
Please cite this article in press as: Albert and Kozlov, Comparative Aspects of Hearing in Vertebrates and Insects with Antennal Ears, Current Biology
(2016), http://dx.doi.org/10.1016/j.cub.2016.09.017
Current Biology

Review
Comparative Aspects of Hearing in Vertebrates
and Insects with Antennal Ears
Joerg T. Albert1 and Andrei S. Kozlov2
1UCL Ear Institute, 332 Gray’s Inn Road, London WC1X 8EE, UK
2Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
Correspondence: joerg.albert@ucl.ac.uk (J.T.A.), a.kozlov@imperial.ac.uk (A.S.K.)
http://dx.doi.org/10.1016/j.cub.2016.09.017

The evolution of hearing in terrestrial animals has resulted in remarkable adaptations enabling exquisitely
sensitive sound detection by the ear and sophisticated sound analysis by the brain. In this review, we
examine several such characteristics, using examples from insects and vertebrates. We focus on two strong
and interdependent forces that have been shaping the auditory systems across taxa: the physical environ-
ment of auditory transducers on the small, subcellular scale, and the sensory-ecological environment within
which hearing happens, on a larger, evolutionary scale. We briefly discuss acoustical feature selectivity and
invariance in the central auditory system, highlighting a major difference between insects and vertebrates as
well as a major similarity. Through such comparisons within a sensory ecological framework, we aim to
emphasize general principles underlying acute sensitivity to airborne sounds.
Introduction
Auditory physiology offers a distinctive perspective on the inter-

action between a sensory system and its environment. On the

one hand, auditory systems in vertebrates and insects with

sensitive hearing are capable of remarkable performances

on multiple levels, both within the sensory periphery where

the minute energies associated with sound are converted into

electrical signals, as well as within higher-order brain areas

where complex natural stimuli such as human speech are pro-

cessed. For example, displacements caused by acoustical stim-

uli in the inner ear at the threshold of hearing are sub-nanometer

and comparable to the distance between atoms in molecules [1].

Furthermore, thermal fluctuations in the ear’s mechanotrans-

duction apparatus not only are significant, but also can be larger

than the faintest audible signals, making signal detection a

challenging task [2]. Ascending the sensory hierarchy, one en-

counters other marvels of evolution, such as the ability of indi-

vidual neurons to encode — using millisecond-long action

potentials — inter-aural time differences of only about ten micro-

seconds, and to use this information to localize the source of the

sound [3,4]. No engineered system has yet been designed that

could understand distorted speech in a noisy and reverberating

environment with multiple speakers. That our auditory system

achieves this feat is testament to its remarkable performance.

On the other hand, an engineer could argue that the auditory

system’s performance is objectively poor, even in animals with

sensitive hearing: at the very first step, during the mechanoelec-

trical transduction in the inner ear, external sounds are distorted,

or even completely suppressed, while new tones are generated

by the ear itself [5]. Forward and backward masking, illusory per-

cepts of nonexistent tones (such as the Zwicker illusion [6]),

perceptual merging of separate auditory streams, the prece-

dence effect suppressing the perception of echoes that has

been demonstrated in insects and vertebrates [7,8] (and which

some blind people can unsuppress), auditory hallucinations,

and a frustrating inability to distinguish between distinct pho-

nemes of a foreign language — all of these phenomena indicate
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that evolution has not shaped the auditory system as an objec-

tive detector of acoustical reality. Instead, the auditory system,

like any biological system, has evolved to help animals to find

food, escape predators, and mate. The sensory ecology of

each species, together with the laws of physics, are therefore

the major factors controlling animal hearing.

Because sensitive hearing evolved independently multiple

times in different animals, a comparison of hearing in these ani-

mals is useful for understanding the fundamental principles that

govern the structure and function of the auditory system [9,10].

In this review, we use this comparative approach to highlight

several fundamental mechanisms of hearing in the peripheral

and central auditory systems of insects and vertebrates, discus-

sing similarities as well as differences in the context of the ani-

mals’ sensory ecology.

Peripheral Auditory System
Insects and vertebrates both transduce acoustic energy into

electrical signals using highly specialized structures that,

although implemented differently, follow the same biophysical

principles. In both groups of animals, the need for a fast trans-

duction of sound-evoked vibrations must be achieved through

a direct coupling of themechanical stimulus to themechanosen-

sitive ion channels [11]. The direct coupling assures speed but

leads to nonlinearity — and therefore sound distortions —

because thermodynamics imposes a nonlinear dependence of

the channels’ open probability on the stimulus intensity. Yet

the advantage of speed is apparently greater than the disadvan-

tage of sounds being distorted by the ear (in some cases, as we

will discuss below, these distortions may even be exploited as

signals in their own right). Likewise, the functional advantage

offered by frequency tuning, the amplification of weak sounds,

and (at least in vertebrates) the ear’s ability to convert a

million-fold range of sound intensities into a hundredfold range

of mechanical or neural responses outweighs the disadvantages

of the inner ear’s instability and metabolic vulnerability (i.e., the

requirement for a self-regulatory energy-expending mechanism
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to maintain the system’s control parameters in the desired range

in order to benefit functionally from the oscillatory instability) [12].

Thus, natural selection has produced ears that operate close to a

bifurcation [12], which produces amplification, frequency selec-

tivity, and a gain control — characteristics that underlie sensitive

hearing in vertebrates as well as in some insects.

Insects, Sound and the Auditory Periphery
The Encyclopedia Britannica defines sound as ‘‘a mechanical

disturbance from a state of equilibrium that propagates through

an elastic material medium’’. The term ‘sound’ thus simply de-

scribes mechanical forces travelling through a (gaseous, liquid

or solid) substrate, whereby the transmission of these forces oc-

curs through series of elastic collisions between the particles

within that substrate.

