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ABSTRACT
Wireless sensing, tracking, and drawing technologies are en-
abling exciting new possibilities for human-machine inter-
action. They primarily rely on measurements of backscat-
tered phase, amplitude, and Doppler signal distortions, and
often require many measurements of these quantities—in
time, or from multiple antennas. In this paper we present
the design and implementation of PolarDraw, the first white-
board in the air that sends differentially-polarized wireless
signals to glean more precise tracking information from a
tag. Leveraging information received from each polarization
angle, our novel algorithms infer orientation and position of
an RFID-tagged pen using just two antennas, when the user
writes in the air or on a physical whiteboard. An experi-
mental comparison in a cluttered indoor office environment
compares two-antenna PolarDraw with recent state-of-the-
art object tracking systems that use double the number of
antennas, demonstrating comparable centimeter-level track-
ing accuracy and character recognition rates (88–94%), thus
making a case for the use of polarization in many other track-
ing systems.
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1. INTRODUCTION
We are rapidly moving toward a pervasively-sensed wire-

less world where most of our interactions with machines
will be accomplished via gestures [3, 31] and writing in the
air [38], and machines will be able to recognize our activi-
ties and pinpoint our location [1, 2, 16, 46]. On the indus-
trial side, recent efforts include both short-range [12] and
medium-range [11] indoor radar technologies, as well as mo-
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Figure 1— Linearly-polarized electromagnetic waves prop-
agate with a fixed electric field angle, exciting antennas or
tags in proportion to alignment with this angle.
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Figure 2— Recovered trajectory: WoW, M, C, W, Z.

re mature electronic whiteboard technologies based on ultra-
sound/infrared [25] and laser curtains [24]. While the use
cases are compelling, the real-world utility of these sensing
systems depends on several factors:

1. Infrastructure requirements— Systems that use angle-
of-arrival information generally require a significant number
of physically-separated antennas [3, 50], reducing deploya-
bility. Other systems require the simultaneous use of mul-
tiple widely-separated carrier frequencies [41], requiring si-
multaneous or added communication on these frequencies.

2. Pointing equipment— Some systems achieve millime-
ter accuracy, but require expensive ($100) styluses in order
to interact with ultrasound and infrared receivers [25].

3. Location and orientation estimation— In many cases,
estimating the orientation of an object or person helps im-
prove accuracy or activity recognition.

Electromagnetic wave polarization is a fundamental prop-
erty of a wireless transmission, and refers to the orientation



Table 1— Infrastructure cost comparison. For a fair compar-
ison of reader hardware, we include comparable products in
the same product line as the ThinkMagic RFID reader hard-
ware module that RF-IDraw used.

Item Unit cost Quantity Total cost
Reader (2-port) [39] $ 285 1 $ 285
Antenna [20] 79 2 158

PolarDraw’s system cost 443

Reader (4-port) [40] 398 1 398
Antenna [53] 135 4 540

Tagoram’s system cost 938

Reader (4-port) [40] 398 2 796
Antenna [6] 89 8 712

RF-IDraw’s system cost 1508

of the electrical field in the plane transverse to the wave’s
propagation, as shown in Figure 1. In the context of mo-
bile devices, polarization has received the most attention in
recent years as increasing smartphone usage in an orienta-
tion facing the user (roughly level with the ground) has re-
sulted in a loss of signal strength from a vertically-polar-
ized transmissions, both indoors and outdoors [33]. Out-
doors, the horizontally- and vertically-polarized paths from
base station to mobile (of length ca. 2 mi.) are very dif-
ferent [21] due to differing reflectors. Indoors, for smaller
Wi-Fi cell sizes, the same is true for longer non-line-of-sight
paths, but shorter paths tend to share similar reflectors (and
a more dominant line-of-sight path) when viewed from or-
thogonal polarizations [34].

It is well known among RFID practitioners that tag orien-
tation affects RFID read rate, and prior academic work has
leveraged these electromagnetic polarization differences to
infer RFID tag orientation [17]. Our key observation in this
work is that the similarity between horizontally- and verti-
cally-polarized paths at modest ranges presents a unique op-
portunity for wireless motion tracking systems to leverage
polarization for better location tracking accuracy. We use a
simple RFID reader as a test case, but replace the reader’s
standard circularly polarized antennas with linearly polar-
ized antennas as shown in Figure 1, resulting in the linearly
polarized transmission shown.

In this paper, we present the design and implementation of
PolarDraw, the first motion tracking system that can accu-
rately reproduce handwritten letters in the air or on a white-
board with just two nearby antennas. Compared with the
prior state-of-the-art system Tagoram, PolarDraw reduces the
infrastructure cost by half (see Table 1), hence setting a new
standard for minimal supporting infrastructure1. PolarDraw
estimates both the position and orientation of an RFID-tagg-
ed whiteboard pen, adding just pennies to the cost of each
item to be used as a stylus. Thus PolarDraw meets each of

1PolarDraw’s evaluation actually uses a much cheaper an-
tenna ($ 14 unit price) but we use a conservative cost esti-
mation here for a generally-fair cost comparison.

the three preceding objectives for a practical and highly-de-
ployable motion tracking system.

In brief, PolarDraw works as follows. Our system uses
RFID antennas to measure the phase and amplitude of an
RFID tag at a rate of ca. 100 Hz. Variations in the angle be-
tween tag and reader antenna result in fluctuations of power
received from the tag, but as our feasibility study next (§2)
shows, symmetry properties result in equal power changes
when the tag rotates left or right. PolarDraw uses a second,
linearly-polarized antenna to view the rotation from a 30°
shift in perspective, thus overcoming this rotational ambigu-
ity problem (§3.3). Rotation is just part of what determines
the pen’s true trajectory, however. PolarDraw also estimates
the displacement of the pen on the whiteboard using phase
difference readings across both time and space (§3.4). Since
they do not attempt to discriminate polarization, current tra-
jectory tracing systems have not yet explored how best to
fuse the above phase readings (which estimate pen displace-
ment) with power readings (which estimate pen rotation),
and doing so carefully is key to getting highly accurate re-
sults. We describe our novel algorithm, which incorporates a
simple Viterbi-based probabilistic search (§3.5), to complete
the design of PolarDraw.
Contributions. Although using polarization to infer tag ori-
entation has been studied before, PolarDraw is the first sys-
tem we are aware of that uses a power-orientation model to
track a pen’s movement trajectory. The techniques intro-
duced here introduce a new source of position information,
and thus have the potential to be applied to many other in-
door radar and indoor localization systems to enhance their
accuracy. PolarDraw is also the first radio-based system we
are aware of that simultaneously models changes in the pen’s
displacement and orientation. As our experimental evalua-
tion shows, PolarDraw benefits from the pen orientation es-
timation.
Experimental results.. Our experiments measure:
1. Word recognition accuracy.
2. Letter recognition accuracy.
3. The general precision of tracking arbitrary writing.
Our experimental evaluation (§5) tests PolarDraw’s perfor-
mance against the two leading motion tracking systems in
the research literature mentioned above, RF-IDraw and Tag-
oram, with all three systems running in the same experimen-
tal environment. Our results in this cluttered, real-world
office environment show two-antenna PolarDraw achieves
median 10 cm accuracy, versus 8 cm for four-antenna RF-
IDraw and Tagoram. Further microbenchmark experiments
justify parameter choices and test the experimental limits of
our system as tag to reader distance increases and writing
size decreases.
Roadmap. The rest of this paper is organized as follows:
§2 presents initial microbenchmark-style measurements in
a cluttered office environment to establish the basic exper-
imental possibility of measuring orientation through polar-
ized transmissions. §3 presents the design of PolarDraw, af-
ter which we present our implementation (§4) and experi-
mental results (§5). The remainder of the paper consists of
related work (§6), discussion (§7) and conclusion (§8).
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(b)— Rotating a tag (Case 1).
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(c)— Moving a tag (Case 2).

