literature [82], [83], 

[117].  

 

 

Figure 19: A horizontal radiation beam passes through the wall of the contained and then 
interact with the liquid scintillator.  

 

According to ICRU 49, the dose deposition in any material can be found by the 

energy loss of a proton due to stopping power [122], [123]. Table 4 illustrates the range 

and stopping power of a 60 MeV proton beam in the container‘s materials used in this 
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study compared to water, a liquid scintillator, and a plastic scintillator [124]. The use of 

a glass container would result in a variation compared to water, since the stopping 

power and the range of protons were not similar. The stopping power is not only 

proportional to the density of the material ρ, but also to electron density, which takes 

into account the atomic number (Z) and the relative atomic mass (A) [125]. We also 

found that the liquid scintillator dissolved the wall of the PMMA container and the 

PMMA container scintillated, as shown in Figure 20. The scintillation depth distribution 

will be validated for all types of radiation used (see chapters  3,  4 and  5). 

 

Table 4: The range and stopping power of different materials 

 

Materials 

 

Density (g cm-3) 

 

Stopping power (MeV cm2 g-1) 

 

Range (g cm-2) 

Water 1.00 10.78 3.09 

Plastic scintillator 1.03 10.73 3.10 

Liquid scintillator 0.87 10.80 3.08 

PMMA 1.18 10.50 3.17 

Glass 2.23 8.88 3.78 
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Figure 20: Interface issue – the PMMA container wall was found to be scintillating when left 
empty. 

 

2.3.5 Discussion  

The performances of two different types of scintillators were examined; it was found 

experimentally and in the literature that the disadvantages of using liquid scintillators 

are:  

 Scintillation of the container in the 60 MeV proton beam. 

 The need to deoxygenate of the scintillator prior to use, to obtain high output 

and maintain the light output [76]. 

 Toxicity (not suitable for hospital environment). 

 Interface issues of the tank or of the container for the liquid scintillator in which 

the proton beam will lose some of its energy before the generating scintillation 

light.  

 The emitted light of the liquid scintillator may be reflected or refracted at the 

walls of the acrylic tank causing unwanted light signals.  

 The liquid scintillator dissolves the wall of the PMMA container. 



2. Optimal Design of a Photographic Scintillation Detector System 

 

 

77 

 

A drawback of the plastic scintillator is that: 

 It must be handled with care as it is vulnerable to scratches, which could affect 

the transmission of the scintillation light generated. 

 

2.3.5.1 The optimum choice of scintillator for this research 

It was found that liquid scintillators would have a container artefact, whereas plastic 

scintillators would introduce fewer artefacts than liquid one in our design. Therefore, 

we decided to choose a large plastic scintillator. Plastic scintillation materials are 

relatively cheap, do not require containers and can be made in different shapes. This 

type of scintillator is robust and durable [76]. The components of the BC-408 scintillator 

selected for this study are ~97 % PVT (polyvinyltoulene), ~3% PT (p-terphenyl) and 

0.05% POPOP (p-bis (2-5-phenyloxazolyl) benzene) [126]. 

 

2.4  Evaluation of the optical artefacts in the camera-scintillator 

detector system 

 

2.4.1 Introduction 

This work aims to develop fast, high-resolution, immediate readout radiation 

detectors based on a plastic scintillator. This detector system design has the potential to 

reduce the time required for QA tests, allowing all radiation field data, including 

depth-dose distributions and off-axis dose profiles, to be measured by a single 
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measurement. However, the accuracy of the measurements of the scintillation light 

distribution is affected by several optical artefacts that were generated during light 

propagation from the scintillator to the camera, and in the CMOS camera while 

measuring the incident light [83]. The objective of this section is to evaluate the sources 

of the optical artefacts present in the scintillator-based detector system. Subsequently, 

potential correction methods to remove or mitigate these artefacts were developed to 

obtain meaningful dosimetric measurements.  

 

2.4.2 Design principle  

As mentioned, descriptions of the methods for characterising and correcting the 

optical artefacts of interest will be presented. However, the main components of the 

detection system used in this study should be described to consider the relevant optical 

artefacts. A schematic overview of the prototype scintillator detector system is shown 

in Figure 21 for reader convenience. The scintillator detector system contains a BC-408 

plastic scintillator (20 cm × 20 cm × 10 cm) where the deposited proton energy is 

converted into light, and a Nikon D7100 camera, which captures images of the emitted 

light that are subsequently analysed by a computer to convert the light into 

appropriately scaled radiation dose values. The camera was mounted on a tripod and 

positioned perpendicular to the beam, and the data acquisition was performed using 

Nikon camera control software on a laptop computer outside the treatment room 

connected via a 25 m USB cable. Black cloths and black tape were used to exclude 

ambient light. 
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Figure 21: The detector system components 

 

2.4.3 Artefact characterisations and correction methods 

Table 5 shows various artefacts that are generated in the CMOS camera and while 

measuring the incident light during light propagation from the scintillator to the 

camera. In this section, we review potential sources of error, and describe experiments 

which were carried out to characterise each in turn. The results are presented in section 

2.4.4. A correction method will be addressed below and applied to the image 

processing chain when this is required in section  2.5.  
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Table 5: Artefacts could be present in the scintillation detector system. Adopted from [117] 

Artefact’s source Physical phenomenon Impact associated with the artefact 

Camera chip 

Background noise - Measurement uncertainty 

Stray radiation - Hot pixels and streaks 

optical system Vignetting - Decreased brightness at image periphery 

Light 
propagation in 
the scintillator 

Magnification - Changes in effective pixel size and 
intensity depend on the beam field size 

Refraction - Changes in effective pixel size  

Reflection and absorption - Decreasing the light intensity over 
distance 

Cerenkov light production - Assumed to produce unwanted signals in 
the low dose region [83] 

 

2.4.3.1 Background noise  

This artefact contributes to the measurement uncertainty, so dark images were 

obtained to estimate the random noise of the camera chip by taking three repeated 

images. These images were averaged and used for background subtraction.  

 

2.4.3.2 Stray radiation:  

Stray radiation causes spikes and streaks in the scintillation light images and can be 

eliminated by using a median filter which helps to remove noise and extract actual data 

[127]. It was applied to each image in MATLAB, specifically to the 3 × 3 region 

surrounding each pixel.  
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2.4.3.3 Vignetting correction  

Vignetting is an undesired artefact caused mechanically and optically that reduces 

the brightness at the edge of the image and is dependent on the aperture [104], [117]. 

The effect of vignetting at two apertures (f/8, f/22) used in this thesis was measured to 

obtain a complete vignetting profile of the sensor with the lens used, which would 

provide a vignetting map on any image plane which applies to all the measured 

images. A clear difference was observed between the intensity of the image generated 

in the centre and on the edge of the image frame, where features are only 88% as bright 

as those in the centre. The vignetting was calculated by placing the camera 17 cm away 

and acquiring a flat white image for a homogeneous light field supplied by a lightbox 

transilluminating a homogeneous scattering medium from which a correction can be 

determined. The correction factor was obtained for each pixel and is shown in Figure 

22.  

 

Figure 22: Demonstration of the vignetting correction for the entire camera image. 
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2.4.3.4 Evaluation of the background noise on the light output intensity 

generated in the scintillator using Monte Carlo simulation 

In literature, Cerenkov light has been deemed a source of unwanted light noise 

generated in the whole scintillator, especially in the low-dose region, causing a 

low-intensity tail observed out of the main beam, as shown in Figure 23 [83]. The 

Cerenkov signals have been investigated using Geant4. 

 

Figure 23: The comparison of off-axis dose profile obtained by the detector system and the 
ionisation chamber for 15 MeV electron beam. A variation between the two profiles appears at 

the low dose region (black circles). 

 

Geant4 (GEometry ANd Tracking), which is a C++ Monte Carlo simulation package 

of the passage of radiation through matter, can precisely model many radiation 

dosimetry experiments. Many simulation packages are available but the only package 

that has the capability to handle both radiation and optical light transportation 
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simultaneously is Geant4 [128]. Geant4 requires details of the desired detector 

geometry, including materials selection and key properties of the materials such as the 

refractive index and attenuation length, the initial radiation source, the physics 

processes that the particles can undergo in the simulation, and the file format for 

storing the event data for further analysis, as illustrated in Figure 24 [20], [129].  

 

Figure 24: Schematic flow process of a Geant4 simulation. 

 

Geant4 can generate optical processes such as Cerenkov and scintillation and handle 

optical photon-medium interactions (absorption, reflection and refraction) by 

implanting the user-defined optical properties of a medium into the detector 

construction, including the energies of the optical photons (eV), which could be 

constant or a function of the photon energy, the absorption length (cm), and the 
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refractive indices of the medium utilised in the user simulation. The effect of any or all 

of these optical properties on the observed optical remission can be studied.  

Geant4 Monte Carlo simulations version 10.00 was used to construct a geometry 

which was a box volume filled with the BC-408 scintillator as shown in Figure 25. The 

BC-408 scintillator phantom with dimensions 20 cm × 20 cm × 10 cm was divided into 

voxels with dimensions of 0.25 mm × 0.25 mm × 0.125 mm. The principal characteristics 

of the chosen plastic scintillator are shown in Table 6. Geant4 standard physics package 

was employed for electromagnetic interactions covering the interactions of photons and 

electrons. For protons, the physics list class used contains primarily the 

QGSP_BIC_EMY, which is the reference physics list recommended for the simulation of 

hadron therapy applications [175]. 

 

 

Figure 25: The geometry used in the simulation to predict the optical behaviour of the 
scintillator. 
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Table 6: The properties of the BC-408 plastic scintillators [76] 

 

Parameter 

 

 

BC-408 scintillator 

Core material Polyvinyltoluene 

Refractive index 1.58 

Density, g cm-3 1.03 

Emission peak (λ), nm 425 

Light output, % anthracene 64 

No of photon /MeV ~ 8000 

Light attenuation length, cm 380 

 

The aim of this section is to evaluate the Cerenkov light relative to the scintillation 

light profiles in each radiation used in this thesis and to investigate whether the low-

intensity tail observed out of the main beam is caused by Cerenkov light emission 

mentioned in the literature [129]. In this thesis, three types of radiation beams, 

including 6 MV photon, 6 MeV electron, and 60 MeV proton beams were simulated 

entering a BC-408 plastic scintillator using Geant4. The off-axis scintillation and 

Cerenkov light profiles were calculated in the BC-408 scintillator phantom. 
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2.4.3.5 Evaluation of magnification for the geometries used 

Image perspective or magnification artefact which could particularly be problematic 

when measuring steep dose gradients is the result of the 3D light field within the 

scintillator being projected onto a 2D image plane. This would impact: 1) the geometry 

or the apparent size of an object since a decrease in the object–camera distance will 

result in an increase in the object‘s apparent size; and 2) the detected light intensity 

projection, which follows the inverse square law in the camera [117]. The geometry and 

intensity of projections of the 3D light field in the image are strongly dependent on the 

field size of the photon beam and the distance between the camera and the beam. 

Figure 26 shows the parameters that contribute to the magnification, such as the 

distance between a given projection and the midline projection, x, the depth of the 

midline projection, y, and the distance between the midline projection and the camera, 

r. Therefore, light generated near the camera (e.g. +1.5 cm from the midline) contributes 

a higher intensity and covers a wider field of view than light generated from behind the 

midline. Photographs of the light output show the light emitted from a volume of light; 

the plane nearest to the camera will contribute the most, but we need to know the light 

distribution along the central axis. Therefore, to compare both the ionisation chamber 

measurements and the simulated scintillation depth distributions with the measured 

scintillation light depth distributions, it was necessary to consider the effects of 

geometry, especially those due to magnification. 
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Figure 26: Demonstration of the geometrical magnification for the experiment geometry used in 
this work. The camera would detect the integrated scintillation light along the line of sight by 
which the light near the camera contributes a higher intensity and covers a wider field of view 

than light generated from behind the midline. 

 

We adopted the method used by Helo et al. (2014) to correct for this. The intensity I´ 

of the image of the given projection at distance x given the intensity of the image of the 

midline projection, I, estimated by the measurement can be found using equation 2.1:  

 
    (

  

      
)   

Eq 2.1 

 

 Equation 2.2 can be used to predict the relative magnification effect (  ) in 1D: 

 
    

   

 
   

Eq 2.2 
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Since the distance to pixel was done at the central axis of the radiation track, the 

impact of the magnification of an object depends on its distance from the focal plane or 

midline projection. Using equation 2.1 and equation 2.2, the relative magnification can 

be calculated across the beam in any plane perpendicular to the camera by which the 

measured scintillation light distribution along the central axis can be extracted and 

compared to the simulated scintillation distribution.  

Because we are dealing with optical light and the correction was only made to one 

plane within the scintillator, it could be argued that the captured image is the 

integrated image of the 3D light volume emitted along the line of sight. Therefore, since 

the light generated near the camera contributes a higher intensity and covers a wider 

field of view than light generated from behind the midline, it would cause distortion in 

the scintillation measurements. To evaluate the effects of imaging a 3D light 

distribution onto a 2D sensor, a MATLAB code version Matlab R2012a (The MathWorks 

Inc., Natick, MA) was generated. A uniform 3D cubic light source was considered 

(e.g. consist of 100 planes) as our region of interest. The relative intensity of each plane 

image can be calculated using equation 2.1. The relative geometry effect in one 

dimension can be calculated by using equation 2.2. Therefore, this would mimic 

imaging a 3D light distribution taken in consideration r and x. Summing the images of 

all planes for different camera-source distances (r) and different cube sizes (x) would 

allow to assess the effect of magnification distortion for different geometry setups. 

Finally, instead of using uniform cubic light source, we used measured crossbeam 

profiles at the central plane, and then calculate the relative intensity and the relative 

geometry effect of each plane image as described before. 
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2.4.3.6 Absorption  

The scintillator selected is made to be transparent to their own light emissions, as 

shown in its specifications in Table 3. Absorption may decrease the light signal over 

distance, but it will not distort the measured light profile. The impact of the 

absorption was investigated using Geant4 and a 6 MeV electron beam. The impact 

of the absorption was measured by comparing the simulated result with and 

without the influence of absorption. 

 

2.4.3.7 Refraction artefact 

At the surface or boundary of the scintillator, the path of scintillation light can be 

changed as it passes from the scintillator to the air because of differences in the 

refractive index (n), as shown in Figure 27. This change of direction was described 

by Snell's law (n1 sinθ1=n2 sinθ2), which describes the relationship between the angles 

of incidence θ1 and the angle of refraction θ2 when light passing through a boundary 

between two different materials [130]. 
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Figure 27: The refraction of light traveling from the scintillator into air bending away from the 
normal at the flat interface 

 

The impact of refraction on the image resolution is similar to the magnification effect, 

which would appear as a shift in the expected location of individual pixels and an 

change in the apparent size of objects or scintillation light in the scintillator [117]. The 

influence of refraction on the scintillation light when it travels from the scintillator 

to the air was investigated experimentally by imaging a ruler fixed in the centre of 

a PMMA container measuring 10 × 10 × 10 cm3, as shown in Figure 28, while it was 

empty (assuming there is no refraction) and filled with a liquid scintillator (n=1.50). 