In animal hearing one major task of the auditory system is

to secure the audibility of a distinct spectrum of such sound-

associated forces, namely those of biological relevance. Sorting

biologically relevant signals from biologically irrelevant noise in-

volves the active filtering and partial amplification — or suppres-

sion — of distinct spectrotemporal features of sound. The audi-

tory systems of different species thus display distinct degrees

of auditory specificity, i.e., species-specific adaptations of

their hearing ranges. Corresponding functional properties have

been studied and reported for a wide range of auditory systems,

including the mammalian cochlea [13] as well as insect ears [14].

In insects, where evolutionary pressures for miniaturization

and ‘concurrent engineering’ are particularly high as a result of

their small size, much of the required filtering and pre-processing

already takes place in the auditory periphery, namely at the level

of the auditory transducer modules. By auditory transducer

modules, we mean the auditory mechanotransducer channels

proper, together with elastic components (collectively referred

to as gating springs), which funnel forces to the mechanotrans-

ducer channels thus controlling their gating, as well as adapta-

tion motors, acting in series with the mechanotransducer

channels and providing the forces mediating adaptation and

amplification.

Insect ears can be grossly divided into two major types: tym-

panal ears, in which sound-associated forces are detected

by, and exert pressure on, a thin membrane area (analogous to

the eardrum of the mammalian ear); and antennal ears, which

act as pendulums driven by sound-induced particle motion of

the surrounding air. Whereas the pressure-sensitive tympanal

ears act as far-field sensors that can operate at very high fre-

quencies (up to 100 kHz or even higher) over long distances

(tens of meters), the particle-velocity-sensitive antennal ears

act as near-field sensors operating at lower frequencies (typi-

cally <1 kHz) over shorter distances that are not expected to

exceed a few centimeters. We will focus our discussion in this

review almost exclusively on antennal ears, which in many

ways are intriguingly similar to the cellular substrates of verte-

brate hearing, i.e., the mechanosensory hair cells. Considering

the evolutionary distance between insects and vertebrates, it is

remarkable how well hair-cell-based models of mechanotrans-

duction [15] can capture mechanotransduction in the antennal

ears of Drosophila [16]. We will here use the antennal ears

of two dipteran insects (‘true flies’), namely drosophilids and

mosquitoes, to illustrate how the auditory periphery can play a
CURBIO
leading role within the sensory ecology of an entire acoustic

communication system (Figure 1). The auditory transducer mod-

ules, as we will show, confer substantial amounts of auditory

specificity to the antennal ears of both mosquitoes and droso-

philid flies. Most interestingly, a recent study has directly impli-

cated the auditory transducer channels of a bush cricket species

(Mecopoda elongata L.) in frequency discrimination [17], sug-

gesting that mechanotransducer channels alsomake substantial

contributions to the filtering and pre-processing of sound in

tympanal ears.

The Sensory Periphery of Diptera

Auditory Anatomy and General Principles of Function

The antennal ears of Drosophila melanogaster are formed by

two functionally distinct anatomical compartments: the second

antennal segment (A2 or pedicellus) houses the partially

sound-sensitive neurons of the Johnston’s organ (JO); and the

third antennal segment (A3 or funiculus), together with a unilat-

eral appendage named the arista, acts as the sound receiver

(Figure 1B). Upon sound stimulation, A3 starts to rotate about

its longitudinal axis [18], leading to the alternate stretching and

compressing of two populations of JO neurons with opposite

response polarity [19]. JO neurons are components of multicel-

lular organules called scolopidia. The scolopidia of antennal

ears consist of typically two (occasionally three) neurons plus

three to four support cells [20,21]. The Drosophila JO houses

�200 scolopidia (corresponding to �500 JO neurons), whereas

the JOs of male mosquitoes can host up to �7,500 scolopidia

(corresponding to � 15,000 JO neurons as �97% of mosquito

scolopidia possess two neurons) [22]. As well as containing a

much larger number of neurons, the mosquito antenna differs

in another important aspect from the ear of the fruit fly.

The Drosophila antenna, as described above, forms a rotating

pendulum (with only one mechanical degree of freedom),

whereas the mosquito antenna conforms to the ancestral

‘flagellar’ condition, where the antenna’s flagellum acts as an in-

verted pendulum that can swing in all directions within its plane

of suspension, thus having two mechanical degrees of freedom

(Figure 1E). The functional anatomy of the mosquito ear is likely

to reflect the major role that is played by the sense of hearing in

mosquito mate localization [23]. No phonotaxis, or other direc-

tional auditory behavior, has yet been reported for Drosophila

(despite the distinct directionality of its antennal sound receiver;

see [24] and below).