Figure 3— An initial feasibility study experimental setup and experimental results.

2. MEASURING POLARIZATION
To determine whether we can measure polarization in a

real indoor environment where multipath is prevalent, we
first describe emprical feasibility study, using the hardware
setup shown in Figure 3(a). We situate an ImpinJ RFID
reader connected to a linearly polarized antenna 2.5 m above
an RFID tag placed on a turntable below, as shown in the pic-
ture.2 In the first experiment, the tag rotates at a constant an-
gular velocity on the turntable. In the second experiment, we
manually translate the tag back and forth, keeping its orien-
tation fixed. Figure 3(b) shows the received signal strength
(RSS) and phase measured at the RFID reader during the
tag’s rotation. As expected, RSS changes periodically dur-
ing the tag’s rotation. It peaks at −24 dBm when the tag and
the reader antennas are aligned, and drops gradually as the
polarization mismatch angle between the two increases. Fi-
nally, the tag fails to acquire any power and there is no RSS
reading when the orientation of the tag is perpendicular to
the polarization angle of the reader antenna. On the other
hand, since tag-to-antenna distance does not change during
the tag’s rotation, the phase reading stays roughly constant.
We note that the phase reading jumps when the polarization
mismatch angle is around 90◦ and 270◦: this is because the
tag fails to acquire energy from the line-of-sight path due to
the polarization mismatch. Nonetheless, it acquires energy
along non-line-of-sight signal propagation paths, where the
signal bounces off nearby objects, changing the measured
phase angle. PolarDraw’s data pre-processing (§3.1) is de-
signed to cope with and overcome these spurious readings
from differently-polarized reflection paths.

Figure 3(c) shows RSS and phase during the tag’s back-
and-forth movement over a distance of 8 cm. We observe a
roughly constant RSS value, as expected since RSS is insen-
sitive to small changes in distance over the tag-to-antenna
link. In contrast, we can see the phase reading increases
when the tag moves in one direction, remains stable when
the tag stands still, and decreases when the tag moves back.

We conclude from the above empirical results:
1. At moderate distances in our line-of-sight indoor envi-

ronment, RSS is sensitive to the polarization mismatch,
yet it is insensitive to small changes in the length of the
tag-to-antenna link.

2Our hardware setup is more completely described in §4.
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Figure 4— PolarDraw’s high-level design: Two linearly-po-
larized antennas are mounted above a whiteboard or free
space; users draw with RFID-tagged whiteboard pens.

2. With the exception of a “spurious” corner case when the
tag antenna and reader antenna are orthogonal to each
other, phase measurements are insensitive to polarization
mismatch, yet are extremely sensitive to small changes in
the length of the tag-to-antenna link.

Combining these two findings, we can conclude that in our
experimental setup, separate measurements of RSS and pha-
se can respectively estimate rotational and translational mov-
ement of the pen, with a reasonable degree of reliability. In
the next section, we describe a design that extracts a high
degree of reliability from these two signals.

3. DESIGN
PolarDraw comprises a UHF RFID reader connected to

two linearly-polarized antennas mounted on a whiteboard as
shown in Figure 4, or alternatively, simply tracking a “virtual
whiteboard” in the air. Figure 5 shows PolarDraw’s data pro-
cessing workflow: first, PolarDraw controls the RFID hard-
ware to interrogate the tag collecting the phase and ampli-
tude readings of each backscattered signal. These data are
then delivered to the pre-processing module for data smooth-
ing and spurious data rejection (§3.1). After that, the fil-
tered data are fed into the tracking module, where PolarDraw
uses a writing model (§3.2) to estimate pen moving direc-
tion (§3.3) and distance (§3.4). These pen moving direction
and distance estimates finally feed into a Hidden Markov
Model (HMM) for pen trajectory estimation (§3.5).
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Figure 5— PolarDraw’s high-level design: Separate mod-
ules handle data input, pre-processing and pen tracking.

3.1 RFID data pre-processing
The pre-processing module contains two steps: data smo-

othing and spurious data rejection. In the first step, data
smoothing aims to improve the stability of amplitude and
phase samples by averaging away the phase and amplitude
noise affecting the raw data. PolarDraw first divides time into
windows of length 50 ms.3 Within each window, PolarDraw
averages together the amplitude and phase readings belong-
ing to that window. These averaged data form a new ampli-
tude and phase series, indexed by the timestamp.

In the second step, PolarDraw rejects the spurious phase
data desribed in §2 by comparing phase readings of adjacent
windows. If the absolute value of their difference is larger
than a threshold, PolarDraw rejects the readings at current
window. Following the experimental setup in §2, we rotate
the tag on the turntable at different speeds and test for the
presence of spurious phase readings. Based on the result,
we empirically set this angle threshold to 0.2 radians. The
filtered data are then fed into the tracking module.

3.2 Modeling pen movement
A pen trajectory is composed of a set of discrete trajectory

fragments, each of which can be characterized by a move-
ment direction and distance on the (virtual or real) white-
board. When a user is writing on a whiteboard, wrist move-
ments tend to cause azimuthal rotations clockwise when the
pen moves to the right, and counterclockwise when the pen
moves to the left. The pen is of course free to rotate in three-
space, and so we define the angular measurements of the
pen’s elevation from the X–Z plane and azimuthal rotation

3We chose this averaging window size based on an empirical
sensitivity analysis.
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Figure 6— Modeling pen movement during writing.

measured from the X-axis and projected onto the X–Z plane
summarized in Table 2 and illustrated in Figure 6.