The liquid scintillator was chosen over water owing to the higher refractive index 

and having a refractive index close to that of BC-408 scintillator. The thickness of 

the wall of the container was 3 mm and the dimensions of the PMMA were selected 

to match the thickness of the scintillator. The changes in the light profile due to 



2. Optimal Design of a Photographic Scintillation Detector System 

 

 

91 

 

refraction can be estimated by comparing the two images of the ruler when the 

container was empty and filled.  

 

 

Figure 28: Demonstration of the refraction experiment setup showing the camera and the 
PMMA container. 

 

2.4.3.8 Reflection artefact 

Another phenomenon that can occur at the boundary is reflection, which can happen 

if the angle of the incident rays is larger than the critical angle (θc)= 39.26, as shown in 

Figure 27, and calculated by sinθc=n2/n1. As the light inside the scintillator is 

generated isotropically, the reflection on the scintillator surface would be homogenous. 

Each point of the scintillator surface receives an isotropic light, and the light will always 

be emitted within the same angle window (±39.26°). As a result, the light intensities 

decrease in the whole image at the same rate. 

 

Camera  
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2.4.4 Results  

 

2.4.4.1 Cerenkov light generated in the scintillator 

We found that Cerenkov signals have a smaller intensity per unit length of the 

scintillator than the scintillation signal that would have been generated within the 

primary beam. Geant4 was used to examine the Cerenkov light emission and the 

scintillation light generated in the BC-408 scintillator using photon, electron and proton 

beams. Table 7 illustrates the contribution of the Cerenkov light generated by the 

primary radiation beam to the scintillation light.  

 

Table 7: The magnitude of Cerenkov photons relative to the scintillation photons in the 
scintillator  

Radiation beam Number of scintillation photons per 

mm 

Cerenkov generation relative 

to scintillation photons (%) 

6 MV photons 10.6 1.9 

6 MeV electrons 1360 2.5 

60 MeV protons 18030 0.00005 
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The distal distributions of Cerenkov light emission were investigated by plotting the 

beam profiles of the scintillation and the Cerenkov light. For example, Figure 29 shows 

that the Cerenkov light generated by a 6 MeV electron beam dose not contribute to any 

light noise signal out of the collimated beam beyond the -50 mm and 50 mm data 

points. 

 

 

Figure 29: The scintillation compared to the Cerenkov light for 10 × 10 cm2/6 MeV electron 
beam 
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2.4.4.2 Impact of the magnification in the geometries used in experiments 

The MATLAB code was generated to evaluate the effects of imaging a 3D light 

distribution onto a 2D sensor. The code starts by creating a uniform field image in one 

plane (i.e. x=0), then applies the geometry and intensity projection effects analytically 

on the previous plane using equation 2.1 and equation 2.2 to estimate the different 

images in different planes. Therefore, this would mimic the 3D light distribution taken 

in consideration r and x. For field size 10 x 10 cm2 and r equal to 10 cm, the resulting 

image which is the result of summing the images of all planes is presented in the top of 

Figure 30. Compassion of the cross profiles of the midline projection and the resulted 

image are shown in the bottom of Figure 30. The contributions of other planes in the 

resulting image highly and significantly distorted the resulting image profile. The 

resulting image‘s profile was expanded due to the magnification ±5cm (representing 

100% error).  
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Figure 30: The resulting image of the sum of images of all planes with 100 steps across the 
10 × 10 cm2 field size after applying the geometry and the intensity changes assuming the 

distance left between the camera and the scintillator is 10 cm (top) and comparison of the profile 
of the central plane or axis and the profile of the sum of all plane (bottom). The results are 

normilised to the maximum values of each data sets. 

 

We then evaluated the magnification effect with parameters similar to the 

experiments setups used. The field sizes were 10 × 10 cm2 and 3 × 3 cm2, while r was 

~92 cm. The results are shown in Figure 31 and Figure 32 respectively. It can be noticed 

that as the distance between the camera and the light source become big, the 

magnification distortion become insignificant as shown in bottom of the Figure 31. The 

resulted image profile was expanded ±1mm (representing 2% error). Even more, when 

the filed size becomes smaller the magnification distortion becomes unnoticeable 

(0.42% error) as shown in bottom of Figure 32. It can be concluded that the magnitude 
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of the magnification artefact decreased sharply with the increasing distance r and 

decreasing the field size. 

 

 

Figure 31: The resulting image of the sum of all planes with 100 steps across the 10 × 10 cm2 field 

size after applying the geometry and the intensity changes assuming the distance left between 
the camera and the scintillator is 92 cm (top) and comparison of the profile of the central plane 

or axis and the profile of the sum of all plane (bottom). 
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Figure 32: The resulting image of the sum of all planes with 30 steps across the 3 × 3 cm2 field 

size after applying the geometry and the intensity changes when the distance left between the 
camera and the scintillator is 92 cm (top) and comparison of the profile of the central plane or 

axis and the profile of the sum of all plane (bottom). 

 

For more realistic approach of estimating the effect of magnification distortion since a 

sharp fall at the edge does not occur in a real measurement, we used the crossbeam 

profiles measured by ionisation chamber of a 6 MV photon beam and for two different 

field size (10 × 10 cm2 and 3 × 3 cm2) to investigate the impact of profile distortion as a 

result of the geometry and intensity changes across the field size. Figure 33a and Figure 

34a show the profile produced at the centre plane (   ), the nearest profile plane 

(  
    

 ) and the far profile plane (  
    

 ), applying the geometry and intensity 
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equations (2.1 and 2.2). Figure 33b and Figure 34b show the comparison between the 

profile generated at the centre (   ) and the profile resulting from the sum of the whole 

profiles across the field size (  
    

 ). Thirteen profiles across the field size were used to 

generate the profile of the sum in Figure 33b and Figure 34b. For illustrative purposes, 

three profiles are shown in Figure 33a and Figure 34a. The results shows that very close 

agreement was found between (   ) and (  
    

 ) and the effect of this artefact at the 

edges is minimal (within ±0.73 mm) at the biggest field size used (10 × 10 cm2) and 

±0.01 mm for 3 × 3 cm2. In addition, we found this effect could add an error of 

±0.16 mm in the proton experiment setup (r=50 cm, field size= 2.5 cm2) and ±0.08 mm 

(r=33 cm, field size= 1 cm2) in the x-ray experiment setup. 

 

Figure 33: Magnification effects in off-axis profile of the ionisation chamber for a 10 × 10 cm2 
field size when r is 92 cm. For illustrative purposes, three profiles are shown in the top figure (a). 
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Figure 34: Magnification effects in off-axis profile of the ionisation chamber for a 3 × 3 cm2 field 
size when r is 92 cm. 

 

2.4.4.3 Absorption  

Figure 35 shows the off-axis profile of a 6 MeV electron beam simulated with and 

without optical absorption. The absorption did not show distortion in the profile 

shape. Rather it has an effect on the light output since the light output decreased 

uniformly by 2.85% as a result of absorption. 
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Figure 35: Demonstration of the impact of the absorption in the measured scintillation light in 
Geant4. The simulation used 107 electrons. 

 

2.4.4.4 Impact of the refraction in the geometries used 

Estimating the impact of refraction in the scintillation measurements is crucial when 

compared to the reference measurements. The images obtained when the container 

was empty and filled with the liquid scintillator were used to estimate the change 

of effective pixel size caused by refraction. The camera-source distance (r) is very 

important for estimating the refraction effect. When the distance between the 

container and the camera was 23 cm, two images obtained while the container was 

empty (no refraction) and filled (refraction effect presents due the differences of the 

refractive indices of scintillator liquid and air). The two images were overlaid using 
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MATLAB. Figure 36 demonstrates the refraction impact on the measurement at the 

point labelled (1) of the ruler, which translated to displacement of the point (1) by 

approximately 1 mm. The result shows that the refraction would impact the 

measurement by increasing in the apparent the length of the ruler; adding a margin 

of error of 3.07%, meaning that the scintillation light profile of 10 × 10 cm2 would be 

expanded by 3.07±0.09 mm in each dimension. 

 

 

Figure 36: The resulting image of the two overlaid images of the ruler when the container was 
empty and filled was enlarged at the 1 cm point of the ruler. The distance between the phantom 

and the camera was 23 cm. 

 

The experiment was repeated for a more realistic setup, used in the treatment 

rooms (r= ~92 cm between the camera and the scintillator), and this showed that 

the refraction would expand the measurement of the scintillation light profile by 

0.51% (i.e. 0.51 mm in 10 cm). In the case of r=50 cm used in the proton experiment, 

the refraction can add an error of 0.78% (i.e. 0.24 mm in the 60 MeV protons range 

of 3.09 g cm-2). The impact of refraction was taken into consideration and corrected 

for using equation 2.2. 

Image 1: Empty container 

Image 2: Filled container 
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2.4.5 Optical artefacts discussion  

We evaluated the magnification using two equations accounting for the geometry 

and inverse-square intensity falloff. We applied the magnification correction, assuming 

that the light came mainly from the nearest plane from the camera, resulting in an error 

in the effective pixel size. However, the profile of the scintillation light can be distorted 

because the light detected is the result of the accumulated light of the whole field size. 

The impact of geometry and the intensity of the light generated across the beam was 

evaluated analytically and using ionisation chamber measurements taken at the centre. 

This artefact is highly dependent on the field size and how far the camera is from the 

scintillator. With the field size used and the distance from the camera to the scintillator 

allowed, the impact of this artefact at the edges was minimal, being within ±0.73 mm 

distance to agreement at the biggest field size used (10 × 10 cm2). Although this source 

of error could be present in the data obtained by the detector system, it remained 

within the 3% or 3 mm tolerance agreement widely used in radiotherapy dose 

evaluation. This error source has been reported in the literature [98], [100], [117] and 

could be resolved by using a telecentric lens that offers constant magnification at all 

object distances (more explanation of telecentric lenses can be found in section  7.3) . 

Refraction can contribute significantly to the measurement, but this is highly 

dependent on the distance allowed between the camera and the scintillator. We found 

that the refraction in our setup would add a margin of error within ±0.51% in the 

measured scintillation light profile for a 10 × 10 cm2 radiation field, which can be 

corrected analytically using the magnification geometry equation.  
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The results demonstrate that the Cerenkov emission does not contribute significantly 

to the background signal generated in the low-dose region, which was discussed in the 

literature. In fact, the result obtained in this investigation showed that the shape of the 

electron profile of scintillation matches the Cerenkov profile, although the profile 

signals of the Cerenkov photons were insignificant compared to those generated by the 

scintillation photons. This is in line with experimental results when comparing the 

shape of the profile of the measured or simulated Cerenkov to that measured by the 

ionisation chamber (i.e. assuming the ionisation chamber measurements match the 

scintillation measurements) [104], [107]. 

 

2.5  Protocol of use of the detector system 

 

2.5.1 Photodetector setup and measurements 

The position and the alignment of the camera had to be considered carefully. The 

camera was attached to a tripod to keep it stable. Because of the difference between the 

refractive index of the surface of the scintillator and the air, the surface reflection 

artefact of the scintillator could be detected by the camera when it was centred at a 

depth below the surface of the scintillator [131]. The camera was placed in line with the 

surface of the scintillator to avoid the surface reflection in the data obtained near the 

scintillator surface at 90° with respect to the incident radiation beam. A reference image 

was taken before turning the light off to determine the edge of the scintillator to analyse 

the scintillation images during irradiation while it was dark. The camera was controlled 

remotely using Nikon camera control software (Nikon Corporation, Japan) connected 
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to a laptop computer via a USB cable. Black cloths and black tape were used to prevent 

the invasion of any ambient light.  

Distance calibration was performed before placing the scintillator and covering the 

system with black cloth to exclude any ambient light. The relative size of an individual 

pixel in the final image was calibrated by imaging a metric ruler placed along the 

central axis of the beam in the light room conditions. Figure 37 shows an example of the 

distance calibration performed for a proton beam. 

 

 

 

Figure 37: The distance to pixel calibration image 

 

The distance between the scintillator and the source was adjusted, as was done for 

the reference measurements (e.g. ionisation chamber), and was kept constant for each 

experiment conducted in this thesis. 

The camera was put in manual mode to provide precise and reproducible 

measurement. The settings were selected by (1) choosing the lowest ISO setting (ISO-

100) to minimise noise in the image; (2) setting the aperture such that the dynamic 
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range of the camera was filled without reaching saturation at the highest light and the 

depth of field covered the field size of the radiation beam; and (3) setting the exposure 

time without reaching saturation.  

Three repeated uncompressed raw images were acquired during each irradiation of 

the scintillation material to calculate the mean of the standard deviation of the results. 

 

2.5.2  Image analysis 

The data from the scintillation images was extracted in multiple steps. At the 

beginning, the analysis was performed using MATLAB. The raw images were 

converted from Nikon‘s proprietary .nef format to a .tiff format that could be read by 

MATLAB using dcraw, an open-source software [132]. After that, the images were 

subtracted from their background images and corrected for vignetting and 

magnification. Images were then converted to grayscale and a region of interest (ROI) 

at a certain region within the 2D images was determined and averaged. When 

applicable, the ROIs were combined to obtain a cumulative light intensity. The mean 

and the standard deviation of the three repeated images were calculated.  

The effect of the width of the ROI on the accuracy of the measurements was tested, 

using two different ROIs in the scintillation image (Figure 38) and the difference 

between the two different ROIs was found to be less than 0.8%, as shown in Figure 39. 

However, the widths of the ROIs chosen to analyse the images in the following 

chapters, were chosen to match the reference dosimeter sensitive area. For example, the 

sensitive area of the parallel-plate ionisation chamber used in proton therapy was 
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2.5 cm2.  

 

 

Figure 38: Demonstration of two widths of the ROIs selected for a 60 MeV proton image to extract the 

scintillation light depth distributions 

 

Figure 39: The scintillation light depth distributions of the two widths of the ROI and the 
difference between the distributions 
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2.6   Conclusion 

The scintillator-based radiation detector system has many advantages for use in the 

characterisation of therapeutic radiation beams. However, many interesting optical 

problems were found that required evaluations and corrections. The purposes of this 

chapter were to optimally select a suitable scintillator for our design and to evaluate the 

inherent optical artefacts associated with the detector system.  

The accuracy of a detector is enhanced by the careful selection of the scintillating 

medium. After researching several scintillators, the ideal features needed in a 

scintillator were; a long attenuation length, a high light output, a quick decay time, 

convenient for a practical detector and commercially available in a large volume. Two 

types of commercial scintillators were selected and tested for use in our detector system 

by measuring the light profiles. A liquid scintillator demonstrated some limitations that 

could affect the accuracy of the results, and some of these limitations have been 

observed in the present study. For example, the container issue of the PMMA showed 

an 11% error in the entrance dose due to the scintillation of the container in the proton 

beam. We have shown herein that a plastic scintillator is more suitable for 

measurements. To conclude, the evaluation and correction of optical artefacts is a vital 

procedure that is needed to accurately measure light distributions. 

Artefacts have effects on the light measured—including vignetting, and stray 

radiation—that directly affect the image sensor. Because the image was produced on 

the centre of the image frame, the magnitude of vignetting was minor on the light 

distribution measured, creating a slight change in the quantitative analysis of the light 

distributions. The results show that Cerenkov light has little impact on the background 
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signal generated in the scintillator, representing 2.5% of the scintillation light photons 

in the case of electrons and 1.9% of the detected scintillation signal in the case of 

photons.  