Sensory Ecology of Hearing I — Drosophila Antennae as

Active, Mechanical Pulse Extractors

With regard to the passive vibrational properties of its cuticular

joint (as manifest in freshly dead or CO2-sedated animals), the

Drosophila antennal sound receiver can be approximated as a

moderately damped, simple harmonic oscillator with a linear

response behavior [25]. Mechanically coupled to the receiver,

however, are directly gated ion channels situated in the mem-

branes of JO neurons. Essential nonlinearities, associated with

the gating of mechanotransducer channels, in tandem with en-

ergy input from adaptation motors, render the antennal ear as

a whole both active and nonlinear [25]. Even more than that,

with regard to key mechanical properties, the antennal ears are

in effect dominated by the properties of their auditory transducer

modules [26]. In the following discussion we will briefly illustrate
Current Biology 26, R1050–R1061, October 24, 2016 R1051
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Figure 1. The sensory ecology of auditory transduction: antennal ears of Diptera.
(A–C) Drosophila; (D–F) mosquitoes. The landscape of signals used in the acoustic communication systems of fruit flies and mosquitoes is spectrally simple. It
involves either pure tones (left panel in (A), Drosophila sine songs; upper panels in (D), mosquito wingbeat) or minor modifications of sinusoidal oscillations (right
panel in (A),Drosophila pulse song). In some cases the emitted signal contains prominent higher-order harmonics next to its fundamental frequency (lower panels
in (D), mosquito wingbeat). In both males (M) and females (F) the emitted signal (lower panels in (D), mosquito wingbeat) contains prominent higher-order
harmonics (shown: M2, F2, F3) next to its fundamental frequency (M1, F1). (B,E) Sound signals in both fruit flies and mosquitoes are transduced by the me-
chanosensory neurons of the Johnston’s organ in the second antennal segments (A2) of their antennae, which are coupled to specialized sound receiver
structures formed by more distal antennal parts. Within the membranes of these neurons, directly gated mechanotransducer channels are thought to associate
with molecular motors to provide stimulus adaptation and amplification. In Drosophila, the third antennal segment (A3 or funiculus), together with a unilateral
appendage named the arista, acts as the sound receiver, whereas in mosquitoes, the sound-receiving role is taken over by the flagellum. (C) Left: In Drosophila,
transducer-based mechanical feedback amplification increases the antennal displacement sensitivity within the spectral range of courtship song components
(hatched area) by a factor of�10 (red) compared with the passive system (blue). Right: The example shows the antennal deflection in response to a song pulse for
an entirely passive antenna of D. teissieri (e.g., dead or CO2-sedated, without contributions from active transducer modules; blue traces) and the active system
(with contributions from active mechanotransducers; red traces). Note the marked increase of antennal deflection for the active state and the relative increase
seen for a conspecific courtship pulse compared with a (higher frequency) pulse of a different species (D. yakuba). Corresponding stimuli are shown in the bottom
traces (black). (F) In the ears of mosquitoes, a nonlinear process (most likely linked to transduction) generates distortion products. Even when stimulatedwith only
two pure tones, f1 and f2 (e.g., male and female wingbeat), the antennal response will display additional tones. As these additional tones can be particularly
prominent in the lower frequency range (highlighted is the cubic distortion product 2f1–f2), this behavior has been suggested as a mechanism to communicate
beyond the actual auditory range (data recalculated from [30,130]).
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how these molecular properties are matched to and enable the

specific auditory tasks of the fly ear.

Behaviorally, hearing in flies is most closely linked to the

acoustic communications that take place during themating ritual

[27]. Male flies vibrate their wings to ‘sing’ songs to the females.

In D. melanogaster, these songs are spectrally very simple, con-

taining longer (typically 0.2–1 second), sinusoidal, pure-tone-like

components (‘sine songs’) alongside shorter (�5–10millisecond)

pseudo-sinusoidal waveforms (‘pulses’). Pulses are repeated at

species-specific inter-pulse intervals (IPIs) to form trains. The

IPIs are thought to represent the major signal that mediates spe-

cies recognition during courtship [28]. For the fly’s auditory brain

to be able to analyse the IPIs of the pulse trains, however, the ear

must have detected these pulses in the first place. Individual

pulses represent waveforms of carrier frequencies of between

approximately 150 and 250 Hz [29,30]. In its linear regime, i.e.,
R1052 Current Biology 26, R1050–R1061, October 24, 2016
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without any contributions from mechanotransducer gating, the

fly’s sound receiver is tuned to best frequencies of around 800

to 1,000 Hz. In its active state, the receiver’s best frequency is

shifted into the range of pulse carrier frequencies. But far more

than simply spectrally matching a receiver to its biologically

most relevant signals, the auditory transducer modules pro-

vide active amplification, increasing the antennal displacement

response to individual conspecific pulses by around 10-fold

(Figure 1C). By virtue of the underlying transducer-based pro-

cess, the antennae are thus able to extract pulses out of a noisy

environment in an efficient and frequency-dependent way.

One key feature of the essential nonlinearities that support

hearing in both insects and vertebrates is that they become

relatively more prominent the smaller the stimulus (and thus

the fainter the sound) [31]. The dynamic range of system re-

sponses (both mechanical and electrical) is therefore heavily
9
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Figure 2. Transduction-dependent
compressive nonlinearities reflect sensory
ecological trade-offs in Drosophila acoustic
communication.
(A) When stimulated by pure tones at its best
frequency, the wild-type Drosophila antennal
receiver displays a compressive nonlinearity, which
produces relatively larger displacements for smaller
stimuli (particle velocities), depicted by the green
curve. This nonlinear compression originates from
underlying saturating nonlinearities of mechano-
transducer gating. Removing distinct functional
components of the fly’s auditory transduction
chain, such as the key mechanotransduction
channels NompC and Nanchung, can abolish (e.g.,
through loss of nompC function; nompC-, blue)
or enhance (e.g., through loss of nanchung func-
tion; nan-, red) the extent of nonlinearity. The
grey line depicts the linear regime of the passive
antenna for comparison. (B) Top: Transduction-

related nonlinear amplification is frequency-dependent; a loss of nonlinearity for stimulation� 2.5-times above the receiver’s best frequency (f0) is shown. Bottom:
The receivers of different Drosophila species (shown by the different coloured circles ) have been shown to display differential best frequencies, which correlate
almost linearly (grey line) with the spectral content of pulses produced by the corresponding conspecificmales. (C) One direct result of nonlinear compression is the
normalizing effect it hason response amplitude.Within theworking rangeof thecorresponding transducers, antennal deflections (middle trace, blue)will be larger for
small sound intensities (upper trace, red). This effect is intensity dependent and becomes negligible for greater sound intensities, thereby reducing the effects of
potential sound-amplitude differences. As stimulus amplitudes beyond the levels that saturate the transducers will not contribute to the nerve responses, this
‘normalization’will be even greater at the level of the auditory nerve (bottom, black). As a result, a pulse train with natural amplitude variationswill be converted into a
train of nearly ‘unitary’ pulses, facilitating the robust encoding of inter-pulse intervals. Data recalculated from [30,130].
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compressed and the ability to resolve amplitude differences is

sacrificed in favour of enhanced absolute sensitivity (Figure 2).