αe: Pen elevation angle, from the X–Z plane,
αr: Pen rotation angle, as projected on the X–Y plane,
αa: Pen azimuthal angle, as projected on the X–Z

plane.

Table 2— Pen angle as illustrated in Figure 6.

3.3 Estimating pen movement direction
PolarDraw estimates pen direction using both rotational

and translational pen movements. PolarDraw’s rotational di-
rection estimation estimates left-right directions only, and its
translational direction estimation estimates movement in all
four board directions. At each 50 ms timestep, PolarDraw
first detects the dominant type of movement (translational
or rotational) by observing the RSS trend: if the change in
RSS reaches above some threshold δ ,4 then PolarDraw in-
fers primarily rotational movement and tracks αa (§3.3.1) to
determine its direction. Otherwise, PolarDraw infers signifi-
cant translational movement and instead inspects changes in
phase to determine the pen’s direction of movement (§3.3.2).

3.3.1 Rotational movement direction estimation
The main idea behind rotational movement direction is as

follows. We continuously estimate αr, the pen rotation angle
projected onto the whiteboard, and estimate a pen moving
direction perpendicular to αr, as illustrated in Figure 7.

The problem then reduces to the estimation of αr. Polar-
Draw translates αa to the pen rotation angle αr using the
following equation relating the angles shown in Figure 6:

αr = π − arctan

(
− sinαe

cosαe · cosαa

)
. (1)

Since the antennas are directly above the pen, we can esti-
mate αa based on polarization mismatch (we describe this
process next). There remains another variable free in Equa-
tion 1 however, αe, the elevation angle. For simplicity of

4We test various thresholds, and empirically set δ =2 dBm,
which optimizes the overall performance.
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design we take a pragmatic approach: since pen elevation
angle changes only slightly when rotating left to right while
writing, we set αe to be a constant determined by experi-
ments described in §5.4.1 (there we also show that accuracy
is insensitive to choice of αe). Equation 1 can then be solved
for αr and hence pen movement direction.

The problem now reduces to the estimation of αa. In de-
signing PolarDraw’s αa estimation algorithm, we face the
following two challenges. Firstly, as Figure 8(a) shows, both
a clockwise and a counterclockwise rotation could result in
an identical polarization mismatch angle β , hence the same
end RSS. Consequently, we are unable to differentiate the
rotation direction by simply observing the end RSS value
alone. We term this challenge the rotation direction am-
biguity. Secondly, as Figure 8(b) shows, within the range
[0,180◦], there are always two azimuthal angles that result
in the same RSS value. Therefore, we are also unable to es-
timate the azimuthal angle based on RSS alone. We term
this challenge the azimuthal angle ambiguity.

Breaking ambiguities. An intuitive way is to refer to the
tag’s location. However, the tag’s location is undetermined
since the two-antenna based hyperbolic positioning scheme
will yield multiple symmetric hyperbolas, and the tag’s loca-
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Figure 9— Writing motion RSS trends (γ = 30◦).

Table 3— RSS trend. (“–” means don’t care.)

Area Direction RSS trend RSS changing rate

Sector 1
⇒ s1

i ↑ s2
i ↑ |Δs1

i |< |Δs2
i |

⇐ s1
i ↓ s2

i ↓ |Δs1
i |< |Δs2

i |
Sector 2

⇒ s1
i ↓ s2

i ↑ –

⇐ s1
i ↑ s2

i ↓ –

Sector 3
⇒ s1

i ↓ s2
i ↓ |Δs1

i |> |Δs2
i |

⇐ s1
i ↑ s2

i ↑ |Δs1
i |> |Δs2

i |

tion could be anywhere on any of these hyperbolas. In Polar-
Draw, we address the above challenges by jointly analyzing
RSS trends from the two antennas. As Figure 8(c) shows,
we orient the antennas so that their angles with the Z-axis

are equal, denoting that measure γ . Let β j
i denote the po-

larization mismatch angle between the tag and antenna j at
time i. Then the antenna directions together with their per-
pendiculars naturally separate the rotation plane into three
sectors 1, 2, and 3, as shown in Figure 8(c). During nor-
mal writing, pen azimuthal rotations are small relative to γ ,
and so we assume the azimuthal angle αa is well within the
union of these three sectors. Therefore, if we can determine
in which sector the current αa is, then we can break the az-
imuthal angle ambiguity.

Figure 9 shows RSS trends reported by the two antennas

when a user writes on the whiteboard. Let s j
i be the RSS

reading reported by antenna j at time i, and Δs j
i = s j

i+1 − s j
i .

As indicated in this figure, when the pen rotates in different
direction within different sectors, the polarization mismatch
angle β 1

i and β 2
i changes in a different way, which leads to

a different direction of change as well as a different rate of
change of RSS—Table 3 summarizes the result. From the ta-
ble we find that by jointly analyzing RSS trends and chang-
ing rates, we can successfully estimate the moving direction
of the pen as well as the range of the current azimuthal angle
αa that the pen points to, thereby solving both the rotation
direction ambiguity and the azimuthal angle ambiguity.

Continuous azimuthal angle tracking.. Let α i
a be the az-

imuthal angle of the pen at time i. When the user begins
writing, PolarDraw estimates in which sector the pen points
and in which direction the pen points. Based on these, Polar-
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Figure 10— Ground-truth (a), and recovered pen trajectory
before and after azimuthal angle correction.

Table 4— Phase changing trends during pen movement.

Pen: Up Down Left Right

Phase: θ 1
i ↓, θ 2

i ↓ θ 1
i ↑, θ 2

i ↑ θ 1
i ↓, θ 2

i ↑ θ 1
i ↑, θ 2

i ↓

Draw assigns an initial azimuthal angle as follows:

α0
a =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π − γ, if clockwise and in Sector 1,
π
2 + γ, if clockwise and in Sector 2,
π
2 − γ, if clockwise and in Sector 3,
π
2 + γ, if counterclockwise and in Sector 1,
π
2 − γ, if counterclockwise and in Sector 2,
γ, if counterclockwise and in Sector 3.