The geometry and intensity were solved analytically for a single plane. However, the 

effects of other planes across the field size were evaluated. The distortion of the light 

profile caused by the variable geometries and intensities across the beam field size 

impacted the accuracy of the measurement within ±0.73 mm of the bigger field size. 

The setup used in this thesis at the edge of the light profile and the impact of 

magnification was considered minimal and could be resolved using a telecentric lens. A 

more practical solution when using a conventional lens to characterise and correct the 

issue of magnification could be to image a thin sheet of scintillator by moving it across 

the collimator used. The sum of all light profiles would estimate the distortion caused 

by magnification by comparing it to the measurement taken in the centre.  
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CHAPTER 3   

3. SCINTILLATION DETECTOR SYSTEM FOR LOW 

ENERGY RADIOTHERAPY 



3. Scintillation Detector System for Low Energy Radiotherapy 

 

110 

 

3.1  Introduction 

Two categories of photon external beam radiotherapy are commonly used including 

kilovoltage x-rays (produced in a x-ray tube) and megavoltage x-rays (produced in a 

linear accelerator) [20]. Of interest in this chapter is the kilovoltage x-rays and the 

spectrum is shown in Figure 40. 

 

Figure 40: Approximate sketch diagram showing the spectrum of kilovoltage x-rays (100kVp) 
acquired using the x-rays 

 

Many factors affect the spectrum of x-ray emissions such as tube current, applied 

voltage, and filtration. An increase in the tube current (mA) would result in an increase 

in the amplitude of the x-ray emission spectrum at all energies illustrated in Figure 41. 

In contrast, an increase in applied voltage (kVp) affects both the amplitude and the 

energy of the x-ray emission spectrum. X-ray intensity varies rapidly with changes in 

applied voltage. An increase in applied voltage results in an increase in the x-ray 

emission energy, making it more penetrating [133], [134]. 
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Figure 41: a) The effect of increasing the current b) The effect of increasing the applied voltage. 

 

Most reports of scintillator-based dosimetry were in high-energy radiotherapy 

applications [42], [82], [83]. We extended this to a lower energy range with applied 

voltages of up to 300 kVp. This range is most commonly used for diagnosis, but there 

are also therapeutic applications, such as the treatment of skin diseases. We 

concentrated on the therapeutic application because the maximum dose is deposited 

close to the surface of the patient and the doses fall quickly with depth, owing to the 

attenuation and scattering of the beam [135], [136]. The therapeutic kilovoltage x-ray 

range used from mostly treating skin cancer can be categorised as contact therapy using 

40–50 kv for treatment depths of 1-2 mm, superficial therapy using 50–150 kv for 

treatment depths up to 5mm, and orthovoltage therapy with 150–300 kv for treatment 

depths of nearly 2 cm from the surface of the skin [36].  

There is little data available in the literature about the use of a large plastic scintillator 

and a camera as a dosimeter for kilovoltage x-ray beams [121]. The intrinsic 

effectiveness of a dosimeter is its capacity to provide precise and accurate readings, 
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especially in clinical applications such as radiotherapy. The dosimeter has to have a 

well described dose response, be able to correctly resolve a PDD curve, and provide 

reliable results for fast changes in the dose delivery. A camera-scintillator detector 

system is designed as a tool for general beam QA. In kilovoltage radiotherapy 

dosimetry, the results of the measurement should be identical or closely similar each 

time the measure is conducted. Therefore, the degree to which the system allows for 

accurate and reproducible results shall be assessed.  

For therapeutic purposes, obtaining the dose as a function of depth is essential to 

provide data to the treatment planning system and to confirm the accuracy of the 

planning system in radiotherapy. This can change with SSD, field size and beam quality 

(e.g. energy, half value layer (HVL)). In radiation dosimetry, the PDD is also sensitive 

to the detection material at this energy range as low energy photons generate short 

range secondary electrons unlike the megavoltage photon dosimetry [137]. 

We propose a detector system based on a large plastic scintillator and a commercial 

camera to be used for in-phantom dosimetry for kilovoltage x-rays. The system could 

offer a quick and easy way to measure PDD curves. According to the published 

dosimetry protocols (e.g. AAPM), the use of a specific solid phantom for kilovoltage x-

ray beams could be feasible if the dose to the phantom can be related to the dose in 

water. The differences in doses between them should be within 3.5% [138]. Hence, the 

recommendation is that any material claimed to be water equivalent shall be quantified 

before it is used clinically [121]. To use a detector system for kilovoltage x-ray 

dosimetry, energy responses of the scintillation material compared to water are very 

crucial. It has been reported that the use of a scintillator (e.g. scintillating fibre) is not 
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feasible because that the energy response is not linear [139]. On the other hand, Lessard 

et al. (2012) argued that a scintillating fibre can be used as a dosimeter for low energy x-

rays [140].  

In this chapter, we examine the capability of the system to provide precise and 

reproducible results. In addition, we evaluate the system‘s response against current of 

the x-ray machine and we investigate the system‘s ability to measure a PDD curve. 

Monte Carlo simulation has become an effective method to compute dose deposition 

and it is used in this study to validate the measurement and to determine whether the 

detector system suffers from energy dependency as well as the potential usefulness in a 

kilovoltage energy range [141], [142].  

  

3.2  Materials and methods 

 

3.2.1 The detector system setup 

The BC-408 plastic scintillator chosen has a high light output efficiency and response 

to x-ray in the kilovoltage energy range. The setup used is displayed in Figure 42 and 

measurements were performed in a 1 cm diameter field with an SSD of 22 cm. The 

camera was placed 33 cm away from the scintillator. 
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Figure 42: Schematic of the setup used in this experiment 

 

The irradiations were performed at University College London (UCL) with x-ray 

source in the radiation physics laboratory. The anode of the x-ray tube was made of 

tungsten, had a 21◦ anode angle, and had an inherent filtration of 0.1 cm of 

beryllium (Be).  

The light output could be affected by the distance between the scintillator and the 

camera. The camera should be controlled manually (i.e. acquisition time, and aperture 

size) and should have the same settings for all the measurements. Therefore, the camera 

settings were checked to ensure that they provide a useful and reproducible image. No 

saturation should be present in the images with the highest light output and with 

acquisition time of the 0.5 seconds.  

22 cm 
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Table 8 lists the beam qualities used in this study provided by the National Institute 

of Standards and Technology (NIST) [143]. The primary incident spectrum of each 

applied voltage (i.e. energy) was determined with SpekCalc software from a tungsten 

target as well as the effective energy as shown in Figure 43 [144]. The scintillation light 

was imaged during irradiation from 50 up to 100 kVp because the tube available could 

generate x-rays up to 150 kVp but we were advised that 100 kVp is the maximum 

useable applied voltage. The simulated PDD curves (described below in section  3.2.4) 

were obtained from 50 to 300 kVp to cover all the beams energy used in therapeutic 

x-rays.  

 

 

Figure 43: Main window of SpekCalc 
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Table 8: The characteristics of the x-ray beams 

Peak tube potential (kVp) Mean energy (keV) HVL 

50 
28.5 1.02 mm Al 

60 
33.5 1.68 mm Al 

80 
43.3 2.97 mm Al 

100 
52.5 5.02 mm Al 

150 
83.8 10.2 mm Al + 0.67 mm Cu  

200 
112.0 14.9 mm Al + 1.69 mm Cu 

250 
144 18.5 mm Al + 3.2 mm Cu 

300 
173 22.0 mm Al + 5.3 mm Cu 

 

 

3.2.2 Background noise 

Any unwanted signals will reduce the accuracy of the measurements. Therefore, 

different situations were characterised. First, we investigated whether noise in the 

image is generated by the x-ray source when there is nothing in the way of the beam. 

Second, a non-scintillating, scattering material (PMMA sheets) was introduced into the 

beam and the image noise was again measured in order to investigate whether 

scattered stray radiation affects the measurements. These background images can then 

be subtracted from images acquired during irradiation. 
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The results show that the mean of the background signals of three repeated images 

increased from 2.1% to 2.6% when the beam was turned on. In addition, the mean of the 

measured noise intensity was increased further to 2.8% when PMMA sheets were put 

in the way of the beam as a non-scintillating scattering material. This indicates that the 

background signal should be taken into consideration to reduce uncertainty. This is 

particularly important when there is a scattering material such as the plastic scintillator 

which contributes additional signals to our photo-detector due to scattering of the 

kilovoltage x-rays. In addition, the camera was placed near (33 cm) to the x-ray beam.  

Figure 44 shows the scintillation depth distribution extracted from the image during 

x-ray irradiation. It also shows the corrected scintillation depth distribution after 

subtracting the background signal when there was a scatterer. 
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 Figure 44: The impact of subtracting the background signal in the measured depth dose distribution. 

Error bars demonstrate the standard deviation of three repeated measurements. 

 

3.2.3  System characterisation 

 

3.2.3.1  Short-term reproducibility and repeatability 

A QA system must be reproducible and stable. It is necessary to investigate whether 

the scintillator detector system can give the same result for daily use by calculating the 

variation in the data obtained in repeated measurements. A small standard deviation of 

the measurements means high precision. To test the reproducibility, the scintillator was 

exposed to an x-ray beam and the response imaged by the camera. The signal 

reproducibility of the system was tested six times for three different energies 50 kVp, 
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80 kVp and 100 kVp with constant 4mA. 

 

3.2.3.2  Linearity  

In order to investigate the linearity of the relation between the x-ray intensity 

delivered in the scintillator and the camera output, the total yield was measured for 

different currents, with a fixed field size of 1 cm. The measurements were performed 

with a constant integration time of 0.5 seconds. The response of the system to changing 

x-ray tube currents was tested by varying the current from 2.5 to 5.5 mA for three 

voltages (60, 80, 100 kV). The average light outputs were taken and plotted with the 

equivalent current.  

 

 

3.2.3.3  Comparison of measurements with ionisation chamber  

In this measurement, the scintillator was exposed to a 50 kVp beam, and the 

scintillation light was imaged at a constant irradiation time of 0.5 seconds to extract the 

PDD curve with a 1 cm diameter beam at an SSD of 22 cm.  

Similar measurements were performed using an ionisation chamber connected to 

Keithley 35050A electrometers. The PDD obtained from the scintillation detector system 

was then compared to that from the ionisation chamber to investigate whether the 

detector system provided similar measurement. The same beam qualities of 3 mA and 

50 kV were used for both measurements. The ionisation chamber measurements would 

ideally be obtained in a water phantom. However, a waterproof ionisation chamber 
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would be required along with a water phantom to do the measurements, neither of 

which was available in the lab. Instead, Perspex sheets were used to mimic the water 

phantom, as Perspex has a density almost equivalent to water. The ionisation chamber 

was placed behind sheets of Perspex. By doing so, the dose at any depth along the 

beam central axis could be measured by increasing the number of Perspex sheets. The 

statistical uncertainties of these measurements in both detectors were determined 

through repeated measurements. 

 

3.2.4 Monte Carlo simulations 

Geant4 was used to extend the experimental results which aim to investigate the 

energy dependency of the scintillator across the for all radiation beam qualities 

available in therapeutic x-rays. For radiotherapy applications, Geant4 simulations could 

provide a result with accuracy within 1% for low energy photon compared to a clinical 

beam [142].  

Precise simulation of the energy loss of the primary particle and production of 

secondary particle is a critical requirement. Therefore, many physics packages are 

available in Geant4 to be used according to the radiation particle types and energy 

ranges used. The low energy standard physics processes (e.g. Compton scattering, 

Rayleigh scattering, photoelectric effect) were employed for electromagnetic 

interactions covering the interactions of photons and electrons in materials with atomic 

number between 1 and 100 [145]. In our model, the Geant4 was used to determine 

whether the detector system suffers from energy dependency at all the beam qualities 

(50 - 300 kVp) available in kilovoltage x-rays using 107 primary incident photons 
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providing statistical uncertainties smaller than 1%. 

Table 9 shows the chemical elements of the materials used in the simulation, their 

density, and mean atomic number ( ) which was calculated using Eq 3.1 as stated in the 

ICRU 35 report [26], [146], [147].  

 

 
  √∑      

 . 

 

 .  
Eq 3.1 

 

 

where     is the fraction by weight of element i which has atomic number   . These 

materials were built in the simulation and then exposed to a photon beam placed 22 cm 

from the scintillator. The number of incident photons simulated was 107 photons.  

 

Table 9: The fractional weight of component of the materials used in the simulation 

 

COMPONENT 

 

WATER 

 

BC-408 SCINTILLATOR 

 

PMMA 

 

H 

 

0.1118 

 

0.0850 

 

0.0805 

 

C 

 

- 

 

0.9150 

 

0.5998 

 

O 

 

0.8881 

 

- 

 

0.3196 

 

Density (g cm-3) 

 

1.00 

 

1.03 

 

1.19 

 

  

 

7.73 

 

5.84 

 

6.70 
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3.3  Results  

 

3.3.1 Short-term reproducibility and repeatability 

Results from the measurements‘ reproducibility test are displayed in Table 10. The 

results indicated that the system was stable, since the standard deviation was less than 

1%. The deviation is higher when the irradiation quantity was low (i.e. less light 

output) and the result improves with increasing voltage. 

 

 

Table 10: The reproducibility of results of six images for three set of applied voltage 

 

The applied voltage  

 

50 kVp 

 

80 kVp 

 

100 kVp 

 

Mean of six images 

 

200.16 

 

249.28 

 

278.86 

  

standard deviation 

 

1.56 

 

1.23 

 

0.97 

 

Relative standard deviation, % 

 

0.56 

 

0.50 

 

0.48 
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3.3.2 Linearity  

The results reported here were based on the mean of three images per value of 

current. The influence of current is illustrated in Figure 45. The solid line in this figure 

represents a linear fit of the average response. The average pixel intensity is observed to 

increase linearly with a delivered current with a correlation coefficient (R2) equal to 

0.99. Measurement uncertainty was assessed by measuring the standard deviation 

relative to the mean. The uncertainties of current values may have arisen from the 

rotary selection switches of the values of the voltage and current which had errors of 

±0.1 mA and ±1kV respectively. The variation in the light output readings was highest 

when the voltages and currents were low.  

 

Figure 45: The scintillation light as a function of x-ray tube current for different applied voltages. 
Error bars demonstrate the standard deviation of three repeated measurements 
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3.3.3 PDD measurements 

The measured PDD for the scintillator-based system and ionisation chamber at 

50 kVp are displayed in Figure 46. The ionisation chamber measurement shows more 

rapid dose fall-off with depth. We assumed the PMMA material is equivalent to water 

at the energy used, but this requires investigation, which we consider in the next 

section. The difference between these curves demonstrates that either the PMMA or the 

plastic scintillator is not water equivalent or the measurements are not accurate i.e. 

backscatter is missing in the ionisation chamber measurement. 

 

 

Figure 46: Comparison of measured scintillation light distribution and PDD curves by ionisation 
chamber for 50 kVp beam. Error bars demonstrate the standard deviation of three repeated 

measurements. 
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3.3.4 Monte Carlo validation  

Percentage depth dose curves were simulated using Geant4 in three materials at 

50 kVp. These are displayed in Figure 47. The PDD in PMMA was up to 7% greater 

than that in water, and the PDD in the plastic scintillator was up to 23% greater than 

that in water. Different  -values have an impact on the PDD. For example, the 

difference in the PDD of plastic scintillator ( =5.84) was larger than that in PMMA 

( =6.70) compared to water ( =7.73). This could be explained due to the differences in 

value of Z having an impact on the PDD. 