In the context of a real-world pulse train this means that,

by amplifying pulse-evoked receiver displacements in an inten-

sity-dependent way, the transducer-based process levels out

amplitude differences between individual pulses, effectively

‘normalizing’ pulse amplitudes (although it should be noted

that, within certain ranges, amplitude differences can still be

resolved and that this process might be further facilitated by a

range fractionation between different JO neurons).

In a communication system that operates with a rate code

of relatively sparse events (trains typically consist of only 5–10

individual pulses) as well as in mechanically noisy conditions,

the above system properties are likely to be adaptive. Most

notably, the female ear must function during the actual mating

ritual, i.e., when being chased by a singing male. Fly courtship

has proven to be an interactive and dynamic behavior involving

a continuous adjustment of signals [32,33], in some species

even male–female duetting [34], as well as fast movements

and turns, which will by themselves impose a considerable

load of mechanical background noise on the ear. The job of

the female’s ear is made even more challenging by the fact

that it is, by construction, acutely sensitive to variations in the

angle of incidence of the sound stimulus [24]. Under these cir-

cumstances, a built-in, frequency-specific hearing aid, such as

the one provided by the transducer-based process, will be of

considerable value to boost the audibility of the biologically

most relevant signals, i.e., individual song pulses. The widely re-

ported intensity dependence of both frequency tuning and

amplification in the Drosophila ear [30,35,36], which maximises

the sensitivity and frequency match specifically for faint song

components, increases the female’s chance to catch every sin-

gle pulse, however small. For larger pulse amplitudes, in turn,

neither active amplification nor frequency optimization are

required; the mechanical properties of the (higher-frequency)

passive antenna will then dominate the antennal response and
CURBIO
the (lower-frequency) song pulses will simply fall into the linear

part of the passive antenna’s displacement response. The fly’s

antenna was aptly named a love song receptor almost 40 years

ago [37]. Today we can add that it does this job by acting as an

active and efficient pulse extractor. Most remarkably, the re-

ceiver’s fight for audibility seems to be fought on the sender

side as well, as it has been reported that Drosophila males

continuously and rapidly adjust courtship song intensity to the

perceived distance from the females [32].

Beyond a pioneering study [38], which suggested that differ-

ential low-pass filtering properties of second order neurons

might contribute to the decoding of species-specific IPIs, still

very little is known about how pulse songs (or courtship songs

more generally) are represented, and decoded, within the fly’s

auditory brain. Much progress in this regard, however, has

been made over the last decades by seminal studies conducted

in insects with tympanal ears, such as crickets. It would exceed

the scope of this review to describe these advances here in detail

but the interested reader is referred to a recent conceptual re-

view of the topic by Hedwig [39].

Sensory Ecology of Hearing II — Mosquito Antennae

Detect, and Transpose, Pure Tones

Above we have discussed how the antennal ears of Drosophila

have been shaped by, and thus betray, the specific sensory-

ecological needs of the flies’ courtship behavior. In this regard,

the flagellar ears of mosquitoes truly sing a song of their own.

Hearing in mosquitoes is mainly about hearing another

mosquito’s wingbeat. Males detect, locate and chase females

by detecting, locating and chasing a female flight tone [40].

Both sexes, in turn, have been reported to respond to each

other’s wingbeat frequencies by modulating their own [41–43],

an acoustic behavior thought to mediate male–female interac-

tions within larger mating swarms. Just as in Drosophila, mos-

quito antennae have been reported to be active, nonlinear

oscillators of exquisite nanometer-range sensitivity [23,44–46],

with the source of the observed activity and nonlinearity likely
Current Biology 26, R1050–R1061, October 24, 2016 R1053
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Left: A hair bundle of an outer hair cell (the cell body is not shown) with three
rows of stereocilia. Middle: A column of three stereocilia of progressively
varying height. Right: A magnification of the tip-link region, showing a pair of
stereocilia filled with actin filaments (red), and a tip link composed of a cad-
herin-23 dimer (blue) and a protocadherin-15 dimer (green) attached to two
MET channels (light blue).
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being the same as in the fly, i.e., the auditory neurons proper and

their presumably active auditory transducer modules. Rather

than giving a comprehensive view on acoustic communication

in mosquitoes, and on the role of the transducer machinery

therein, we would like to concentrate on one particular example

that showcases how the very periphery of hearing may pre-

process and analyse sound. For three species it has been

reported that the wingbeat-matching behavior results in a

convergence of higher harmonics rather than of the fundamental

frequencies [41,43,47]. In all three cases a match appears to be

achieved around the second harmonic of themale wingbeat (M2)

and the third harmonic of the female wingbeat (F3; Figure 1D).

For a ‘prototypical’ mosquito species with a male wingbeat

of �600 Hz and a female wingbeat of �400 Hz, this would

result in a convergence at a frequency of �1,200 Hz, which is

commonly assumed to be considerably above the range of

antennal mechanical sensitivity and thus above the mosquito

hearing range.