(2)
PolarDraw then tracks α i

a at each time i as follows:

α i
a =

{
α i−1

a −Δβ , if clockwise rotation,
α i−1

a +Δβ , if counterclockwise rotation.
(3)

where Δβ is a variable, indicating the average changing rate
of the azimuthal angle over each 50 ms time window when
human writes on the whiteboard. The assignment of Δβ is
as follows:

Δβ =

{
6◦, if |Δs1

i |> δ and |Δs2
i |> δ ,

0, otherwise.
(4)

We perform a sensitivity analysis of both δ and Δβ , and set
δ = 1.5 dBm, Δβ = 6◦, which jointly maximize overall sys-
tem performance.

Initial azimuthal angle correction.. In the tracking pro-
cess, the initial azimuthal angle we assigned will likely de-
viate from its true value by some amount α̃a. Consequently,
later azimuthal angle estimates suffer from this error α̃a as
well, resulting in an inaccurate tracking result.

PolarDraw corrects α̃a based on detecting when the az-
imuthal angle of the pen crosses over the boundary of two
sectors. Suppose at time i PolarDraw detects that the pen
crosses over the boundary of two neighboring sectors based
on the principle shown in Table 3. The azimuthal angle of the
pen at time i should be approximately equal to the azimuthal
boundary angle of these two sectors, denoted as α̂ i

a. Hence
the difference between α̂ i

a and α i
a (the estimated azimuthal

angle) indicates the initial azimuthal angle error α̃a. Polar-
Draw corrects the estimated azimuthal angles by subtracting
α̃a from all α i

a, thus achieving a more accurate result. Fig-
ure 10 shows a snapshot of our system’s output before and
after azimuthal angle error correction.
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Figure 11— Writing without rotation. (a): the user writes on
the whiteboard with a constant rotation angle; (b): geometry
relationship of moving directions;

3.3.2 Translational movement direction estima-
tion

Writing movement varies from moment to moment, and
so sometimes the pen may move with negligible rotation,
translation dominating its path, as shown in Figure 11(a).
Consequently, the azimuthal angle αa fails to reflect the true
moving direction of the pen. When the pen moves in this
primarily translational manner, PolarDraw quickly (within a
50 ms timestep) switches to exploit phase changes to esti-
mate the pen’s direction of movement. Specifically, we de-
note the distance between reader antenna j and the tag at

time i as l j
i . Let θ j

i be the unwrapped phase reading reported
by the antenna j at time i. As Figure 11(b) shows, when the
pen moves up, both l1

i and l2
i decrease, resulting in θ 1

i ↓ and
θ 2

i ↓. Conversely, when the pen moves down, both l1
i and l2

i
increase, leading to θ 1

i ↑ and θ 2
i ↑. Table 4 shows measured

phase trends when the pen moves in different directions, al-
lowing us to decode four rough movement directions over
the small timestep. In the next section, we describe how we
determine the magnitude of this estimated movement.

3.4 Pen movement distance estimation
PolarDraw again exploits phase trends to estimate the mo-

ving distance of the pen. Our approach is based on an as-
sumption that the moving distance during consecutive tag
readings is within a half wavelength (λ/2 ≈ 16 cm), where
λ is the wavelength of the backscattered signal. This as-
sumption holds in practice since our processing timestep is
50 ms, yielding a maximum detectable speed of 3.2 m/s—
significantly exceeding normal writing speed.

Moving distance bounds.. Let di be the moving distance of

the pen at timestep i, and l j
i be the distance between the pen

and reader antenna j at the same timestep. Since phase cy-
cles completely over a distance of λ , the change in distance

between the pen and a reader antenna Δl j
i = l j

i+1 − l j
i can be

computed as follows:

Δl j
i = (θ j

i+1 −θ j
i ) ·λ/(4π). (5)

By the triangle inequity, di ≥ max{|Δl1
i |, |Δl2

i |}. Next, we
denote the maximum moving speed of the pen as vmax (we
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set vmax to 0.2 m/s in the experiment, which leads to empiri-
cally acceptable tracking accuracy.). Then an upper bound of
the displacement is vmaxΔt, where Δt is the 50 ms timestep.

Based on the foregoing analysis, we know the pen moving
distance di should be within an annulus: max{|Δl1

i |, |Δl2
i |} ≤

di ≤ vmaxΔt (as shown in Figure 12(a)), which we term the
feasible region. Within the feasible region, the line seg-
ment between the current location and each block forms the
displacement candidate set. Since the pen’s next location
should be aligned with the pen’s current moving direction,
we eliminate a large portion of infeasible locations in the
feasible region, as shown in Figure 12(b). However, a large
moving distance uncertainty still remains, as many blocks
are aligned with the pen moving direction.

Antenna difference measurements.. We also exploit the
inter-antenna phase difference θ 2

i −θ 1
i to further reduce the

uncertainty in our pen movement distance estimate. The
relationship between phase readings and the tag-to-antenna
distance can be formulated as follows:{

θ 1
i +2k1π = 4πl1

i /λ
θ 2

i +2k2π = 4πl2
i /λ (6)

Subtracting the above equations and dropping subscripts:

Δl2,1
i =

λ
4π

(Δθ 2,1
i +2kπ), (7)

where k is an unknown integer, Δθ 2,1
i = θ 2

i −θ 1
i and Δl2,1

i =

l2
i − l1

i . Let (x1,y1) and (x2,y2) be the location of two anten-

nas, Δl2,1
i be the distance difference of these two antenna-to-

tag links, we can construct a hyperbola with the two foci at
the location (x1,y1) and (x2,y2) as our location estimation.
Due to the phase ambiguity, there are multiple candidate hy-
perbolas. PolarDraw makes its movement distance estimate
by intersecting the candidate hyperbolas with the location
candidates already acquired, as shown in Figure 12(c) for
the case of rotational moving direction estimation (we take
an analogous approach for the case of translational moving
direction estimation).

3.5 Tracking pen trajectory
Our design so far focuses on how to track the moving di-

rection and the moving distance of the pen, separately. Now

we put them together and show how to leverage moving di-
rection and the moving distance to infer the pen’s trajectory
fragment at each timestamp.

We approach the pen trajectory tracking problem as a dis-
crete-time state estimation problem, where the state of the
system at time t, Xt , is the location of the pen at that time.
The measurements at time t, Yt , are the phase and RSS read-
ings reported by the two antennas. PolarDraw employs an
HMM to find the most likely sequence of pen trajectory seg-
ments. The HMM consists of a set of interconnected states,
each of which emits an observable output. The HMM is
characterized by two probabilities: the transition probability
between states and the emission probability over the position
estimate.