 

Figure 47: The simulated PDD curves for water, PMMA and BC-408 scintillator at the same 
irradiation parameters (50kVp) 

 

The energy dependence of the scintillator was tested by comparing the simulated 

PDD curves for water and scintillator at different energies as illustrated in Figure 48. 
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The difference between the simulated PDD obtained in the BC-408 scintillator and that 

in water was found to reach 23% at low effective energy of 28 keV (50 kVp), and the 

difference decreases when the energy increases until 83 keV (150 kVp) is reached, 

where there is an acceptable difference (3%) between the two materials, as shown in 

Figure 49. It is observed that as the beam energy increases, the PDD differences 

decrease.  
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Figure 48: The simulated PDD curves for the BC-408 scintillator and liquid water for different 
applied voltages 
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Figure 49: The percentage maximum difference between the depth-dose distributions deposited 
in water and scintillator for different applied voltages Error bars demonstrate the combined 

statistical deviation of the simulation results. 

 

3.4  Discussion  

A prototype system has been developed using a plastic scintillator and camera 

offering enormous potential as a 3D volume dosimeter. System characterisation results 

from the prototype system used in this study showing excellent linearity with current. 

It has been noticed that the standard deviation is higher at lower current or applied 

voltage values due to the lower output at low applied voltages and currents. In 

addition, the detector system provided reproducible results within ± 0.56% for low 

energy photon beams. 

We have used measurements and Monte Carlo simulations to investigate the water 

equivalency of the BC-408 scintillator by comparing its depth doses and to water for 
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kilovoltage x-ray beams. The effective atomic number of the scintillator was found to 

differ from water. Unlike megavoltage x-ray beams, there are few obstacles affecting 

the accuracy of the current practice of the dosimetry of kilovoltage x-rays because of a 

more significant photoelectric interaction of incident x-ray beam [148]. The 

photoelectric cross section depends strongly on the atomic number of the material, so 

the sensitivity of a dosimeter would reliant on the materials‘ composition used in its 

construction (i.e.  ) [121], [149]. In the kilovoltage energy range, depth-dose 

distributions for the scintillator exhibit less attenuation than those for water for 50–150 

kVp x-ray beams, due to the stronger relative significance of photoelectric absorption in 

the water [150]. It was found that the plastic scintillator cannot be considered water 

equivalent material at low energy photons if the applied voltage below 150 kVp 

(83 keV). This indicates that the plastic scintillator should not be used below 83 keV 

without correction for each applied voltage used. For above than 150 kVp x-ray beam, 

the scintillator exhibits a very close dose reduction with depth to water with less than 

3% difference. 

Some properties of the ideal dosimeter discussed in this chapter are revisited here in 

Table 11. The scintillation responded very fast as the luminescence in the scintillation 

material is of the order of ns and the requirement for a dosimeter is ≤ 10 ms [127].  
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Table 11: The requirements of the performance of a clinical QA system 

 

Requirement 

 

Results 

 

1) Stable 

 

Found to be stable ±1% 

2) Response time 
Provide nearly real-time measurement  

3) Linearity with dose 
Responded linearly  

4) Independent of energy 
Energy independent at energies greater than ~83 

keV but not at energies less than this 

5) Clinic environment suitability 
showed to be non-toxic 

 

 

3.5  Conclusion 

The purpose of this work was to evaluate the use of the camera-scintillation detector 

system for the use of therapeutic kilovoltage x-rays dosimetry. In this work, we studied 

the measured depth dose distributions of 50 kV x-ray beam obtained by ionisation 

chamber and the scintillation detector system. Divergence was found between the two 

distributions and this required further investigation. Therefore, we used Geant4 to 

model the output of a kV x-ray unit (50–300 kVp). We studied the depth dose 

distribution obtained in water and in the BC-408 scintillator. The tolerance levels of the 

comparison between the depth-dose distributions obtained from scintillator detector 
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measurements and those obtained in water should be within ± 3.5%. By analysing the 

simulated depth dose distribution in both mediums, less than 3% was found in both 

materials for applied voltages exceeding 150 kV. We conclude that the best agreement 

occurred with the highest energies. The system has the advantages of providing 

reproducible results rapidly and directly digital. However, even though the plastic 

scintillator has a density equivalent to water, the elemental composition is not water-

equivalent below 150 kV.  
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CHAPTER 4   

4. SCINTILLATION DETECTOR SYSTEM FOR HIGH 

ENERGY RADIOTHERAPY 
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4.1  Introduction 

Individual treatment plans are subjected to a series of well-defined checks and 

verifications to ensure both the prescription and the plan are identical. Therefore, 

pre-treatment verification of the output information of the Linac is an essential QA 

procedure. Because the electrons generated pass through a complicated path from 

production, guidance, and acceleration to the delivery of the radiation dose, the 

performance characteristics of the machine must be strictly monitored. Many 

examinations (daily, weekly, monthly, and annual) of the beam parameters are 

performed, such as measuring PDD and off-axis profiles at different energies and 

different field sizes. This is to validate the machines output and to provide data for the 

treatment planning system. These measurements are normally done using a 

standardised tank of water with an ionisation chamber [151].  

Several methods have been used to extract dose information in high energy photon 

and electron beam such as ionisation chamber, and film. Although ionisation chambers 

have been shown to be robust, precise, and very well controlled, but they suffer from 

volume averaging because of the creation of the collected ions throughout the active 

chamber volume and low sensitivity in comparison to other dosimeters [152]. In 

addition, the ionisation chambers placed in 2D arrays do not offer sufficient spatial 

resolution [153]. Films possess a high spatial resolution but their responses depend on 

dose rate and film processing that can be affected by many parameters such as 

temperature. A calibration procedure is, therefore, essential when film dosimetry is 

used, which is a lengthy and time consuming procedure [154], [155]. 
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During daily radiotherapy sessions, camera-scintillator combination can be used in 

EPIDs to monitor patient position and can also be used to verify individual leaf motion 

during an IMRT delivery. Recently, there has been an increase in research on 

characterising and evaluating organic scintillators for use as dosimeters for QA 

applications [33], [52]–[55]. Several authors reported the suitability of an organic 

scintillator for dose measurements, and many scintillators types and designs were 

studied. The use of scintillators is encouraging for high energy photon dosimetry 

because of their radiological water equivalence [57]. They exhibited many advantages 

in a 6 MV photon beam such as high sensitivity, reproducibility within ±1%, linear dose 

response, energy independence, independence of pressure and temperature, and a fast 

response to ionising radiation [56], [57]. Arrays of scintillating fibres were evaluated for 

2D dosimetry applications [91], [156], [157]. A thin plastic scintillating screen or sheet 

placed obliquely in water phantom in combination with a mirror and CCD camera 

were also designed for dosimetry measurements [158], [159]. An important drawback 

of the above designs is Cerenkov noise signals produced in optical fibres and in the 

whole water phantom in where the scintillating sheet was positioned. In addition, these 

fibres are not yet commercially available, and high accuracy is required to prepare these 

fibres for coupling to optical fibres as a light guide as mentioned in chapter 2. Large 3D 

volume liquid scintillator detectors have also been used to evaluate the dose 

distribution for photon beams [83]. Several attractive features of large scintillators 

enable them to be a good candidate for dosimetric measurements such as high 

resolution [83].  

The use of the scintillators in electron dosimetry has not found in the literature as far 

as I am aware. In general, organic materials or phantoms used instead of water need to 
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be tested for each type of ionising radiation used in order to estimate the accuracy of 

the measurements obtained by a specific phantom. Materials from dosimetric point of 

view cannot be exactly equivalent to water because their differences in elemental 

compositions, production rates of secondary particles at equivalent depths, and 

interaction cross sections [160], [161].  

Most of the previous work in radiotherapy has used liquid scintillators, which are 

difficult to use in the clinic, scintillating fibres connected to photodetectors, or sheets of 

plastic scintillator. We proposed a dosimeter in chapter 2 based on a large plastic 

scintillator, which has a density equivalent to water, and a camera to image the 

scintillator during irradiation. We found that the detector system is easy to handle 

compared to a scanning ionisation chamber which the setup and measurements are 

time consuming. In this chapter, we want to ensure that the PDD curves measured by 

the scintillator system match those measured in water and extend that investigation to 

electrons. Therefore, the performance of the whole BC-408 scintillation detector system 

will be compared against ionisation chambers, the most commonly used detectors in 

radiotherapy. 

 

4.2  Materials and Methods  

4.2.1 The detector system setup 

An Elekta MLCi2 Linac (Elekta Oncology Systems, Crawley, UK) was used for this 

investigation which has an MLC with 40 leaf pairs as shown in Figure 50. This Linac at 

the National Physics Laboratory (NPL) can deliver photons and electrons. Discrete 
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energies in the range from 4 to 25 MeV of electron beams can be produced. The 

reference measurements were carried out with a PTW 31014 ionisation chamber (PTW, 

Freiburg, Germany) in water for photon beam. This chamber is a cylindrical air 

chamber and has a 2 mm diameter and is 5 mm long with a central steel electrode. 

 

 

Figure 50: The Linac and the reference water tank used in this experiment  

 

The impact of high energy radiation on the Nikon D7100 camera can either lead to the 

ionisation of the camera‘s readout circuitry, which adds noise to the signal, or 

damaging the readout circuitry which degrades the camera performance. To prevent 

high energy radiation beams from penetrating to the camera‘s active volume, the 

camera was kept a sufficient distance away from radiation beam. It is proven 

experimentally that the total doses drop rapidly below 0.1% of the dose at the isocentre 

at a distance of more than 40 cm from the central axis [54], [162], so the camera was 

positioned at the isocenter of the gantry at a distance of ~92 cm. The camera settings 
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were ISO100, f/8 and 1 s exposure time. The distance calibration was done as well the 

SSD adjusted to 90 cm for photons and 100 cm for electrons, as seen in Figure 52. The 

pixel size was 0.07 mm in the plane of the image at the beam axis 

 

 

Figure 51: The scintillator setup in the case of a) photons and b) electrons 

 

 

Figure 52: a) SDD adjustment b) pixel to distance calibration 
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4.2.2 Testing the water equivalency of BC-408 scintillator for photons 

and electrons 

The penetration distance of photons is greater than that of charged particles since 

they penetrate through before interacting with the scintillator as they are electrically 

neutral. Photons may be scattered or absorbed. In the case of electrons, the mode of 

interactions with the atoms of the scintillator can be elastic or inelastic Coulomb force 

interactions with nuclei or the orbital electrons of the scintillator resulting in 

Bremsstrahlung, ionisation or excitation. Therefore, we want to find out for both 

photons and electrons whether the scintillator possesses similar interaction mechanisms 

to ideal water equivalent materials. An ideal dosimeter should have the same 

interaction properties as water. The Geant4 Monte Carlo simulation package was used 

to investigate the interaction of the passing of photon and electron beams through the 

water and the BC-408 plastic scintillator. 

Geant4 simulations were performed in simulated homogeneous water and BC-408 

scintillator to compare the PDD curves from photon and electron beams. Five million 

photons and electrons were utilised as a primary source entering a box phantom with 

dimensions of 20 cm x 20 cm x 10 cm. Electromagnetic interactions in Geant4 were 

simulated using a standard physics packages.  

We evaluated the PDD curves for photon and electron beams using Geant4 

simulation. Figure 53 shows that the build-up and dmax regions in the PDD curves for 15 

MV photons match for both materials with less than 0.8 % difference between the two 

curves.  
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Figure 53: Comparison of simulated PDD curves obtained in water and BC-408 scintillator, for a 
15 MV photon beam. Error bars demonstrate the statistical deviation of the simulation results 

and some of error bars appears smaller than the point size at certain points of the curve. 

 

In addition, the comparison of the simulated PDD curves of electrons (Figure 54) 

obtained in the water and in the scintillator at different energies revealed that the 

uncertainty could be up to ~7% between the water and BC-408 scintillator when they 

were exposed to 15 MeV electron beams in Geant4. Comparisons of the PDD data of 

electrons have discrepancies with depth. The direct use of the detector system in 

electron therapy would introduce error in the measurements unless a correction is 

utilised. 
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Figure 54: Comparison of PDD curves obtained in water and BC-408 scintillator for 6, 12 and 15 
MeV electron beams with 10 × 10 cm2 field size. Error bars demonstrate the statistical deviation 

of the simulation results. 

 

IAEA and AAPM recommended that the PDD distribution of an electron beam in a 

plastic phantom can be transformed to appropriate PDD distribution in water by the 

depth-scaling factor cscint [163], [164]. For a measurement taken at a depth of xscint (cm) in 

the scintillator, the equivalent depth in water xw (cm) is given by 

 

                     

 

Eq 4.1 

 

where 

 
       

   
     

   
     

 
Eq 4.2 
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cscint is given by the ratio of the R50 (the depth of the 50% dose level) in water to that in 

the scintillator and it was found 0.980±0.005. The depths xscint were converted to xw and 

the corrected results are presented in Figure 55. As a result, we could compare our 

corrected measurement to the measurements obtained in water. Errors at R50 were 

reduced from 7% to 0.6% 

 

Figure 55: Comparison of PDD curves obtained in water and corrected scintillation obtained in 
BC-408 scintillator for 6, 12 and 15 MeV electron beam with 10 × 10 cm2 field size. 

 

4.2.3 Measurement of short-term reproducibility and repeatability 

 This test was carried out to verify the short-term reproducibility of the output of the 

detector system by irradiating the scintillator four times using consecutive irradiations 

of photon beams with radiation fields 3 × 3 cm2 and 10 × 10 cm2. The irradiation 
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(MU min-1) at SSD equal to 100 cm. An MU is used to relate machine output with the 

absorbed dose. 

In addition, four electron energies were used to investigate the reproducibility of the 

detector system for electrons with an applicator size of 10 × 10 cm2 at a fixed SDD of 

90±0.5 cm. The average intensity value of the generated scintillation light was obtained 

for four consecutive irradiations. The mean (of the average ROI pixel values) of the four 

consecutive readings was calculated to test for the reproducibility of the detector 

system results and to determine the percentage of pixel deviation from the mean value.  

4.2.4 The central PDD curves for photons and electrons 

Measurements were performed using the plastic scintillator-camera system to 

estimate the PDD with different energies and field sizes for photons and with different 

energies for electron beams in the scintillator and then to compare it to that in water.  

We delivered a constant dose rate (620 MU/min) and an acquisition time of one 

second. The Linac was calibrated to deliver 1 Gy (corresponding to 100 MUs) at 95 cm 

SSD and at 5 cm depth in water. Two energies (6 MV and 15 MV) with different field 

sizes (3 × 3 cm2 and 10 × 10 cm2) were used for photon beams at 95 cm SSD. Scintillation 

images for the field sizes used are shown in Figure 56.  
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Figure 56: Demonstration of two scintillation images for 15 MV photon beam for two field sizes 

 

According to the report of AAPM Task Group 53, different tolerances of deviations 

( ) suggested for different regions in the photon PDD curve could be used to estimate 

the differences of normalised doses between the ionisation chamber (Dion) (i.e. reference 

measurement) and scintillation system (Dscint) and can be calculated by Eq 4.3 and Eq 

4.4 [165]: 

 

                        Eq 4.3 

 
 

 
   

             

    
          

 

Eq 4.4 

 

where,    represents the deviation of the data points in the build-up region at 90% of 

surface dose expressed in mm as illustrated in Figure 57 and the proposed tolerance 

value    in homogeneous material is within 2 mm ideally. Whereas,    indicates the 
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local dose (D) data beyond the depth of dose maximum (dmax) (e.g. at 70 mm depth). 