Intriguingly, the solution to this sensitivity dilemma that the

sensory periphery faces has been suggested to come from the

sensory periphery itself [43,48]. It is a key feature of active hear-

ing organs that the nonlinearities of the system together with an

inherent reciprocity of force transmissionmust lead to the gener-

ation of distortion products [5]. In the case of the mosquito ear

this means that, even when stimulated with only two tones f1
and f2 (representing, for example, male and female flight tones),

the antennal displacement response will display peaks at a set of

mathematically predicted additional frequencies, i.e., distortion

products. One of them, the cubic distortion product (2f1–f2),

has been found to be particularly prominent in many auditory

systems, including the mosquito ear [48]. As the frequency of

this cubic distortion product is always lower than that of the
R1054 Current Biology 26, R1050–R1061, October 24, 2016

CURBIO 1317
primary tones (f1 and f2), it may act to transpose an otherwise

‘inaudible’ pair of tones into an audible tone. The hypothesized

mechanism has particular traction in Culex mosquitoes, as the

antennae in female Culex are tuned to frequencies well below

the male and female wingbeats but close to the predicted cubic

distortion product. Alternatively, as has been reported for Aedes

mosquitoes [41], the antennal nerve may respond to higher

frequencies of stimulation with a sustained DC-like response

component, thus transposing the higher stimulus frequency

even further into the lower frequency range. Future research is

needed to resolve these questions, but in either case, it seems,

the sensory periphery will take a centre-stage role. It will be

particularly interesting to explore how the diverging sensory-

ecological contexts of pure-tone-dominated hearing in mosqui-

toes and pulse-dominated hearing in fruit flies have shaped the

molecular mechanisms behind these auditory functions.

Mechano-electrical Transduction in Vertebrates
Vertebrates convert sound energy into electrical signals using

a single, evolutionarily conserved type of cellular transducer.

Mechano-electrical transduction (MET) occurs in hair cells, the

receptor cells of the inner ear. Each hair cell has a bundle of

clavate microvilli, called stereocilia, densely filled with cross-

linked actin filaments and surrounded by the plasma membrane

(Figure 3). Their height increases along the axis of symmetry of

the hair bundle. A molecular ‘string’ called a tip link connects

two adjacent stereocilia of different heights and is composed

of specialized cadherin molecules [49]. Its lower end (bearing

protocadherin-15) is anchored at the tip of the shorter stereoci-

lium where the MET channels are located [50] and its upper

end (containing cadherin-23) is attached to the side of the taller

stereocilium where myosin motors are found. The movement of

the hair bundle towards the taller stereocilia stretches tip links

and opens MET ion channels.

The gating-spring model describes the operation of this sys-

tem quantitatively [15,51]. Tension in a gating spring (tip link)

opens a MET channel. The open probability (P0) as a function

of displacement (X) follows the Boltzmann relation. Channel

opening produces a movement, termed the gating swing, which

relaxes the gating spring. A product of the gating-spring stiffness

and the gating swing defines the single-channel gating force, de-

termines the slope of the P0–X relation, and sets the ear’s sensi-

tivity to sound. Sensitive hearing requires a steep P0–X relation

and therefore a large gating swing [52], which is supposed to

originate somehow from the conformational rearrangement of

the MET channel.

The gating spring is a key element of the gating-spring

model and represents an elastic component, or a series of elastic

components, whose tension determines the open probability of

the MET channel. Other elastic elements, which lie in parallel

with the gating springs (such as stereociliary pivots), are called

parallel springs; their tension does not determine the open

probability of the channel directly. What is a biological correlate

of this model concept? Can the tip link be the gating spring?

By comparing a hair bundle’s stiffness before and after dis-

rupting tip links with a calcium chelator, the gating-spring stiff-

ness was estimated experimentally to be between 0.4 and

4 mN$m–1 [15,53]. Although tip links are conspicuous morpho-

logical candidates for gating springs, a crystal structure of
9



Box 1. Can a tip-link polymer be a hair cell’s gating spring?

All polymers can be divided into three classes depending on the ratio between their total length (contour length), L, and the persis-

tence length, Lp, that determines the distance over which the thermal forces decorrelate the tangent along the contour, i.e.,

oppose the tendency of the polymer to point in the same direction.

d If L>>Lp then a polymer is flexible: it can form loops, knots, and hairpins. Because there is only a single straight conformation of

a molecule, pulling on it and straightening it decreases the entropy: the stiffness of a flexible polymer has therefore a strong

entropic component.

d If Lp>>L, a polymer is stiff. Because Lp>>L, the molecule is already straight, and therefore its stiffness is enthalpic and deter-

mined by the longitudinal compliance characterized by the elastic modulus.

d If L and Lp are approximately equal, however, a polymer is neither too flexible (does not form knots, for example) nor too stiff (is

not a straight rod); it is semi-flexible. Most biological polymers, such as actin, tubulin, tropocollagen, andDNA are semi-flexible.

For such polymers, both the entropic and the enthalpic components will contribute to the total stiffness.

To determine an order of magnitude for the stiffness of a tip link, its L, Lp, and the Young’s modulus (E) of cadherins need to be

known. The molecular dynamics force-extension curves (Figure S13 in Sotomayor and Schulten [54]) give a stiffness k of C-cad-

herin in the presence of Ca2+ that is equal to 50 mN$m–1 (400 pN force for 8 nm extension). From which, using E = kL
pr2

, the Young’s

modulus of � 0.37 GPa follows (Sotomayor and Schulten [54] used L = 23 nm, and r = 1 nm). Thermal forces from the fluid will

produce some bending and randomize the orientation of the polymer over the characteristic distance Lp. Unless the polymer is

a homogeneous isotropic rod of a constant cross-section, the relationship between E and Lp is unknown. Assuming a Lp in the

range of 20 to 100 nm from the EM micrographs in [49] — based on the observation that reconstituted tip links were not straight

but had several bends— one can estimate the combined stiffness of a tip link under tension using an equation originally derived by