Modeling the state transition probability.. We divide the
whiteboard into equal-sized blocks, denoted Bi, j. Then the
state space of HMM consists of all blocks on the whiteboard.
We consider the transitions between consecutive states to
have equal probabilities.5 This state transition probability
Pr(Xt+1 = (x1,y1)|Xt = (x0,y0)) is defined as:⎧⎨
⎩

1
M , if max{|Δl1

t |, |Δl2
t |} ≤

√
(x1 − x0)2 +(y1 − y0)2

≤ vmaxΔt,
0, otherwise,

(8)
where M is the the number of blocks within the feasible re-
gion (i.e., gray circles in Figure 12(a)).

Modeling emission probability.. At timestep t, the obser-
vation Yt is represented as a tuple of phase and RSS read-
ings: [θ 1

t ,θ 2
t ,s

1
t ,s

2
t ]. The emission probability for a given

state represents the likelihood of seeing the pen located at
the block conditioned on Yt . We model emission probability
by jointly considering both the moving direction constraint
(Figure 12(b)) and the hyperbola constraint (Figure 12(c)).
Let (x0,y0) and α t

r be the location and the rotation angle of
the pen at time t, respectively. We construct the line passing
through (x0,y0) with slope equal to the estimated pen mov-
ing direction to describe the approximate trajectory of the
pen:

y =−cot(α t
r) · (x− x0)+ y0. (9)

5We leave more sophisticated motion modeling, such as the
Kalman and Particle filters, for future work.



The pen’s next location is likely on this trajectory. On the
other hand, the pen’s next location should also be on the hy-
perbolas we estimated based on the inter-phase difference of

two antennas Δθ 1,2
t . Equation 11 in the Appendix on p. ,

combines the moving direction and the hyperbola constraint
to define the emission probability Pr(Xt+1 = (x1,y1)|Yt =
θ 1

t ,θ 2
t ,s

1
t ,s

2
t ).

Initial location estimation. PolarDraw finds the initial loca-
tion of the tag using hyperbolic positioning. Since two an-
tennas will determine multiple hyperbolas, PolarDraw ran-
domly chooses a point on one of these hyperbola to boot-
straps the relative location.

Trajectory Rotation. PolarDraw leverages Viterbi decod-
ing to find the most likely pen trajectory. The computational
complexity of Viterbi decoding is linear in the number of
states and the number of observed variables, hence can be
computed in real-time even with an embedded mini PC. As
mentioned in §3.3, the initial azimuthal angle may have an
error α̃a. Hence after the trajectory tracking, PolarDraw cor-
rects the azimuthal angle error to acquire a more accurate
pen trajectory. Let P = {Px1,y1

,Px2,y2,...,PxT ,yT
} be pen’s tra-

jectory recovered by the Viterbi algorithm, where Pxt ,yt is
the location of the pen on time t. PolarDraw eliminates the
impact of α̃a on pen’s trajectory as follows:

P̂= P ·
[

cos α̃r −sin α̃r
sin α̃r cos α̃r,

]
(10)

where P̂ is the new trajectory of the pen; α̃r is the rotational
angle error induced by the azimuthal angle error.

4. IMPLEMENTATION
PolarDraw’s front-end hardware consists of an ImpinJ Spe-

edway R420 RFID reader [15], two Laird tilt RF linearly
polarized antennas [19], and an Avery Dennison AD-227m5
UHF passive RFID tag [7]. The passive tag is attached on a
standard whiteboard pen. PolarDraw’s software components
control the RFID reader to interrogate the RFID tag and pro-
cess the tag readings for pen trajectory tracking. The tag in-
terrogation module, implemented in Java, collects tag read-
ings through the Low Level Reader Protocol (LLRP) [23]
which the C#-based pen trajectory tracking module then pro-
cesses.

Modulation scheme selection.. A typical EPC GEN 2 read-
er supports different modulation schemes, with varying lev-
els of robustness to background noise. PolarDraw round-
robins all available modulation schemes, selecting the first
with the standard deviation of phase variances at most 0.1
rad2 for tag interrogation. We have conducted a sensitivity
analysis to test other thresholds, and find this choice of phase
variance threshold optimizes performance.

5. EVALUATION
In this section, we first present our experimental method-

ology (§5.1), after which we conduct end-to-end experiments
in a laboratory environment to evaluate PolarDraw’s perfor-
mance (§5.2). We then compare PolarDraw with two state-
of-the-art motion tracking systems, Tagoram and RF-IDraw.
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Figure 13— PolarDraw’s letter recognition accuracy.

Finally, we present micro-benchmark experiments that pro-
vide additional insight into which factors most impact Polar-
Draw’s performance (§5.4).

5.1 Methodology
To determine ground truth, we photograph the user’s writ-

ing on the whiteboard and leverage edge detection algorithm
to extract writing trajectories. We use LipiTk [13] for hand
writing recognition.

Performance metrics.. We use the following metrics:
1. Recognition Accuracy: the fraction of successful charac-

ter recognitions over the total number of characters.
2. Similarity: the Procrustes distance between the recov-

ered trajectory and the ground truth trajectory. This met-
ric determines a linear transformation (translation, rota-
tion, and scaling) of the points in one trajectory that re-
sults in the closest match with to the points in another.
The goodness-of-fit criterion is the sum of squared errors
between the two trajectories.

3. Confusion matrix: each row shows the actual character
and each column shows the estimated character.

Compared schemes. We compare PolarDraw with two other
2D tracking algorithms: RF-IDraw [45] and Tagoram [52].
RF-IDraw uses eight spatially separated antennas for RFID
tag localization and tracking. Most COTS RFID reader sup-
port four antennas apiece, so we compare a four-antenna
version of RF-IDraw with PolarDraw, for equal hardware re-
sources. Tagoram adopts four antennas to locate and track an
RFID tag based on the phase readings: our implementation
uses two or four antennas, the former comparing Tagoram
against PolarDraw with equal hardware resources.

5.2 End-to-end performance
We first present end-to-end results of studies in an office

environment. The algorithm parameters are set according to
the results in §5.4.

5.2.1 Character recognition accuracy
We first examine character recognition accuracy over the

English alphabet. In these experiments, we invite a volun-
teer to write all 26 characters 100 times. The result is shown
in Figure 13. PolarDraw achieves 93.6% recognition accu-
racy on average. Specifically, 15 out of 26 characters are
correctly recognized with a probability higher than 90%. 21
out of 26 characters are correctly recognized with a proba-
bility higher than 85%. The remaining five characters have
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Figure 15— Writing in air v. on the whiteboard.

a much lower recognition accuracy. However, their recogni-
tion accuracies are still above 80%. We believe by applying
natural language processing techniques, we can further in-
crease recognition accuracy.