The ideal tolerance value    in homogeneous material is within 3% [166]. 

 

Figure 57: Regions of validity of the criteria, showing (1) the depth dose directly measured by 
the camera (solid blue line); and (2) the measured ionisation chamber depth dose (red dashes). 

 

To characterise the PDD curves for electron beams obtained by the scintillator-

detector system, Figure 58 shows a generic PDD with some parameters used to 

characterise the electron PDD curves as recommended by the ICRU (1984) [167]. These 

parameters should meet agreement within 3% dose or 3 mm distance [168]. These 

parameters are: 

1. The relative surface dose (D0) which is measured at 0.5 mm depth due to the 

difficulty of measuring accurate doses at an air detector interface.  

2. The relative dose due to the Bremsstrahlung x-ray (Dx) which is obtained 

beyond the maximum range of the electrons.  

3. The therapeutic range (Rt) defined as the depth which receives 90% of the 

dose (R90). 
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4. The R50, which is the depth of the 50% dose level. 

5. The practical range (Rp) obtained by the plotting of a line tangent to R50 along 

the distal falloff of the PDD curve. 

 

Figure 58: The characterisation of the PDD curve for an electron beam in ICRU (1984). The blue 
continuous line is measured from the camera-scintillator detector system and the dashed line is 

measured with an ionisation chamber in water. 

 

For the above purpose, scintillation images (Figure 59) were acquired for four 

electron energies (6 MeV, 10 MeV, 12 MeV, and 15 MeV). The field size was 10 × 10 cm2, 

achieved by attaching the applicator in the Linac gantry at 100 cm SSD. 
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Figure 59: Scintillation images for four energies of an electron beam. 

 

 

4.2.5 Off-axis dose profile  

The images obtained to extract the PDD curves were also used to extract the cross 

profiles by extracting the dose profile perpendicular to the beam‘s central axis at a 

given depth. There will be a well-defined peak where maximum dose (dmax) is 

deposited after which the dose decreases. The off-axis profiles could be measured at 

various depths such as dmax and can be characterised as reported in the AAPM Task 

Group 53 and as shown in Figure 60. 

   : represents the difference in the data points in the build-up region and the tolerance 

value is ≤ 2 mm. 

   : shows the variation in the data points outside the central beam axis and the 

tolerance value is ≤ 3%. 

   : highlights the difference in the data point with low dose region (e.g. below 7%) and 

the tolerance value is ≤ 3%. 
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      : for data point between 50% and 90% point and the tolerance value is 2 mm. 

RW50: the radiological width of a profile measured at 50% and the tolerance value is 

2 mm. 

 

Figure 60: Profiles comparison, showing (1) the depth dose directly measured by the camera 
(solid blue line); and (2) the measured ionisation chamber depth dose (red dashes) 

 

4.3   Results 

 

4.3.1 Background signal contribution  

By evaluating the background signal in Figure 61 and Figure 62, it is observed that 

the background signal taken when the beam was off has no obvious impact on the 

measurement, indicating that the camera was well shielded from ambient light. The 

mean background signals were 0.89 and 0.76 for photon and electron respectively. 

Unfortunately, stray radiation (i.e. unwanted radiation hitting the camera when the 
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beam is on) can be observed as spikes in Figure 61. However, the existence of spikes or 

active pixels in the PDD curve of the electron beam was much less than that in the 

photons‘ PDD curve and it may be due to reduced scattering and higher counts of 

electrons (Figure 62). The scintillation depth distributions were improved by applying a 

median filter and subtracting the background.  

 

Figure 61: Comparison of the raw image and analysed image for photon beam and effect of 
background signal in the analysed image compared to the raw image. 
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Figure 62: Comparison of the raw image and analysed image for electron beam and effect of 
background signal in the analysed image compared to the raw image.  

 

4.3.2 Short-term reproducibility and repeatability 

The reproducibility was calculated using the experimental average of four repeated 

measurements with the associated standard deviation. The reproducibility of the 

measurements indicates an excellent performance with a maximum standard deviation 

of 0.8 %.  

 

4.3.3 The central PDD curves for photons and electrons 

This test investigates the detector system‘s ability to provide reliable dosimetric data. 

The deviations ( ) suggested for different regions in the photon PDD curve were 

estimated for the differences of depth doses between the ionisation chamber and 

scintillation system and can be calculated by Eq 4.3 and Eq 4.4. Figure 63 shows a 

comparison between the scintillation and ionisation chamber measurements. The 
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detector system was used to image scintillation light from 6 MV and 15 MV photon 

beams. The agreement between the two detectors shown in Figure 63 and Table 12 was 

acceptable for all field sizes, being <1 mm in the build-up region for   and generally 

~2% in the high dose gradient regions for    . 
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Figure 63: Comparison between the PDD values, of a 10×10 cm2 field, obtained by: the 

scintillation detector system (continuous line) and the ionisation chamber as a function of the 
depth in water (dashed line) for the 6 MV and 15 MV photon beams. Error bars demonstrate the 
standard deviation of three repeated scintillation measurements of photon beams and some of 

error bars appears smaller than the point size at certain points on the curves. 
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Table 12: The difference values between the ionisation chamber and the scintillation detector 
system, obtained at 90% and at 70 mm.  

 
Energy (MV) 

 

 
δ1 (mm) 

 

 
δ2 (%) 

 

6 MV (3 Χ 3) 
0.74±0.11 2.01±0.07 

6 MV (10 Χ 10) 
0.78±0.21 1.66±0.12 

15 MV (3 Χ 3) 
0.65±0.13 1.09±0.09 

15 MV (10 Χ 10) 
0.08±0.14 0.54±0.03 

 

 

The dosimetric parameters were used to characterise the electron PDD curves as 

recommended by the ICRU. The PDD data of four electron beams (6, 10, 12 and 15 

MeV) was extracted from the central axis of the scintillation images (Figure 64) and 

compared to PDDs data measured with an ionisation chamber in water. The differences 

in different regions of the curve between the ionisation chamber and scintillation 

detector system were obtained as listed in Table 13. The scintillation detector showed to 

provide accurate ranges for R90, R50 and Rp within ± 0.83 mm. Due to low-intensity tail 

artefact, the detector system did not provide accurate results in the low dose region Dx. 
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Figure 64: Comparison of depth dose profile between ionisation chamber measurement and 
scintillation measurements, for a 6, 10, 12 and 15 MeV electron beams. Error bars demonstrate 

the standard deviation of three repeated scintillation measurements of electron beams and some 
of error bars appears smaller than the point size at certain points along the curves. 
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Table 13: The electron beam characteristics for the ionisation chamber and the scintillation 
detector system 

 
Variations in 

Energy (MeV) R90 (mm) R50 (mm) Rp (mm) D0 (%) Dx (%) 

6 0.09±0.01 0.12±0.03 0.30±0.05 0.66±0.08 2.94±0.14 

10 0.51±0.02 0.21±0.06 0.70±0.08 0.49±0.02 3.88±0.08 

12 0.35±0.03 0.72±0.02 0.80±0.07 0.56±0.04 4.33±0.10 

15 0.15±0.02 0.55±0.03 0.83±0.18 1.41±0.03 5.45±0.07 

 

 

4.3.4 Off-axis dose profile  

To more quantitatively compare distributions, the off-axis profiles of photon beams 

with 3 × 3 cm2 and 10 × 10 cm2 field sizes were measured in the scintillation images and 

compared to the ionisation chamber measurements at dmax as shown in Figure 65. All 

data was normalised to their maximum value. The error along the off-axis of photon 

beams decreases with increasing field size. In addition, the profiles of 6, 10, 12, and 

15 MeV electron beams at a 10 × 10 cm2 field size measured with the scintillation 

detector system, and in water with the ionisation chamber, are presented in Figure 66. 

The scintillation and ionisation chamber measurements are compared in Table 14 for 

photons and in Table 15 for electrons. The off-axis profiles of a 10 × 10 cm2 beam could 

be characterised as reported in the AAPM to find the variations in different regions of 

the profiles such that    at 30%,    at ±20 mm, and     at ±65 mm. 

In general, the profiles show good agreement within ~1 % in the δ22 region of the 

profile and up to 1.63 mm in the δ50-90 region of the profile. For photons, acceptable 
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agreement was obtained in δ11 region within 1.62 mm except for 15 MV, where it was 

noticed that the magnitude of the unwanted light signal was generated with increasing 

energy and field size. 

For electrons, excellent agreement within 0.16 mm was observed. However, the 

profile measurements measured by ionisation chamber have a sharper fall off than the 

scintillation detector system measurements for both types of radiation used, resulting in 

discrepancies in δ33 up to 15.60% for photons and up to 4.81% for electrons in a very 

low-dose region (i.e. penumbra). 
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Figure 65: Comparison of normalised cross profiles obtained by the scintillator detector and the 
ionisation chamber for 3× 3 cm2 and 10 × 10 cm2 and 6 MV and 15 MV photon beam at 5 cm 

depth . Error bars demonstrate the standard deviation of three repeated scintillation 
measurements of photon beams and some error bars appear smaller than the point sizes at 

certain points on the curves. 
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Table 14: The difference values between the cross beam profiles obtained by ionisation chamber 
and profile obtained by the scintillation detector system, for different photon beam energies and 

field sizes 

 
Energy (MV) 

 
δ11 (mm) 

 
δ22 (%) 

 
δ33 (%) 

 
RW50 (mm) 

 
δ50-90 (mm) 

6 (3 Χ 3 cm2) 
0.15±0.05 0.58±0.01 6.11±0.03 0.28±0.12 0.51±0.04 

6 (10 Χ 10cm2) 
1.62±0.09 0.72±0.02 11.25±0.15 1.69±0.06 0.75±0.15 

15 (3 Χ 3 cm2) 
0.50±0.04 0.37±0.05 8.86±0.08 0.04±0.01 1.05±0.07 

15 (10 Χ 10cm2) 
2.45±0.11 0.45±0.07 15.60±0.12 2.06±0.05 1.61±0.12 
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Figure 66: Comparison of normalised cross-beam profile at depth of maximum dose between 
ionisation chamber measurements and scintillation measurements, for a 6, 10, 12 and 15 MeV 

electron beams. The field size was 10 × 10 cm2. Error bars demonstrate the standard deviation of 
three repeated scintillation measurements of electron beams and some error bars appear smaller 

than the point size at certain points along the curves. 
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Table 15: The difference values between the cross beam profiles obtained by ionisation chamber 
and profiles obtained by the scintillation detector system, for different electron beam energies 

 
Energy (MeV) 

 
δ11 (mm) 

 
δ2 2(%) 

 
δ3 3 (%) 

 
RW50 (mm) 

 
δ50-90 (mm) 

6 
0.13±0.03 1.15±0.02 1.33±0.11 0.24±0.06 1.63±0.03 

10 
0.11±0.02 1.12±0.06 3.08±0.03 0.40±0.01 1.17±0.02 

12 
0.01±0.01 0.97±0.02 3.79±0.02 0.46±0.04 0.39±0.02 

15 
0.16±0.02 0.31±0.03 4.81±0.04 0.19±0.01 0.55±0.04 

 

 

4.4  Discussion 

 

4.4.1 Measurements observation  

From the results above, it could be seen that there are good agreements between the 

scintillation and the ionisation chamber PDD curves for both photon and electron 

beams. Some properties required to meet by the detector system are presented in Table 

16. 
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Table 16: The requirements of the performance of a clinical QA system 

 

Requirement 

 

 

Results 

1) Stable 
Found to be stable ±0.8% below the tolerance value 

2% in homogeneous radiation field [169] 

 

2) Time for setup and breakdown  Took 18 mins for the system (c.f. 30 min for 

ionisation chamber [43]) 

 

3) Ease and read out convenience Single image to analyse the PDD and profile 

 

4) Tissue equivalent at this energy Could be considered as tissue equivalent for 

photons but needs correction for electrons 

 

5) Clinic environment suitability  Revealed to be non-toxic and safe for clinical use 

 

6) Energy independent 
Found to be independent of the photon and 

electron energy 

 

The agreement between the PDD curves measured with the scintillation system and 

an ionisation chamber are below the tolerance values suggested above. The uncertainty 

in the photon PDD curves is less than ~2% for locations deeper than 70 mm and less 

than ~1 mm in the dose build-up region.  
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We compared the response of the scintillator against an ionisation chamber in water 

for electron beams using Geant4. The simulated PDD curves revealed 7% difference 

between the two materials and this difference was reduced when corrected, to 0.6% 

using equations provided by the IAEA. Different points in the measured PDD curves of 

electron beams were characterised, and it was found that the scintillation data 

adequately matches the ionisation chamber data below the tolerance values for 

electrons. However, high deviations were noticed in Figure 64 at the Dx region with a 

maximum variation of ~5.5% which will be discussed in 4.4.2.  

The comparison of the off-axis scintillation profiles of photons and electrons to 

profiles measured with an ionisation chamber in Figure 65 and Figure 66, showed good 

agreement in δ11 and δ22 regions between the detectors as well as an acceptable RW50 

within 2 mm. This agreement fails at the very low-dose region δ33 as the scintillation 

results in the penumbra in the lateral direction are not reliable compared to the 

ionisation chamber results. The average deviation in the penumbra region (δ33) is equal 

to 10.5% between the photon profiles, as shown in Figure 65 and is equal to 3.3% 

between the electron profiles, as shown in Figure 66.  

 

4.4.2 Source of errors 

The errors in the PDD curves and in the off axis profiles at the beam low-dose 

region of the captured images exceed recommended tolerances. This may due to an 

optical blurring that leads to a low intensity tail of the measured scintillation as 

shown in Figure 67, analysed by ImageJ (National Institutes of Health, USA) and to a 
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slight reduction in the flatness of the scintillation profiles compared to the ionisation 

chamber profiles.  

 

Figure 67: Scintillation image obtained in the scintillator for 6 MV photon beams and the glow in 
the area surrounding the edges of the radiation showing light (or dose) not being detected by 

the ionisation chamber Scintillation light images. 

 

This optical artefact was attributed in the literature to various causes such as light 

Cerenkov emission, additional scattering because of absorption and re-emission, or 

propagating of generated scintillation light through the detector system [45], [81], [83]. A 

fitting which is not derived from any measurement was generally used to correct 

for this artefact as shown in Figure 68. Cerenkov emission as a source of optical 

blurring can be rejected due to our findings in chapter 2. We found that the noise or 

scattering pattern in the low-intensity tail is energy and field size dependent. 
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Figure 68: 1D plot of the blurring function of the CCD chip [83] 

 

Alternatively, the accuracy of the result can be corrected by using the data acquired 

from another dosimeter such as a film. This was done to eliminate any optical artefacts 

in the scintillation detector system. The correction is derived from a calibration 

procedure by comparing the scintillation light distribution, acquired by the camera, and 

the corresponding dose distribution, obtained by a dosimetric film positioned above the 

scintillator [155], [159].  