Odijk [131] in the form given in Table 1 in [132]: x = L

"
1� 1

2

�
kBT

FLp

�1=2

+
F

K

#
where x is the end-to-end distance, L is the contour

length, F is force, and K =
p

2
a2E, where a is the radius of the tip link (4.5 nm). Adaptation motors provide several pN of tension

on the tip link. Taking the tension of 10 pN from [133] and assuming Lp = 50 nm, one obtains the end-to-end distance of

162 nm (contour length 170 nm). The difference between the two lengths is stored in the transverse fluctuations. Then, a 1 pN incre-

ment of force elongates the polymer to 163 nm, corresponding to the stiffness of 2.7 mN$m–1. With the tension of 5 pN and Lp =

50 nm, the end-to-end distance equals 159 nm (compared to 162 nmwith 10 pN of tension). As expected, less tension corresponds

to more transversal fluctuations. An additional 1 pN of force (making the total force 6 pN) gives the end-to-end distance of 160 nm;

and the stiffness is 964 mN$m–1. This value accords well with the experimentally estimated 0.4–4 mN$m-1 stiffness of the gating

spring. Therefore, a tip link can be a hair cell’s gating spring [134].
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cadherin-23 repeats indicates a value for a tip-link stiffness of

50 mN$m–1, significantly greater than the experimentally esti-

mated values [54]. Although it was concluded based on these

data that the tip link could not be the gating spring, a polymer

of the size of the tip link with the Young’s modulus of cadherins

and with a physiological level of tension has a stiffness that

matches the experimentally estimated values (Box 1), suggest-

ing that tip links could be the gating springs of hair cells. In order

to resolve this question, it will be important to perform single-

molecule force-extension experiments using isolated or recon-

stituted tip links to test their stiffness directly as a function of

applied force [55].

The gating-spring model describes mechanotransduction

both in vertebrate and in insect ears [51,56,57]. Since insects

do not have tip links, other elements of themechanotransduction

complex, for example, the lipid bilayer and intracellular proteins

in series with the transduction channels, such as the ankyrin

repeat domains of the NompC mechanotransduction channel

in insects, can perform the gating-spring role as well [58–62].

Although it is possible to evoke a physiological response dur-

ing signal transduction by changing the activity of only a single

protein — a notable example being the detection of individual

photons by opsins in the retina — the collective activity of an
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ensemble usually provides a better signal-to-noise ratio. One

hair cell may use over a hundred MET channels, located on

a hair bundle’s many stereocilia. Doing so, however, poses

a formidable physical challenge because, unlike the insect

antennae, hair cells are immersed in water, a viscous fluid.

Viscous friction dissipates energy and dampens oscillations.

Sharp frequency selectivity — a fundamental property of the

vertebrate auditory system — is impossible due to these fluid–

structure interactions unless stereocilia are grouped in a hair

bundle [63]: we discuss the importance of these interactions in

Box 2 and Figure 4.

Some hair bundles are directly stimulated by viscous forces,

and their shape reflects this fact. The alligator lizard, for example,

has free-standing hair bundles with extraordinarily long and thick

stereocilia [64]. In mammals, inner hair cells are also stimulated

hydrodynamically, and their stereocilia are twice as thick as

those in outer hair cells, having a diameter of 500 nm compared

with 250 nm. An outer hair cell would benefit from having as

many stereocilia as possible in order to maximize the force pro-

duced by the hair bundle and to have asmanyMET channels per

cell as possible to drive the electromotility. This probably ac-

counts for why the outer hair cell stereocilia are arranged not in

a line or semicircle as they are in inner hair cells but in a V- or
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Box 2. How liquid in the inner ear has shaped the hair bundle.

A hair bundle operates at small Reynolds numbers on the

order of 10–4. The Reynolds number (Re) is defined by: Re =

uLr/m, where u is the velocity, L is a linear dimension (e.g., a

hair bundle’s size), r is the density and m is the dynamic vis-

cosity of the fluid. The Reynolds number indicates the relative

importance of inertia over viscous forces for a particular

type of flow. For the hair bundle, a Reynolds number of

much lower than 1 indicates the relative importance of viscous

forces.

When a solid objectmoves through a viscous fluid, the velocity

of the fluid directly in contact with the object’s surface is zero:

the fluid sticks to the wettable surface (the ‘no-slip’ condition).

This condition usually applies to hydrophilic surfaces [135].

Therefore, a gradient of fluid velocity develops in the moving

object’s neighbourhood. A layer of fluid is dragged along

with the moving object. How far this influence spreads into

the fluid, i.e., how thick the ‘boundary layer’ is, depends on

the velocity difference between the object and the fluid,

on the size of the object, and on the fluid’s density and viscos-

ity (the same factors that determine the Reynolds number). For

example, a cylinder of the size of a single stereocilium oscil-

lating at 30 Hz in water will create a boundary layer that is

about 73 mm thick. Oscillating, it drags a thick layer of fluid

with it and creates a gradient of fluid velocity spreading to dis-

tances much larger than its own diameter — in fact, even

larger than the size of the whole hair bundle.

A hair bundle is a micrometer-sized array of cylinders that are

very closely spaced: at the top of the hair bundle, the ratio of

the gap between two adjacent stereocilia to the diameter

of a stereocilium is less than 0.1. Stereocilia are therefore

completely immersed in each other’s boundary layers. If fluid

were forced to flow through a narrow gap between two adja-

cent stereocilia, a steep velocity gradient would have to

develop in the fluid because of the ‘no-slip’ condition, and

there would be a strong resistance, due to viscosity, to the

flow through the gap.