5.2.2 Character recognition confusion matrix
To quantify whether character recognition performance is

better for some characters over others, we present the char-
acter confusion matrix in Figure 14. The darker areas repre-
sent a higher rate of classification of the particular character.
We observe from this figure that the rate of misclassifications
varies for different ground truth characters. A large portion
of errors is usually associated with to those letters that share
a very similar writing style. For example, the characters L
and V are prone to be incorrectly recognized as I and U. We
also note that recognition accuracy also varies with the com-
plexity of the character. For example, those characters that
can be written in a single stroke usually achieve a higher
recognition accuracy.

5.2.3 Performance of in-air writing
We next remove the whiteboard and let the user write in

the air. We conduct four groups of experiments here. In each
group, we randomly choose 10 letters and let the user write
each letter 10 times in air. For comparison, this user is also
required to repeat these experiments but write on the white-
board. Figure 15 shows the resulting recognition accuracy.
As the result shows, PolarDraw performs consistently when
the user is writing on the whiteboard, achieving a recognition
accuracy around 91% on average. In contrast, PolarDraw’s

Table 5— Recognition accuracy v. tag-reader distance.

Distance (cm) 20 40 60 80 100 120 140
Accuracy
(%)

77 83 87 90 91 90 88
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Figure 16— Impact of both dynamic and static multipath on
PolarDraw’s performance.

performance declines about 8% when the user writes in the
air. The reason is that without the whiteboard, writing is not
confined to a two-dimensional plane, which leads to errors
in the pen moving distance inference. However, PolarDraw
still achieves over 80% recognition accuracy in this case.

5.2.4 Effect of tag-to-reader distance
Here we examine the impact of the tag-to-reader distance

on PolarDraw’s trajectory tracking performance. In these
experiments, we vary this distance distance from 20 cm to
140 cm, with a step of 20 cm. Table 5 shows the recog-
nition accuracy at each distance. Somewhat surprisingly,
accuracy is relatively low (77%) when the tag is close to
the reader antenna (e.g., 20 cm spacing)—this is because
in this regime both polarization angle mismatch and the tag
movement contribute to the RSS change. But as we increase
the tag-reader distance, RSS becomes less sensitive to pen
translational movements and PolarDraw accuracy increases.
Recognition accuracy only slightly drops as we further ex-
pand the tag-to-reader distance from 100 cm to 120 cm and
further to 140 cm. One possible explanation may be that the
backscattered signal bounces off nearby objects and changes
the polarization angle, which leads to an unusual RSS trend
during human writing. We plan to investigate the use of more
directional antennas to increase range in future work.

5.2.5 Effect of nearby interfering human motion
To examine the effect of multipath reflections on Polar-

Draw’s pen tracking accuracy, we invite a volunteer to write
on the whiteboard, while another person stands nearby or
walks around the whiteboard to generate static or dynamic
multipath interference on the backscattered signal. Figure 16
shows the recognition accuracy of PolarDraw under these
different multipath conditions, as a function of the distance
of the interfering user (“bystander”) from the whiteboard.
As the results show, PolarDraw’s performance is insensitive
to both dynamic and static multipath when the bystander is
90 cm away from the whiteboard. As the bystander stands
or walks even closer nearby (60 cm and 30 cm), PolarDraw’s
performance only slightly decreases—PolarDraw still achie-



Table 6— Recognition accuracy of PolarDraw with and
without polarization information.

Algorithm PolarDraw w/o polarization
Accuracy (%) 91 23

56 cm

86.5 cm

Writing block

Antenna

Tagoram RF-IDraw

Figure 17— Tagoram/RF-IDraw experimental setup.

ves 83% and 87% recognition accuracy in these dynamic and
static multipath regimes, respectively, demonstrating strong
robustness.

5.2.6 Gain of using polarization
To drill down into the benefit of polarization on tracking

accuracy, we implement a version of PolarDraw that tracks
pen trajectory without polarization angle estimation. Table 6
presents the letter recognition accuracy of PolarDraw with
and without polarization angle estimation. The data show
that PolarDraw benefits substantially from polarization an-
gle estimation—by a factor of around 4× in terms of letter
recognition accuracy.

5.3 Comparison v. RF-IDraw and Tagoram
We now compare PolarDraw directly against Tagoram and

RF-IDraw. The hardware setup is shown in Figure 17.

5.3.1 Word recognition accuracy
We compare these three algorithms’ ability on written wo-

rds recognition. We divide the test words into four groups
according to the word length. Within in each group, we
randomly select 10 words from the Oxford English Dictio-
nary (O.E.D) [28]. Figure 18 shows the word recognition
accuracy of PolarDraw, Tagoram and RF-IDraw. When the
word contains two characters, PolarDraw achieves a simi-
lar performance with both RF-IDraw and Tagoram, with a
recognition accuracy over 91%. As the number of char-
acters in the word increases, the performance of all three
algorithms drops slightly. The performance of PolarDraw
degrades slightly more than the other two algorithms, but
with just two antennas, the minimum recognition accuracy
of PolarDraw remains above 75%. With natural language
processing techniques, we believe the recognition accuracy
can be improved further. Furthermore, we find that the reco-
gnition accuracy of RF-IDraw here is lower than reported
in [45]. This is due to the lesser number of antennas used in
this experiments.
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Figure 18— Recognition accuracy for various words.
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Figure 19— The CDF of the Procrustes distance between
the groundtruth and the trajectory recovered by algorithms.

5.3.2 Trajectory similarity
Here we directly examine the trajectory similarity of hand-

written letters recovered by these three algorithms. We ran-
domly choose five letters and invite one volunteer to write
each letter 10 times with a 20 cm writing size. Figure 19
shows the cumulative distribution function (CDF) of the Pro-
crustes distance between the recovered trajectories and the
ground truth. The four-antenna versions of Tagoram and
RF-IDraw achieve similar performance, with 90th percentile
errors of 11.3 cm and 10.2 cm, respectively. PolarDraw’s
two-antenna performance is comparable at 13.8 cm.

We present examples of the pen trajectories recovered by
the three algorithms in Figure 20. Compared with ground
truth, we can see that all the recovered trajectories are str-
etched or rotated due to the localization and tracking errors.
Comparing the trajectories recovered by these three algo-
rithms, we find that these trajectories are distinct from each

TagoramRF-IDrawPolarDrawGroundtruth
2-antenna 4-antenna 4-antenna

Figure 20— Pen trajectory recovered by three algorithms.
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Figure 22— PolarDraw’s recognition accuracy over different
tag-to-reader distance settings.

other, especially at the beginning and the ending part of the
pen trajectory. Nevertheless, all of them preserve the basic
profile of the handwritten letters.