Overall, it has been shown that the detector system reproduced series of irradiations 

with high precision of less than 1% error. The source of this blurring is still unclear. 

Therefore, the accuracy of the results could be enhanced if the blurring artefact within 

the scintillator is tackled. 
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4.5  Conclusion 

The use of the detector systems in radiotherapy is generally restricted matching 

measurements obtained by the system to those in water on the central beam axis PDD 

and off-axis profile. In this study, we examined a scintillation detector system for 

dosimetric measurement in modern radiotherapy. We evaluated the scintillation 

detector system for regular radiation fields with various incident energies using photon 

and electron beams. We analysed the PDD distributions for photon and electron beams 

which were extracted from images and were then compared to those measured by an 

ionisation chamber along with the off-axis dose profiles. The AAPM suggested a 

method with a set of tolerances to characterise the beam output on the PDD extracted 

from beam axis alongside the profile extracted from the off-axis measurements for high-

energy photon beams. In addition, ICRU recommended a method to extract the beam 

parameters from the PDD curve of an electron beam which the comparison between the 

measured and the anticipated outcomes should meet agreement within 3% dose or 3 

mm distance. The detector system has been demonstrated to be a potential method for 

measuring the PDD of the beam within clinically accepted tolerances which could be 

used as a QA tool, for instance, in daily and periodically tests of PDD curves in 

radiotherapy. The overall results of off-axis profile measurements which were 

performed in many data points showed satisfactory agreement. However, a single 

region in the off-axis profile exceeded the tolerances values in which a difference was 

noticed with average equal to 10.5% in photon beams and within 3.3% in electron 

beams between the measured scintillation and the ionisation chamber measurements 
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because of scattering adding background light noise at low dose region. Therefore, it 

may be needed to combine data from other dosimeters or a correction factor derived 

from measurements to correct for the background light noise in low dose regions. To 

conclude, the system was fast because a single image could be used to manipulate the 

data for PDD curves and profile measurements not taken in low dose regions. 
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CHAPTER 5   

5. SCINTILLATION DETECTOR SYSTEM FOR 

PROTON THERAPY 
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5.1  Introduction  

Proton beam therapy has become widely available and studied in recent years due to 

its high precision dose localisation performance achieved by the Bragg peak effect, in 

which protons deposit most of their energy at the end of their paths. With the high 

demand of proton therapy worldwide, most of the detectors available are currently 

being re-evaluated for use in proton beam dosimetry. Extensive research is ongoing in 

the proton therapy field which may lead to more complex delivery techniques 

requiring accurate dosimeters. For spot scanning beam proton therapy, a pristine Bragg 

peak (PBP) has initially a narrow beam, but the beam may be spread over a larger area 

to effectively treat a large tumours if the delivery technique is passive scattering beams 

[14]. With the proton radiotherapy field rapidly growing, there is a need for fast and 

accurate dosimetry tools. Scintillators‘ properties appear to make them viable for use in 

proton quality assurance. However, no internationally accepted standards are available 

for dosimetry of proton beams. Many dosimeters have been reported for the use of 

clinical proton dosimetry such as ionisation chambers. However, the 2D array of 

ionisation chambers is not widely used although they provide fast measurements 

because a high special resolution is required to measure the sharp fall of depth dose 

and range, the protons spot‘s shape, profile of an narrow proton beam. Alternatively, 

films could be used to measure off-axis profiles [16], [17]. Recently, large 3D volume 

liquid scintillator detectors were used to verify the protons‘ range and position for 

scanned proton beams and showed to provide precise results within 0.7% and accurate 

proton range to within 0.3 mm on average [42], [81]. Several attractive features of large 
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scintillators enable them to be good candidates for dosimetric measurements of proton 

beam such as high resolution [83].  

We proposed a camera and large plastic scintillator detector system for dose 

distribution verification to measure passive scattering proton beams. Prior to any 

attempts to measure doses from a proton beam, several basic features of the 

scintillation-detector system were evaluated by studying the relation of the light output 

response of a plastic scintillator during proton beam irradiation with different 

dosimetry parameters such as the dose rate, and the thickness of Perspex in the beam 

which is equivalent to changing the energy. In this chapter, we investigate the system‘s 

response to changes in energy and dose rate, and compare the depth-dose measured 

with the scintillation detector to that measured with an ionisation chamber. 

 

5.2  Materials and methods 

 

5.2.1 Proton therapy cyclotron 

This work has been carried out on the only clinical beam available in the UK – an 

ocular treatment beam which has been in service since 1989. Proton irradiations were 

performed using the Douglas cyclotron at the Clatterbridge Cancer Centre. The proton 

facility uses passive scattering beams to provide single Bragg Peak and SOBP beams. 

The cyclotron produces a 62 MeV proton beam delivered by a fixed horizontal gantry. 

However, the proton energy is 60.0 MeV at the treatment isocentre 7 cm from the 

collimator nozzle. A range modulator consisting of stepped thicknesses of PMMA (in 

0.84 mm steps) is usually placed in the beam to provide a SOBP when treating patients 
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with eye tumours [9]. 

 

5.2.2 Detector system set up 

A schematic overview of the prototype scintillator detector system used previously is 

shown in figure 69. The scintillator was exposed to the proton beam, and the camera 

was used to image the emitted light. The front surface of the scintillator was positioned 

7 cm away from the proton nozzle. Images were taken with a 25 mm collimator, at a 

constant dose rate of 20 MU/min unless stated otherwise. The camera exposure settings 

were selected by setting the aperture (f/22) such that the dynamic range of the camera 

was filled without reaching saturation at the highest light and the depth of field 

covered the field size of the proton beam; and setting the exposure time so that the 

shutter was closed once a particular dose had been delivered. 

 

 

Figure 69: The experimental setup. The camera was positioned at 50 ± 0.5 cm perpendicular to 
the proton beam. 
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5.2.3 Dark image measurements 

Unwanted signals can reduce the accuracy of the measurements and so should be 

removed from the raw data where possible. First the level of the dark signal due to 

electronic interference from the cyclotron and delivery system was determined by 

acquiring a photograph with the beam on, but in the absence of the scintillator. 

Secondly, a scattering material (paraffin wax of a similar size to the scintillator, 

wrapped in black cloth to exclude direct optical light) was placed in the beam to 

determine the effect of scattered emissions on the detected signal. Background images 

were then subtracted where appropriate.  

 

5.2.4 Detector system characterisation 

 

5.2.4.1 Bragg peak measurement  

The scintillation light output distributions were measured using the Nikon D7100 

camera. Two modes were used to acquire the images: the scintillator was irradiated 

with a PBP beam and with the SOPB beams achieved by placing a modulator (Figure 

70) in the beamline. 5 MU was delivered at a nominal dose rate of 20 MU/min. The 

shutter of the camera was opened manually and closed once 5 MU had been delivered.  
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Figure 70: The SOBP modulator wheel 

 

5.2.4.2 Short-term reproducibility and stability  

The reproducibility of the system was tested by irradiating the scintillator seven 

times under identical irradiation parameters (4.5 Gy at 18 Gy/min). 

 

5.2.4.3 Dose linearity 

To assess the linearity of the dose response, the scintillation light output distributions 

were imaged at a range of doses between 0.45 and 10.5 Gy during irradiation of PBP 

and SOBP. 

 

5.2.4.4 Dose rate proportionality  

The output should be independent of dose rate in a clinical detector system. The dose 

rate proportionality of the detector was therefore investigated at different dose rate 

settings. In order to test this, images were acquired using five dose rates to deliver 

4.5 Gy at dose rates from 4.5 to 36 Gy/min. 
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5.2.4.5 Energy dependency 

In order to study the scintillator response to proton beam energy, different 

thicknesses of PMMA, which reduces energy of a proton beam, were placed in the path 

of the 60 MeV proton beam, and the generated scintillation light imaged. Ionisation 

energy loss software was used to calculate the energy loss in the PMMA for each 

thickness to estimate the proton energy [170]. The scintillation light depth profile was 

measured as a function of the proton energy. The pixel intensities were summed and 

then plotted against beam energy. At beam energies greater than the 4 MeV used in this 

study, the relation is expected to be linear. Below this energy, the relationship is non-

linear due to the quenching effect, as described in  1.5.3 [3].  

 

 

Figure 71: The PMMA sheets placed in the way of the proton beam to obtain different energies 

 

5.2.5 Validation  

The scintillation light imaged using the camera was compared to measurements 

taken with an ionisation chamber calibrated for use with this beam. The depth-dose 

curve was measured along the central axis in the plastic scintillator with a 2.5 cm 
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diameter beam at an SSD of 7 cm, and compared to a depth-dose curve measured with 

a parallel-plate ionisation chamber (PTW, Freiburg, Germany) using the same proton 

beam at 60 MeV. Two modes were used to acquire the images: the first was a 60 MeV 

PBB; the second was a SOPB achieved by placing a modulator in the beamline. For the 

PBP mode, 1 MU corresponds to 0.9 Gy at the Bragg peak whereas 1 MU corresponds 

to 0.7 Gy for the SOBP mode. 

 

5.3  Results  

 

5.3.1 Background images 

The mean image intensity (Figure 72) with the beam on but without a scatterer 

present was 2.3 times that with the beam off. When the wrapped scatterer was present, 

the background was 2.7 times that with the beam off. However, the total background 

count was still small compared to the signal, and Figure 73 shows there is no 

substantial background impact on the measured signal, nevertheless, we still correct for 

background in our data.  
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Figure 72: Background signals in three different situations 

 

Figure 73: Comparison between the raw and corrected image 
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5.3.2 Bragg peak measurements  

Photographs showing the PBP and SOBP are shown in Figure 74. In addition, it 

shows the measured scintillation light depth distributions, showing the PBP and SOBP 

measured from the photograph.  

 

 

Figure 74: Measurements of dose distributions produced by a 60 MeV proton beam. 

 

5.3.3 Short-term reproducibility 

Reproducibility was calculated to observe any trend in short-term fluctuations of the 

measurements of the detector system. The reproducibility of the normalised light signal 

in the scintillator is shown in Figure 75. The results indicate that the system was stable 

Proton 

beam 
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as the variation of seven repeated subsequent results was found to be less than 0.80%.  

 

Figure 75: Scintillation light depth distributions of seven repeated measurements to deliver 
4.5 Gy in top graph and the difference between the measurements to the mean in the bottom 

graph. 

 

5.3.4 Dose linearity  

The dose-response relation of the detector was checked by delivering different doses 

to the scintillator and imaging the emitted light. Figure 76 shows the scintillation light 

depth distributions for PBP and SOBP. In addition, the figure shows a solid line in both 

two right figures representing a linear fit of the average response of the system to dose 
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delivered for both PBP and SOBP beams. The curve has a correlation coefficient R2 

greater than 0.99.  

 

Figure 76: The impact of the radiation dose on the scintillation light on PBP and SOBP 
irradiations. Error bars demonstrate the standard deviation of three repeated scintillation 
measurements and some error bars appear smaller than the point size at certain points.  
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5.3.5 Scintillation light with different dose rate  

Results from the dose rate dependency test are displayed in figure 77. The 

measurement uncertainties, assessed by measuring the deviation relative to the mean at 

different dose rates, were less than 1.1%.  

 

Figure 77: The scintillation light after delivering 5MU at different dose-rates 

5.3.6 Scintillation light with different energy 

Figure 78 illustrates the scintillation light images and depth distributions produced 

by the different energy delivered.  
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Figure 78: The impact of the beam energy on the scintillation light. The images represent each 
curve in the figure and protons came from the left. 

 

 

5.3.7 Measurement validation  

Two modes were used to acquire the images: the first was a pristine 60 MeV Bragg 

peak; the second was a fully SOBP achieved by placing a modulator in the beamline. 

Relative depth-dose curves of a PBP and SOBP measured with both an ionisation 

chamber and the scintillator-based detector system using a 60 MeV proton beam are 

shown in Figure 79. There is an obvious reduction in the Bragg peak as measured by 

the scintillator, reflecting the quenching effect. The Bragg peak at the PBP mode is 

reduced to 2.8 times the plateau height in the scintillator measurements compared to 

5.1 times the plateau when measured by the ionisation chamber. 
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Figure 79: Scintillation light profile measured with the camera-scintillation detector system 
along the depth of the beam and compared to ion chamber depth dose curve measurements. 

 

5.4  Discussion 

A prototype system for proton therapy QA has been designed using a plastic 

scintillator and a commercial camera. The characterisation results for this prototype 

system show excellent linearity. In addition, the system shows reproducibility of results 

of around 0.55 %. The results are also independent of the applied dose-rate to within 

1%. These errors may arise from either the instability of the cyclotron or the time 

integrated by the camera. Table 17 show the dosimetric requirements that the detector 

system needs to satisfy. 
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Table 17: The requirements of the performance of a clinical QA system 

 

Requirement 

 

Result 

 

1) Stable 
Showed excellent reproducibility ±0.8% 

2) Time for setup and breakdown  Took 22 mins for the system  

 

3) Dose linearity Responded linearly for PBP and SOBP 

 

4) Dose rate independent Found to be independent of dose rate  

 

5) Ease and read out convenience Single image to analyse PDD instead of 

scanning diode or ionization chamber across 

the beam 

 

6) Tissue equivalent at this energy 
Found to have the same range as measured by 

ionisation chamber 

7) Clinic environment suitability  
Revealed to be non-toxic and safe for the 

clinical use 

8) Energy independent 
Found to be independent over the range of the 

proton energy used when it was tested for 

energy indecency in section  5.3.6. However, at 

very low energy, some energy dependent 

happened due to LET varying of charged 

particle observed in the Bragg peak observed 

in section  5.3.7 
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Background signals, especially from scattered radiation, have a slight impact on the 

accuracy of the camera measurements. However, the contribution of these signals to the 

measurements is much smaller than the measured scintillation signal, but depends on 

the geometry of the experimental set-up, the distance between the camera and the beam 

line and energy. A possible solution could be to shield the camera which we will 

attempt for future work. The results showed that there were variations in the light 

distribution in the scintillator and the dose distribution in the ionisation chamber due to 

the quenching effect as a result of the changing LET of the incoming particle beam 

versus depth.  

 

5.5  Conclusion  

The measurements of scintillation light responses to a proton beam in plastic 

scintillator are presented in this chapter. We have investigated the use of a 

camera-scintillator detector system in high energy proton beams. This system is fast 

and independent of the applied dose-rate, shows excellent linearity to dose, provides 

reproducible results and could provide real-time measurement. Our results 

demonstrated that the scintillation light depth distribution indicated an imperfect 

match compared to the ionisation chamber measurement. A degradation of the signal 

was noticed when the images of the PBP and SOBP of the proton beam were analysed 

as shown in Figure 79. The most notable disagreement between the scintillation and 

ionisation chamber measurements was in high dose region (i.e. in the Bragg peak 

region), which differed by approximately 50% at the PBP mode. This is the result of the 

quenching effect and prevents the direct use of this detector system. This detector 
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system could be an excellent dosimeter for proton beam if the quenching effect is 

corrected for. This dependency can be well investigated in a Monte Carlo study.  
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CHAPTER 6   

6. ANALYSIS AND CORRECTION OF QUENCHING 

IN A PROTON BEAM 
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6.1  Introduction 

In the previous chapter, the response of the plastic scintillator was shown to be 

independent of dose rate, and linear with dose. However, the results suffered from the 

quenching effect when irradiated with protons with high LET resulting in an under 

estimation of the dose. Quenching is highly influenced by the ionisation energy loss of 

the incoming radiation beam and hence the kind of particle. Because the LET for the 

proton beam is a function of the energy distribution and varies with depth, the result of 

quenching would be clearer in the Bragg peak because the LET is the highest [71].  