The problem of flow through an infinite array of parallel cylin-

ders at small Reynolds number was first solved in 1957 by

Tamada and Fujikawa [136], who found that, because of the

steep velocity gradients, the drag on each cylinder in the array

strongly increases compared with the drag on the same cylin-

der in isolation. In contrast, as they note, if an array of cylinders

is finite, the fluid has an alternative to flow around the array

rather than through it. In this case, very little fluid may pass be-

tween the cylinders and the drag on each of them can bemuch

smaller than the drag on an identical isolated cylinder.

The same situation applies to a hair cell (Figure 4): by grouping

stereocilia in a tightly packed hair bundle, evolution reduced

the drag per stereocilium dramatically [63], making the sensi-

tive hearing in vertebrates possible.
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Figure 4. Grouping of stereocilia in a hair bundle dramatically
reduces the drag per stereocilium.
Drag coefficient is a function of radius r of a cylinder displaced by a linear
profile over the height on a fixed plate. The height of a cylinder corresponding
to a stereocilium is h = 8 mm. The drag coefficient is given for an equivalent
force at the cylinder’s tip. For the finite-element result (FEM) the liquid domain
has an outer diameter of 62 mm and a height of 37 mm. For comparison, the
analytical solutions for a rotating semi-ellipsoid (Analyt. ellipsoid) and for a
cylinder (Analyt. cylinder) are also shown. The latter is provided within the valid
range of r < 0.22 h. Experimental values of the drag coefficient for an isolated
stereocilium and for an entire hair bundle without tip links are shown as black
diamonds (n = 6 in each case). Note that the drag on N stereocilia in a hair
bundle is only about three times greater than the drag on a single isolated
stereocilium. This means that, when stereocilia are grouped in a bundle, N–3
stereocilia move as if they did not experience any viscous drag at all. With a
typical N of 50–100 stereocilia, this effect decreases viscous dissipation
dramatically. Adapted with permission from Macmillan Publishers Ltd: Nature
[63], ª 2011.
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W-shape, and why they are smaller, because otherwise they

would not all fit in three or four rows atop a hair cell. In contrast,

it would make sense for an inner hair cell to have thick stereocilia

to maximize coupling to themoving fluid. Indeed, the same num-

ber of thinner stereocilia would result in a smaller hair bundle,
R1056 Current Biology 26, R1050–R1061, October 24, 2016
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which would experience a smaller hydrodynamic force for the

same flow, whereas a greater number of thinner stereocilia

would increase the fluid coupling but also would make the hair

bundle stiffer, diminishing its deflection and thus reducing the

magnitude of the tip-link extension in response to the hydrody-

namic force. Wider hair bundles can therefore be assumed to

be more sensitive to hydrodynamic forces than narrower hair

bundles of identical stiffness.

Crucially, water filling the gaps between stereocilia will allow

their relative shear. Indeed, water is known to be a very good

lubricant [65]. At the same time, its viscosity will suppress inter-

nally generated ‘squeezing’ modes of motion and will therefore

diminish sound distortions generated by the ear [66], making it

a better sound detector, at least from an engineer’s perspective.

Central Auditory System
How sensory neurons represent or encode natural signals is one

of the classical problems in neuroscience. Using stimuli that are

relevant to the animal has produced the clearest descriptions of

how sensory systemswork in ‘specialized animals’, such as bats

[67], electric fish [68], or barn owls [69,70]. In each of these exam-

ples, the stimuli were both natural and simple, which was key to

understanding their representations. Most of the sensory cortex

in humans and other animals, however, deals with natural stimuli

that are statistically complex. This complexity has slowed prog-

ress in understanding central sensory representations. That said,
9
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recent advances in computational methods have enabled the

characterization of auditory receptive fields using behaviorally

relevant stimuli, both in insects and in vertebrates, revealing an

interesting similarity between them. Before we address this

point, however, one key difference between insect and verte-

brate central auditory systems is worth noting.

In many insect species, the number of auditory neurons

decreases from the periphery to the centre. For example, the

Drosophila JO contains about 500 mechanosensory cells,

�75%of which (subgroups A, B and D) have been linked to audi-

tory function [71], but the ascending mechanosensory pathways

for conspecific song detection are likely to have substantially

fewer neurons [71–73]. In insect auditory systems, individual —

i.e., unique — neurons can be identified, and in some species

a single neuron alone can drive important behaviors, such as

the bat-evasion reflex in noctuid moths [74]. Computational

network models based on data from individual auditory neurons

in genetically engineered Drosophila have been built and have

faithfully predicted key aspects of the fly’s auditory behavior [75].

In vertebrates, in contrast, the number of auditory neurons

always increases from the periphery (cochlea) to the centre

(auditory cortex), by as much as four orders of magnitude [76].

These neuroanatomical differences suggest associated func-

tional differences: insect auditory systems are listening for sets

of well-defined and species-specific sounds, whereas verte-

brates — for example, humans — use their auditory systems

to extract broader, and often less predictable, information about

the environment. Indeed, we can hear anything between 20 Hz

and 20 kHz, the typical frequency range of our (healthy) inner

ears. The auditory system of insects might thus be thought of

as a special-purpose, rigid system, adapted to detect only a

handful of signals, mostly mate and predator calls. This view

accords with the finding that information within the insect brain

is quickly distributed into multiple parallel (and decorrelated)

streams for the separate extraction of individual stimulus fea-

tures [77]. The vertebrate auditory system, in contrast, is a gen-

eral-purpose andmore flexible system that is shaped by learning

[78–81], affected bymood [82], focused by attention [83–85], and

one that influences and is influenced by other parts of the brain,

both sensory [86] and motor [87] areas, to detect and interpret

any sound that may be subjectively important at any particular

moment. Our auditory system reconfigures its functional con-

nectivity ‘on the fly’ [88,89].