5.3.3 Recognition accuracy across users
In this experiment we examine the recognition accuracy

over different users. Figure 21 shows the resulting recog-
nition accuracy. As the results show, PolarDraw, Tagoram
and RF-IDraw all achieve roughly consistent and high per-
formance for all four users, with two-antenna PolarDraw ap-
proaching the other two systems’ accuracies for User 1. To
test the limits of PolarDraw’s performance, one of the users
(User 2) was instructed to write in an unnaturally “stiff” style
on the whiteboard. While slightly diminished, the resulting
accuracy of PolarDraw remains at a comparably high level
with just two antennas, demonstrating graceful degradation.

5.3.4 Impact of the tag-to-reader distance
We further examine the impact of the tag-to-reader dis-

tance on the trajectory tracking performance. In these ex-
periments, we vary the tag-to-reader distance from 20 cm to
140 cm, with a step of 20 cm. Figure 22 shows the recog-
nition accuracy at each distance. The recognition accuracy
is relatively low (around 78%) when the tag is close to the
reader antenna (e.g., 20 cm spacing). This is because both
the polarization angle mismatch and the tag movement con-
tribute to the RSS change. Hence PolarDraw less often cor-
rectly estimates the pen’s direction of movement. As we
increase the spacing between tag and the reader, the RSS
tends to be less sensitive to the pen translation movement.
Hence, PolarDraw could accurately estimate the pen moving
direction, which results in an increased recognition accuracy,
as shown in the result. The recognition accuracy drops as

Table 7— PolarDraw’s recognition accuracy v. αe.

αe (
◦) −45 −30 −15 15 30 45

Accuracy (%) 91 91 92 91 93 90

Table 8— PolarDraw’s recognition accuracy v. γ .

γ (◦) 15 30 45 60 75
Accuracy (%) 92 90 91 85 80

we further increase the tag-to-reader distance from 100 cm
to 120 cm and further to 140 cm. A possible explanation
may be that the backscatter signal bounces off nearby ob-
jects and changes the polarization angle, which leads to an
unpredictable RSS trend during human writing. We plan to
investigate that use of more directional antennas to even fur-
ther increase range in future work.

5.4 Microbenchmarks
These microbenchmark experiments aim to give further

insight into PolarDraw’s performance. In particular, we seek
to understand which factors will most affect tracking perfor-
mance as we tune various operating parameters, to better un-
derstand how polarization angle mismatch helps to improve
the pen trajectory tracking accuracy. The hardware setup of
our microbenchmarks is shown in Figure 4. In the following
experiments, we randomly choose 10 letters from the En-
glish alphabet, invite a volunteer to write each letter 10 times
under different parameter settings, and measure the resulting
letter recognition accuracy.

5.4.1 Choosing elevation angle
We first perform a sensitivity analysis examining how the

pen elevation angle αe (defined in §3.2) affects accuracy. Ta-
ble 7 shows letter recognition accuracy for different pen ele-
vation angles. As the result shows, PolarDraw achieves sim-
ilar performance under different αe settings. Based on these
data we set αe = 30◦ in all other experiments.

5.4.2 Choosing inter-antenna angle
We now examine how the inter-antenna angle γ (defined

§3.3) affects accuracy. In this experiment, we manually align
the antenna orientation using a protractor. Table 8 shows
letter recognition accuracy under different γ settings. Polar-
Draw achieves similar recognition accuracy when γ is rela-
tively small (e.g., γ = 15, 30, and 45◦). This is because the
pen is prone to cross over the border of neighboring sectors
(as shown in Figure 8) when the user writes on the white-
board, which improves PolarDraw’s accuracy. As expected,
when γ increases, the probability that the pen crosses over
the border of neighboring sectors decreases, resulting in a
lower recognition accuracy. Informed by these experimental
results, we set γ = 15◦ in all other experiments.

6. RELATED WORK
In this section we compare PolarDraw to prior work in

multiple areas, chiefly whiteboard transcription systems, RF-



ID-based systems, and inertial sensor-based systems.

Whiteboard transcription systems.. These use cameras to
record a whiteboard’s contents [10, 14, 51]. While they func-
tion well in a controlled lecture theater setting where infras-
tructure can be permanently installed, they depend on suffi-
cient ambient light, and require a mostly unobstructed line of
sight from a camera placed at a sufficient distance from the
whiteboard, precluding deployment in some scenarios and
complicating deployment in most. In contrast, PolarDraw
can be deployed simply with two small antennas attached
to a whiteboard. Electronic whiteboard technologies based
on ultrasound-infrared [25] and laser curtains [24] also ex-
ist, but require expensive styluses in comparison with RFID
tags, which cost cents apiece. Finally, the whiteboard tran-
scription systems do not generalize to writing in the air, as
we have experimentally demonstrated for PolarDraw.

RFID positioning and tracking systems.. Initial attempts
in RFID positioning have used the RSS to estimate the dis-
tance between the reader and the tag. PinIt [44] localizes
RFID tags in a non-line of sight environment by exploit-
ing the multipath profile of each tag. STPP [37] uses RFID
to spatially order tags without localizing them. However,
the localization error of these two systems is relatively high
(around 12 cm for PinIt, and 8 cm for STPP), hence they
are unsuitable for motion tracing. Later work exploits fine-
grained phase information of the backscattered signal for
more accurate tag localization. BackPos [22] is a hyper-
bolic-based positioning system that requires at least three
RFID antennas, but only achieves ca. 13 cm accuracy, which
is unsuitable for tracking writing. Tagoram [52] introduces
a holography-based tag tracking algorithm that achieves an
accuracy of around 12 cm6 based on four reader antennas.
In contrast, PolarDraw requires only two antennas and ach-
ieves comparable or better accuracy, depending on the num-
ber of antennas Tagoram operates with. RF-IDraw [45] is a
pen-tracking scheme that achieves high accuracy via a non-
linear spaced RFID antenna array, but requires a significant
number (eight) of physically-separated antennas and rigid
placement of antenna locations, reducing deployability. In
contrast, PolarDraw requires minimal supporting infrastruc-
ture yet achieves high tracking accuracy.

Gesture recognition systems.. E-Gesture [30] employs the
gyroscope and accelerometer to characterize eight kinds of
predefined hand gestures. Similarly, RisQ [29] recognizes
smoking gestures by using the accelerometer and gyroscope
readings from a smart wristband. However, both systems
only recognize simple and pre-defined hand gestures like
“throw,” “draw,” “smoking” & c., and so are not applicable
to fine-grained finger motion or writing tracking.