The explanation of the physical mechanism underlying quenching is not fully 

understood although years of research have been carried out on the subject of 

scintillation response [171]. Most of the models describing the ionisation quenching 

were based on assumption about the physical processes involved. The earliest 

description of quenching was due to the saturation of the scintillator atoms which 

means that the yield of scintillation light would not increase if all scintillating atoms are 

fully excited leading to quenching of high LET particle. This hypothesis was proven to 

be not accurate because increasing the scintillator atoms in a compound would resulted 

in decreasing the magnitude of quenching but this is not shown experimentally [172]. 

Further description of ionisation quenching verified empirically was due to damage of 

the scintillation process through the excitation and ionisation due to the high LET 

incoming charged particle. Therefore, the region with high LET protons would be less 

efficient in their transmission of electronic excitation energy to the excited state in 

scintillator allowing the scintillation light production [72], [171]. As protons slow down, 
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they become more ionising and deposit more total energy and more LET. A greater 

proportion of energy is lost to interactions in the scintillator which do not emit light. 

This effect was explained quantitatively by Birks, as discussed in  1.5.3 [72]. 

Several studies have used Birks‘ equation to estimate Birks‘ constant in order to 

calculate the quenching of the measured scintillation [84], [85], [116]. Recently, a study 

was conducted in proton therapy to correct for quenching [55]. The quenching factor 

value kB was estimated and used to analytically correct the measured scintillation 

results. The height of the Bragg peak for the corrected measured scintillation agreed to 

within ±10% of the depth-dose profiles. In this study, we extend previous work in 

proton therapy by using a large solid plastic scintillator, and a completely numeric 

technique for quenching correction. 

In this chapter, we propose and characterise a method for simulating and correcting 

the quenching effect using a Geant4 simulation package which can track all photons 

generated inside the scintillator [129], [173], [174]. Although different simulation 

packages are available, the only available package that has the capability to handle both 

radiation and optical light transportation simultaneously is Geant4 [128]. We simulated 

the expected quenched scintillation and ideal scintillation light in a plastic scintillator 

for 38.94 to 60 MeV proton beams using Geant4 Monte Carlo simulation [129]. This 

makes the system more applicable, precise and easy to provide a quenching correction 

at any given beam energy. 
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6.2  Quenching correction 

6.2.1 Methods  

 

6.2.1.1 Measurement results and determination of Birks constant 

As protons penetrate a scintillator, the LET of the incoming proton beam increases 

nonlinearly, leading to a reduction in the expected light output due to the quenching 

effect. If kB is 0, no quenching effect would be shown and dL/dx is directly 

proportional to the LET. However, for high LET particles, kB>0 and dL/dx is non-

linear with light output. 

  

  

  
    

  
  

  𝑘𝐵.
  
  

 

 

 

 

 

Eq 6.1 

 

In order to obtain kB in equation 6.1 for implementation into the simulation, LET was 

modelled in Geant4 by averaging the collision energy deposited over a finite trajectory 

length as described by a recent study [175], along with the depth dose curve and 

measured scintillated light output. The current model neglects any ionisation that 

comes from secondary particles. The depth scintillation light distribution was obtained 

experimentally, and these two parameters were then used to fit the measured data 

points with Birks' equation to derive kB, which in turn was used in the Geant4 

simulation which allowed quenching to be corrected. The Geant4 LET of a 60 MeV 

proton beam in the BC-408 scintillator, along with the depth-dose curve and measured 
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scintillated light distribution are shown in Figure 80. 

 

Figure 80: LET values simulated by Geant4, depth dose profile simulated in Geant4, and the 
measured scintillation light distribution as a function of depth for a 60 MeV proton beam in a 

BC-408 scintillator 

 

6.2.1.2 Monte Carlo simulation 

To account for LET-dependent quenching, Monte Carlo simulations were carried out 

to simulate the dose and scintillation production depth profiles using Geant4. The 

response of the scintillator to the proton beam was investigated by modelling the 

scintillation detector system virtually in Geant4. The simulated scintillator was a 

20 cm × 20 cm × 10 cm block of the BC-408 plastic scintillator as used previously in 

section ( 2.4.3). The scintillation process is implemented in Geant4 by adding the 
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inherent scintillator optical properties as provided in the manufacturer‘s data sheet. 

The refractive index and the absorption path length were 1.58 and 380 cm respectively. 

The spectral light yield of the scintillator was included at a wavelength resolution of 

25 nm.  

The simulated primary beam consisted of 106 incident protons, with energies taken 

from a Gaussian distribution of mean 60 MeV and standard deviation of 0.36 MeV, 

matching previous studies done in the Clatterbridge Cancer Centre which used Geant4 

[103]. A circular collimator of diameter 2.5 cm was used. Prior to entering the 

scintillator, the protons passed through 7 cm of air. The physics list class used contains 

primarily the QGSP_BIC_EMY, which is the reference physics list recommended for the 

simulation of hadron therapy applications [176], with additional list to model optical 

processes such as boundary interactions (i.e. G4OpBoundaryProcess) and scintillation 

(i.e. G4Scintillation) including Birks law (i.e. G4EmSaturation). 

By knowing the range modulator wheel that was used at the Clatterbridge, we can 

simulate the steps of the range modulator wheel used to deliver the SOBP beams, 

which consists of a sum of pristine Bragg peaks at different energies. The quenching 

effect can be calculated for each beam individually before weighted summing to form 

the SOBP. A simulated SOBP was composed of 24 PBP from 60 MeV to 16 MeV in 2 

MeV intervals.  

In order to translate the depth-dose in scintillator into depth in water, we simulated 

depth dose in the scintillator material and water, and we found the difference between 

them in a range of error of approximately 0.25 mm (Figure 81). This could explain the 

inconstancy observed in the next section  6.2.1.3 when comparing the simulated depth-
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dose distributions in the scintillator and the measured depth-dose distributions 

measured by an ionisation chamber in water. 

 

 
Figure 81: The depth- dose simulated in water and BC-408 scintillator. 

 

6.2.1.3 Monte Carlo code validation  

To validate the model, the depth dose curves of the PBP at 55.4 MeV and 60 MeV 

were simulated using a 2.5 cm2 diameter proton beam, neglecting quenching effects and 

compared them to ionisation chamber measurements taken in water (figure 82). The 

measured and simulated positions of the Bragg peak agreed to within 0.24 mm, 

suggesting that the model does adequately represent the measured data. In Figure 83, 

the transverse profile of the proton beam was measured using a GAFCHROMIC EBT3 

film (Ashland, USA) and compared to the simulation using a scoring volume of a 

square film of 5 x 5 cm2 with resolution equal to 0.005 mm). The results show an 

adequate agreement between the measured and simulated profile.  
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Figure 82: Validation of the simulated scintillation light with ionisation chamber measurements. 

 

Figure 83: simulation and measurements validation of the transverse profile of 2.5 cm2 proton 
beam. 
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6.2.1.4 Quenching correction procedure 

The average energy deposited in the scintillator was scored alongside the scintillation 

light generated. Knowledge of the kB factor allows the light distribution to be scored 

both with and without the influence of quenching. Ideal and quenched scintillation 

depth distributions were simulated and used to generate a correction which was 

applied to the measured distribution to produce the corrected scintillation output. The 

correction procedure is summarised in Figure 84. 

 

Figure 84: The summary of the quenching correction procedure 
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6.2.2  Results  

 

6.2.2.1 Determination of Birks constant 

Figure 85 shows the measured scintillated light output plotted against LET, and 

demonstrates a non-linearity due to quenching. Equation 6.1 was fitted to the data in 

Figure 85 (using the ‗NonlinearLeastSquares‘ option in the ‗fit‘ routine in MATLAB, 

and kB was found to be 0.154 mm MeV-1 (95% confidence level at 0.137 to 0.170 

mm MeV-1). To our knowledge, this is the first report of kB for the BC-408 plastic 

scintillator and it lies within the range of published values of kB for a closely related 

BC-400 plastic scintillator which vary from 0.124 mm MeV-1 to 0.207 mm MeV-1 [84], 

[116]. To validate this, LET was also calculated in ―Stopping and Range of Ions in 

Matter‖ (SRIM), an online software package [177], and found to be 0.147 mm MeV-1 

(95% confidence 0.133 to 0.160 mm MeV-1), which is in good agreement with the Geant4 

results beyond the Bragg peak, where we have noticed that SRIM can slightly 

underestimate the LET value due to the mono-energetic input of the primary beam. 
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Figure 85: The measured scintillation light vs simulated LET for the 60 MeV proton beam. 

 

 

6.2.2.2 Quenching correction  

Figure 86 shows percentage depth dose curves for beams with energies of 38.94, 

46.77, 53.86 and 60.00 MeV, and ionisation chamber measurements for the 60 MeV 

beam. For each energy, four plots are shown: (1) the simulated depth dose (blue 

crosses); (2) the depth dose directly measured by the camera (solid black line); (3) the 

simulated quenched light output (blue bars); and (4) the measured light output after 

correction for quenching (red dashes). As expected, the measured light output after 

correction for quenching agrees with the simulated depth dose. 

For the 60 MeV proton beam, the simulated Bragg peak range and the range taken 
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from the corrected measured scintillation both agree with the range measured from the 

ionisation chamber (black crosses), with 0.2 mm accuracy and 3% accuracy for the 

peak/plateau ratio. 

 

Figure 86: Percentage depth dose curves at 38.94, 46.77, 53.86 and 60.00 MeV, showing (1) the simulated 

depth dose (blue crosses); (2) the depth dose directly measured by the camera (solid black line); (3) the 

simulated quenched light output (blue bars); and (4) the measured light output after correction for 

quenching (red dashes). 

 

We have performed the simulations to investigate quenching effect. The detector 

system can also be used to correct SOBP beams for the quenching effect. This is done by 

knowing the information for the modulated beam. Figure 87a shows a good agreement 

between the simulated scintillation distribution and measured ionisation chamber 

using SOBP beams. A satisfactory agreement within 2.3% between simulated quenched 
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and measured scintillation was shown in Figure 87b. The corrected scintillation 

distribution for the SOBP used is presented in Figure 87c.  

 
Figure 87: The simulated ideal and quenched scintillation depth distribution using Geant4, the 
measured scintillation depth distribution, the ionisation chamber depth-dose and the corrected 

scintillation depth distribution of the SOBP beams used at the Clatterbridge Cancer Centre. 

 

6.3  System validation 

 

a) 

b) 

c) 
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6.3.1 Method 

A method was developed, based on Monte Carlo simulations and measured 

scintillation output, to correct for the observed quenching. Depth-dose distributions 

were extracted from the photographs of three repeated scintillation measurements and 

corrected for the quenching effect. The dose linearity and dose rate and energy 

dependency were re-evaluated after correcting for quenching effect. All results below 

refer to measured distribution after the quenching correction was applied.  

 

6.3.2 Results 

 

6.3.2.1 Corrected detector responses 

The dose-response relation of the detector was checked by delivering different doses 

to the scintillator and imaging the emitted light. Figure 88 demonstrates the system is 

linear with dose. 
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Figure 88: Linearity of the scintillation detector system as a function of dose for a 60 MeV proton 
beam. 

 

Results from the dose rate dependency test are displayed in Figure 89. The 

measurement uncertainties, assessed by measuring the standard deviation relative to 

the mean at different dose rates, were ~1%.  
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Figure 89: The response of the scintillation detector system after delivering 4.5 Gy at different 
dose-rates for a 60 MeV proton beam. Vertical bars on the right hand graph give the 

measurements error of three repeated scintillation measurements. 

 

Figure 90 shows the measured range in the scintillator for 8 different proton beam 

energies achieved by placing varying thicknesses of PMMA in the beam. In addition, 

the fit shows that the system responds linearly. The measured protons ranges in plastic 

scintillator were compared to the range data from ICRU 49 as seen in Figure 91 [31]. 

The agreement was very good with maximum difference of 0.16 mm.  
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Figure 90: The response of the scintillation detector system with the proton energies used in this 
study. 

 

 

Figure 91: Comparison between the range measured by the scintillation detector system and the 
tabulated range by ICRU in plastic scintillator of different proton beams. 
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6.4  Discussion 

Our results are promising and indicate that the quenching problem can be solved 

effectively by Geant4 simulation, allowing the system to be used for relative dosimetry 

in proton therapy. Quenching correction means errors were reduced from ~50% to 3%. 

Nevertheless, optical artefacts require further consideration in order to enhance the 

peak/plateau ratios and the appearance of the Bragg peak tail.  

To progress the system to stage for translation into daily use in a clinical setting, there 

are some further points that will need to be addressed such as how we translate this 

system to a larger field size, wider energy range and SOBP. 

For a bigger field size with a passive scattering system, the magnification effect will 

increase. We expect that the analytical method we have used in this work to correct for 

the magnification effect could be applied for clinically relevant field sizes. In more 

complex cases, such as use of multileaf collimators, very large field sizes, or if non-

linear optical propagation such as attenuation become significant, an equivalent 

correction factor could be obtained numerically. The system can also be used to 

measure transverse profiles. 

The current system can be used for energies up to 175 MeV (~ 20 cm range in water). 

For higher energies a bigger scintillator could be used, or the scintillator currently used 

could be immersed in water to ensure the Bragg peak remains within the scintillator.  

The detector system can be used to correct SOBP beams for the quenching effect. By 

knowing the modulator wheel that has been used, we can simulate the SOBP, which 
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consists of a sum of pristine Bragg peaks at different energies. The quenching effect can 

be calculated for each beam individually before weighted summing to form the SOBP.  

Dose linearity and dose rate dependency show that the system is capable to 

determine the dose within 1% error, which is within required tolerances for much of 

radiotherapy QA [165]. We have demonstrated the system is reproducible over short 

periods of up to a day, with an accumulated dose of 140 Gy. Over longer periods, the 

reproducibility will be limited by radiation damage to the scintillator and the camera. 

These features lead to a versatile system that can be used to do a quick QA 

measurement for the dose and the energy simultaneously. For example, we propose 

that images of energy and dose can be compared every morning to test the stability of 

the treatment machine. This could be quicker than scanning a diode, with the 

advantage that the beam is visualized with a photograph. 

 

6.5  Conclusion 

Despite the common use of scintillators, there is little data available for the 

correlation between dose and scintillation output, especially in proton therapy when 

using a camera for imaging. Here, we developed in this chapter a correction method 

based on a semi-empirical Birks model using equation 6.1 of the scintillator response by 

measuring the relationship between the LET of the incident 60 MeV proton beam and 

the measured scintillation light produced in the scintillator. The correction for the LET-

dependence of the scintillator response is possible to with an accuracy of ±3%. We then 

re-evaluated the dosimetric characteristics for the corrected responses of a 

camera-scintillation detector system for dosimetry of proton beams.  
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The system has the advantages of providing a 2D view of dose distribution for 

individual radiation fields, while being fast, directly digital and tissue equivalent [45]. 