Fine-grained motion tracking systems.. PhonePoint Pen
[4] enables in-air human writing by tracking a smartphone’s
motion with the gyroscope and accelerometer. MoLe [43]

6When the device’s location track is unknown a priori.
When the device’s future path is known beforehand, Tag-
oram achieves one cm accuracy, but this does not apply to
writing.

designs a inference algorithm to detect and identify the hu-
man typing through smart watch gyroscope and accelerom-
eter readings. However, it requires a large amount of user
data for model training. WiDraw [38] enables device-free
in-air writing by exploiting changes in the AoA spectrum
measured at many nearby Wi-Fi devices caused by human
arm motion. However, to achieve five cm accuracy, WiDraw
requires the support of 30 neighboring Wi-Fi devices and hu-
man writing 25 cm in width, considerably larger than Polar-
Draw. A Wi-Fi band software-defined radio based system
by Chen et al. [9] passively tracks keystrokes adapting to
interfering environmental motion, but requires five nearby
antennas for best accuracy.

FingerIO [27] uses sound to track finger motion without
the need for added RFID tags or any mobile device present,
to a fine-grained precision of 8 mm. However when there
is an interfering bystander in the environment at a range of
50 cm, the authors’ experimental results show an increase
in FingerIO’s motion tracking error from 8 mm to 15 cm.
On the other hand, our results in §5.2.5 demonstrate that
PolarDraw suffers no significant degradation of tracking pre-
cision in the presence of interfering human motion at a lesser
standoff distance (30 cm). AAMouse [55] uses acoustic rang-
ing to track a smartphone’s trajectory with an median error
of around 1.4 cm, but high frequency acoustic noises, es-
pecially sounds emitted by other smartphone-based styluses
interfere with the system. The three-antenna mTrack system
[48] uses one millimeter-wave transmit antenna and two re-
ceive antennas to track a pen with a 90th. percentile error be-
low 8 mm, if background motion interference is not present,
but accuracy degrades by almost a factor of two to 1.2 cm in
the presence of an interfering person walking at a two meter
range or standing still at a one meter range 7. In contrast,
our experiments show that PolarDraw can handle interfering
walking-speed motion at a 30 cm range, hence demonstrate
more robustness than the mTrack results. Besides, a back
of the envelope calculation shows it will cost at least $7k to
implement and is thus not cost effective.

Compared to both acoustic and millimeter-wave tracking,
our experiments demonstrate greater range (§5.2.4) and more
robustness to nearby interfering motion (§5.2.5).

Wi-Fi localization and tracking.. Many of these propos-
als achieve meter-level localization accuracy [8, 26, 32, 54],
hence are unable to recognize fine-grained human writing.
Although later schemes achieve centimeter-level localiza-
tion accuracy [2, 16, 18, 35, 36, 50, 56], they generally rely
on software-defined radio and Wi-Fi chipsets on the mobile,
and require more infrastructure than PolarDraw.

Human activity recognition.. E-eyes [47] detects and clas-
sifies different kinds of human activity at home through the
use of commercial Wi-Fi APs. WiHear [42] recognizes hu-
man speech by analyzing the CSI pattern of Wi-Fi signals
reflected by human lips. WiKey [5] decodes user input on
keyboards by matching Wi-Fi signal patterns to fingerprints.
These systems only work for predefined coarse-grained ac-

7mTrack’s experiments did not study closer writing to mo-
tion interference ranges.



tivities, and hence cannot be directly applied to fine-grained
motion tracking and writing recognition since writing style
varies from person to person.

7. DISCUSSION AND FUTURE WORK
We discuss limitations and opportunities for improvement.

Trade-off between infrastructure cost and performance.
Prior systems such as Tagoram and RF-IDraw require four
and eight antennas for tag motion tracking, respectively. In
contrast, PolarDraw requires only two antennas to operate,
hence reducing the system cost by half compared to Tago-
ram. While the recognition accuracy of PolarDraw decreases
slightly compared to both Tagoram and RF-IDraw, we be-
lieve by applying natural language processing techniques,
we can further increase recognition accuracy. Furthermore,
Tagoram requires a relatively close antenna spacing, so that
the tag is within the coverage area of all four antennas. In
contrast, since PolarDraw relies on just two antennas, it can
cover much larger geographical area and potentially reduce
the deployment cost, e.g., classroom whiteboard.

Extending to multi-user case. Although our experiments
are conducted in the single-user case, we believe it can be
easily extended to multiple users by separating phase read-
ings of each tag. This would involve examining the tag ID
and rejecting dynamic multipath phase readings caused by
nearby user writings. We leave this for our future work.

Scaling to abrupt hand motions. We assume a smooth
hand movement and a relative stable tilt angle, which may
not true for all users. We believe with lightweight inertial
sensors on the tag (e.g., WISP [49]), it is possible to detect
tile angle changes and fetch this angle into the HMM model
for a more accurate trail estimation. The tag attached on the
pen responds to the reader all the time, hence PolarDraw is
unable to distinguish the words from a sentence. However,
it is possible to detect whether the pen is touching the white-
board or not by examining the accelerometer readings of this
sensor-based tag. We leave this problem for our future work.

8. CONCLUSION
We have presented the design of PolarDraw, the first mo-

tion tracking system that can accurately reproduce and rec-
ognize handwritten letters in the air or on a whiteboard with
just two nearby antennas. Our experimental results show that
compared with other state-of-the-art multi-antenna tracking
systems, PolarDraw reduces the infrastructure cost in half
with a slightly degraded performance.
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APPENDIX
Modeling the HMM emission probability.. By jointly con-
sidering pen moving direction and the hyperbola constraint,
we define the emission probability in Equation 11. In this

equation, Δθ 1,2
x1,y1

is the theoretical inter-phase difference of
two antennas on location (x1,y1). dmax is the maximum
moving distance of the pen within the feasible region. This
equation takes into account the likelihood that the location

(x1,y1) is on the hyperbolas computed from Δθ 1,2
i and the

likelihood that the location (x1,y1) is on the pen trajectory:

Pr (Xt+1 = (x1,y1)|Yt) =

⎛
⎝1−

∣∣∣Δθ 1.2
t −Δθ 1,2

x1,y1

∣∣∣
4π

⎞
⎠ ·

(
1− |−cot(α t

r) · x1 − y1 + cot(α t
r) · x0 + y0|

dmax ·
√

cot2(α t
r)+1

)
(11)
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