Our results were found the measured depth-dose distributions using this system were 

lower than those measured with an ionisation chamber due to quenching effect 

occurring in the scintillator. We have proposed a method for correcting for quenching 

which shows promising results. This low-cost, convenient, clinically achievable system 

builds upon previous work by using a large plastic scintillator, a commercial camera 

and a completely numeric technique for quenching correction. It can be concluded that 

the detector system has the potential to be translated for use in quality assurance of 

clinical proton beams. Future challenges include 3D time-varying data acquisition. 
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While technical advances have been shown in radiation therapy treatment machines 

and techniques, their QA procedures are challenging. We proposed a dosimeter which 

has several advantages (e.g. water density equivalence, linear dose response) and is 

also capable of taking measurements in 3D volume which could potentially be 

extended for 3D dosimetry measurements. The purpose of this work was to evaluate 

the potential use of the scintillator detector system to measure the dose deposited by 

both low and high energy photon beam, electron and proton beam, and to correct for 

scintillation light quenching in proton therapy.  

 

7.1  Accomplished work 

Scintillator selection and optical artefacts evaluation: The first step of the project 

was to select the scintillator suitable for the design that should be suitable and easy 

enough to use in a clinical environment. Different scintillators were irradiated and the 

findings are presented in Chapter 2. An analysis of the dosimetry output revealed that a 

large plastic scintillator could show some advantages during comparisons. Although 

this detector system design has the potential to reduce the time required for QA tests, 

the accuracy of the measurements of the scintillation light distribution is affected by 

several optical artefacts which require evaluation and correction. Therefore, potential 

correction methods to remove or mitigate these artefacts were developed to obtain 

meaningful dosimetric measurements. 
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Scintillator detector as a QA tool in low energy radiotherapy: Results presented in 

Chapter 3 investigated the usability of the detector system for low energy x-rays. Basic 

characteristics of the dosimeter indicate excellent dose response linearity and 

reproducibility. The reproducibility of the result was ~1% and could be improved if 

higher beam parameters (voltage and current) were used. The measured scintillation 

light was directly correlated to the dose distribution across the scintillator. The detector 

system was found to be suffering from energy dependence due to the interaction 

mechanism at low energy up to 150 kVp when the simulated depth dose distributions 

in the scintillator were compared to that produced in water.  

 

Scintillator detector as a QA tool in photons and electrons radiotherapy: We 

extended the investigation to study the feasibility of the detector system for high 

energy radiotherapy. Dosimetric results displayed in Chapter 4 showed good 

agreements with ionisation camber measurement with photon beams and fulfilled the 

3% dose variation criteria in radiotherapy. Discrepancies between off-axis dose profiles 

obtained by the scintillation detector system and the ionisation are mainly the result of 

the optical photon blurring. It was essential to investigate the water equivalence of the 

scintillator prior use in charge particle beam, such as electron to insure the electron 

interactions in the scintillator are similar to that in water. We compared the simulated 

depth dose in water and in the scintillator, and variations were found up to 7% due to 

0.03 g cm-3 difference in the physical density between the water and scintillator. This 

affected the energy loss procedure in the medium or the LET. These inadequacies can 

be corrected by applying the IAEA recommended scaling procedure allowing the 

detector system to be used in QA of electron beams for routine constancy checks. 
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However, optical photon blurring was an issue that resulted in inaccurate estimation of 

the dose in very low dose region. 

 

Scintillator detector as a QA tool in proton therapy: Chapter 5 dealt with 

characterising and testing the detector system in proton therapy. The dose and dose 

rate responses of the system were assessed using 60 MeV protons. The relationship was 

found to be linear with dose and independent of dose rate. The reproducibility of the 

result was promising with 0.80%. In addition, this detector has been found to have the 

ability to show the theoretical interaction of protons (i.e. Bragg peak) in the scintillator 

by imaging the light distribution produced. The system was also useful to define the 

range of proton beams. However, the quenching was presented when the dose 

distribution was compared to the ionisation chamber measurement and this affected 

the linearity of light output against low proton energy (i.e. high LET proton).  

Correction for quenching (Chapter 6) could be done to calibrate the energy versus the 

light output. The comparison between the corrected light distribution and the 

ionisation chamber measurement agreed well, with 0.25 mm uncertainty. Overall, this 

approach seems to be easy, fast in response and simple to measure the range and Bragg 

peak of a proton beam using the detector system.  
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7.2  Potential QA applications of the scintillator detector system 

 The current QA procedures that a scintillation detector system could provide are 

that:  

 The delivery of proton treatment requires different beam energies to cover a 

useful range of treatment depths. As a part of the QA procedure, the 

measurements of dose depth dose distribution and the off-axis profile should be 

performed periodically at each of these beam energies [178]. In practice, this is a 

challenge to do because the procedure is time consuming with the current 

available detectors. The current verification procedure is that several beam 

energies are selected to be verified during commissioning and the rest of 

energies are simulated instead of measurements using a Monte Carlo beam 

model [179], [180]. Such system could offer fast and easy measurements and can 

be used as a daily QA measurement to show the range of protons in proton 

therapy. It is usually done using an ionisation chamber placed in a water 

phantom. 

 It could be a potential system for the use of performance QA, such as 

characterising the machine data (e.g. output).  

 The detector system showed to be less time consuming and can be used as a 

relative dosimeter for QA routine constancy checks and for the range 

characterisations for electron beams. 

 In addition, it could be used in periodic QA to ensure continued planning and 

delivery data as at commissioning. 
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 Fast daily check of the depth-dose curves to work out energy for photons, and 

easy and quick measurement of the off-axis beam profile.  

 A potential advantage which could be counted for the 3D volume of the 

scintillator detector system is the possibility of acquiring the 3D dose 

distribution. In addition, the shape of the delivered dose can be identified by the 

tomography method which allows for MLCs QA. 

 

7.3  Future direction  

The possibility of using the scintillation detector system has been investigated for QA 

of photon, electron and proton beams. This thesis aimed to develop a scintillator 

detector system, to investigate the feasibility of the detector system in radiation therapy 

and to enhance the performance of the detector system by correcting some of the 

inherent artefacts of the system such as noise, vignetting and magnification, as well as 

correcting for quenching effect in proton beam. While the study appears promising, 

much more work is required before it is possible to assess fully the potential of the 

tissue equivalent scintillator system as a means of verifying the dose in radiation 

therapy. Such system is still in demand clinically as the 3D dose distribution might be 

obtained. However, more work would be needed to develop a clinically acceptable 

system especially the optical artefacts of the detector system. Future developments 

should look into:  
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Optical artefacts: The most important area of future work for detector system is a 

thorough investigation into the optical artefacts impacting the accuracy of an image 

such as the blurring and magnification. The issue of magnification was solved 

analytically and showed very good agreement with measurement. A future study will 

aim to solve this empirically by moving a thin scintillating sheet along the beam axis. 

This will be imaged many times and the individual profiles summed for comparison 

with the profile of the beam in the large scintillator. In addition, a telecentric lens could 

be an effective solution for the magnification artefact.  

The telecentric lens shown in Figure 92 has the entrance pupil at infinity, achieved 

simply by using an external aperture with regard to the conventional lens [181], [182]. 

Consequently, the principal ray that passes through the centre of aperture would be 

parallel to the optical axis between the object and lens. Therefore, there would not be 

magnification on the image with varied object distance because the image is generated 

by the parallel projection[183].  

 

 

 

Figure 92: Telecentric lens arrangement [184] 
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Long-term reproducibility: More work could also be looked at the long term 

reproducibility of the whole system including the camera and the scintillator. It is very 

important to investigate whether the system provides stable results during a period of 

time in high energy radiation.  

 

Simulation of scintillation depth distribution: It is useful to add a virtual pinhole 

camera in the Geant4 simulation to allow comparison with the experimental 

scintillation image. It is simple and there is no need to simulate the complex lens 

system, and no vignetting effect. However, the resolution of the image is highly 

dependent on the dimension of the hole or aperture, meaning that the smaller aperture 

results in lower light collection efficiency and hence lower collected intensity.  

 

Measurement of both the depth dose and transverse profile in a single irradiation: 

We have developed a large plastic scintillator detector system for the purpose of 2D of 

photon, electron and proton beams. Due to their advantages (e.g. fast, high resolution 

and immediate readout), using two orthogonal cameras in the system design (Figure 

93) could offer QA measurements of the range, width of the transverse profile in a 

single measurement simultaneously. In addition, it could be useful if multiple scanned 

proton pencil beams are used to determine lateral position of scanned proton beams. 

However, further dosimetric investigations are required to examine the accuracy and 

precision. 
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Figure 93: The dual-camera detector system design 

 

3D image acquisition using the scintillator detector system: Using an image 

reconstruction algorithm is a possible way to obtain the 3D dose distribution. By 

rotating the camera around the scintillator, tomography can be achieved by using 

filtered back projection (FBP) method. The setup of the experiment is shown in Figure 

94. The scintillator and the camera were placed in a motorised rotating stage. The 

movement of the camera was relative to the movement of the scintillator. Therefore, the 

camera captured optical light emerging from the flat surface scintillator. This method 

seems to be applicable in this work and developments still need to be carried out; this 

will be the trend of the future work on this project. 
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Figure 94: Experimental setup of the proposed optical dosimetry system 
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 Appendices 

Appendix A: Camera Control Pro software  

This software permits remote control of the settings including exposure mode, 

shutter speed and aperture, from a computer on most Nikon digital SLRs[185]. 

Connection between the computer and camera can be via USB cable.  

Advanced camera features are supported including LiveView to provide a real-time 

preview, the Picture Control system allowing image parameters to be selected and 

adjusted such image storage control including sizes and formats on a computer and the 

Viewer, which collectively enable the preview and selection of images prior to transfer 

to a computer.  
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Figure 95: Camera Control Pro2 software 
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Appendix B: Radiation impact on the camera  

In the radiation treatment room, many cameras are used to observer patients during 

the delivery of the treatment. An investigation into the impact of radiation to the 

camera in the treatment room was made [186]. The sensors in CMOS cameras are 

usually made of silicon as the base material and silicon dioxide as the coating [187]. It 

was concluded that the radiation damage of the camera can be temporary if the silicon 

atom (camera chip) is ionised by the scattered radiation and then the excited electron 

will recoil to its place, and can be permanent by either the excited electrons are trapped 

by the silicon oxide insulator result in increase in dark current signal of the camera or 

Bulk damage caused by neutrons. It can happen when neutrons perturb the structure of 

silicon atoms generating a large local electric field that results in hot pixels seen as 

bright dots in the images [186].  

In order to investigate the impact of secondary ionising radiation on the camera, the 

mean pixel intensity was found for images acquired prior to the day‘s experiment, 

immediately after the experiment (during which approximately 94 Gy had been 

delivered to the Bragg peak) and then a further 120 minutes after exposure. Prior to 

exposure, the mean intensity was 0.313; after exposure, the intensity increased to 2.702, 

and then reduced to 0.499 after 120 minutes, indicating that that the performance of the 

camera degrades due to scattered radiation, but was largely temporary.  

After 120 min, the number of pixels, which found higher than 20 grey values (i.e. the 

threshold value), was 8 pixels and found to be lower than that in the study [186]. The 

result indicated that no Bulk damage would impact the performance of the used 

camera. 
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Appendix C: Correction for the magnification and refraction 

artefacts in the 60 MeV proton beam 

 

It was necessary to correct the scintillation light depth distribution for magnification 

and refraction and validate the result to the simulated quenched distribution. Since the 

distance to pixel was done at the central axis of the radiation track, the change of the 

geometry and intensities can be calculated across the beam using equation 2.1 and 2.2. 

The measured scintillation depth distribution along the central axis can be calculated 

and then be compared to the simulated quenched distribution using Geant4, as shown 

in Figure 96 

 

 

Figure 96: Measured scintillation data after correction for magnification was applied, compared 
with simulated scintillation distribution and actual measurement. 
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Appendix D: Definition of the BC-408 scintillator in Geant4 

 
// --- BC-408 Scintillator Material as defined in Detector construction class ------- 
  
 G4double a, z, density; 
 G4int nelements; 
  
 // BC-408 Scintillator compositions  
 G4Element* H = new G4Element("Hydrogen", "H", z=1 , a=1.01*g/mole); 
 G4Element* C = new G4Element("Carbon", "C", z=6 , a=12.00*g/mole); 
  
  
 G4Material* scintillator  = new G4Material("scintillator", density= 1.032*g/cm3, 
nelements=2); 
 scintillator->AddElement(H, 30); 
 scintillator->AddElement(C, 27); 
  
   
  
 // ------- Generate & Add Material Properties --- 
  
 // ------- Emission spectrum from BC-408-------- 
  
 const G4int nEntries = 12; 
  
 G4double PhotonEnergy[nEntries] = 
  
         { 2.08*eV, 2.38*eV, 2.58*eV, 
                2.7*eV, 2.76*eV, 2.82*eV,  
                2.92*eV, 2.95*eV, 3.02*eV,  
                3.1*eV, 3.26*eV, 3.44*eV  
    
   }; 
 
 G4double Scintillation1[nEntries] = 
 
 { 0.00, 0.03, 0.17,  
                0.40, 0.55, 0.83,  
                1.00, 0.84, 0.49,  
                0.20, 0.07, 0.04 
                                }; 
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 //--------- optical Properties of the BC-408 Scintillator-------- 
       
 G4double RefractiveIndex1[nEntries] = 
 { 1.58, 1.58, 1.58, 
  1.58, 1.58, 1.58, 
  1.58, 1.58, 1.58, 
  1.58, 1.58, 1.58 }; 
  
 G4double Absorption1[nEntries] = 
  
 { 380*cm, 380*cm, 380*cm, 
  380*cm, 380*cm, 380*cm, 
  380*cm, 380*cm, 380*cm, 
  380*cm, 380*cm, 380*cm }; 
 
 
  
 G4MaterialPropertiesTable* myMPT1 = new G4MaterialPropertiesTable(); 
 myMPT1->AddProperty("RINDEX",       PhotonEnergy, 
RefractiveIndex1,nEntries); 
 myMPT1->AddProperty("ABSLENGTH",    PhotonEnergy, Absorption1,     
nEntries); 
 myMPT1->AddProperty("FASTCOMPONENT",        PhotonEnergy, 
Scintillation1,  nEntries); 
  
  
 myMPT1->AddConstProperty("SCINTILLATIONYIELD",100./MeV); 
 myMPT1->AddConstProperty("RESOLUTIONSCALE",1.0); 
 myMPT1->AddConstProperty("FASTTIMECONSTANT", 0.9*ns); 
 myMPT1->AddConstProperty("SLOWTIMECONSTANT",2.1*ns); 
 myMPT1->AddConstProperty("YIELDRATIO",1.); 
  
  
  
 scintillator->SetMaterialPropertiesTable(myMPT1); 
 
       // Set the Birks Constant for the BC-408 scintillator 
  
 scintillator->GetIonisation()->SetBirksConstant(0.154*mm/MeV); 
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