This property is important because, according to the principle

of efficient coding, if an animal is to extract the maximal amount

of information about a stimulus whose statistics vary in time,

as they usually do in natural settings, then neuronal ensembles

must adjust their responses to match the varying stimulus statis-

tics [90]. On the other hand, from the point of view of a decoder,

an important property of the neuronal response is its invariance,

two good examples being contrast-invariant responses to grat-

ings in the visual cortical area V1 [91] and a time-warp-invariant

processing of auditory cues [92–94]. What this means is that

cortical circuits must efficiently and flexibly combine selectivity

with invariance in pattern recognition.

Natural sounds, including speech, are produced by vibrating

bodies and are characterized by a rapid onset and a slow decay

of the envelope. The basilar membrane impulse response [95],

the mechanical and electrical responses of a single hair cell
CURBIO
[96], and kernel functions representing natural sounds in efficient

coding algorithms [97] all share the same asymmetrical Gabor-

like shape, i.e., a sine wave multiplied by a Gaussian function.

Gabor filters occur at various stages of visual and auditory

processing in insects and vertebrates [98,99]. Why are they so

widespread?

One reason for a Gaussian envelope may be that a (normal-

ized) dot product of a stimulus vector and a synaptic weight

vector combined with a sigmoidal nonlinearity produces an

approximately Gaussian tuning [100]. The dot product (the inner

product between two vectors) would measure the similarity be-

tween a stimulus and a neuron’s receptive field, and the nonlin-

earity comes from the action-potential generation mechanism.

This is a biologically plausible way to obtain Gaussian tuning.

In vision, it is well known that the Laplacian of the two-

dimensional Gaussian distribution, which can be approximated

by the difference of two Gaussians, e.g., with inhibition tuned

more broadly than excitation, is an optimal operator to detect in-

tensity changes in an image [101]. As a second-order differential

operator, it produces filters that resemble Gabors. Crucially, the

same neuronal circuit that can implement Gaussian tuning for

selectivity can also implement, by using different parameter

values, a MAX-like operation (output = maximum(input)), which

is important for invariance and has been observed experimen-

tally in the mammalian visual cortex [102,103] and in the central

auditory system of a songbird [104]. The predicted computa-

tional flexibility was experimentally verified in the European star-

ling, a species of songbird, where individual central auditory neu-

rons could switch between theMAX-like operation for invariance

and a tuning operation for selectivity, depending on the stimulus

and network state [104], displaying sparse responses and multi-

dimensional selectivity [105].

A Gaussian tuning function is also useful for generalization

after training on a limited data set. Specifically, radial Gaussian

basis functions are smooth and interpolate well from training

data to new data [106]. This property is useful for learning. Math-

ematically, Gabor filters have an optimal concentration both in

space and time (frequency), thus introducingminimal distortions.

Furthermore, Poggio et al. [107] have argued that learning invari-

ances in the visual cortex to the group SO2 x R2, a type of

symmetry dealing with rigid rotation and translation, produces

Gabor-like tuning. In other words, this particular selectivity prop-

erty may be a consequence of having to deal with (and discard)

such affine image transformations, which is an invariance prop-

erty. If this argument proves correct, then it would indicate that

selectivity and invariance, two pillars of natural object recogni-

tion, are not independent but are intimately connected as two

parts of a whole. The similarity in central representations —

across sensory modalities and animal classes — could then be

linked to the conservation laws of physics, for any symmetry

is associated, as Noether’s theorem proves, with a conserva-

tion law.

Conclusions and Future Directions
Reflecting both evolutionary and functional kinship, the chordo-

tonal-organ-based ears of insects share multiple similarities with

the hair-cell-based ears of vertebrates. Starting with the fact that

their cellular substrates, namely chordotonal neurons and hair

cells, arise from their respective precursor cells through a series
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of asymmetric mitoses dependent on Notch and basic helix-

loop-helix transcription factors [20,108], the similarities extend

further to the elementary process of auditory mechanotransduc-

tion, which in both hair cells [109] and chordotonal neurons [110]

is mediated by mechanically gated, mechanically adapting

ion channels. Many features that are considered hallmarks of

mammalian, or more generally vertebrate, auditory systems

have been found to be phenocopied in the auditory systems of

insects. Receptors in the auditory periphery of bush crickets

[111,112], for example, are tonotopically arranged. Tonotopy is

one of the fundamental organizational principles of the verte-

brate inner ear, including the mammalian cochlea. As in verte-

brates, the projection patterns of first-order sensory neurons in

insect auditory systems can retain this tonotopic organization

[113], but, unlike the situation in vertebrates, the tonotopy does

not appear to extend to downstream interneurons [77]. Perhaps

most strikingly of all, even the spectral decomposition of sound

by way of dispersive wave propagation, which enables fre-

quency analysis in the cochlea, has been found in an insect

(Copiphora gorgonensis) [114]. Insect ears, like their vertebrate

counterparts, can produce ‘phantom tones’ when presented

with two stimulus tones [115,116], a phenomenon well known

from the mammalian cochlea [117] and also demonstrated at

the single hair-cell level [63,118]. Even higher-order, cognitive

performances, such as the categorical perception of sound

frequency, have been reported in insects (Teleogryllus oceani-

cus) [119].

One of the reasons for themultiple similarities simply lies in the

stunning diversity of insect hearing organs and auditory systems

[120]. Based only on species with tympanal ears, it has been

suggested that hearing has evolved independently at least

twenty times across the various insect orders [121]. The rich

diversity of insect hearing organs, in turn, largely reflects the rich-

ness and diversity of insects themselves. Only a fleetingly small

number of insect species is expected to possess a sense of

hearing [122], but, accounting for an expected 5.5 million spe-

cies alone [123], insects have served and will continue to serve

as a near inexhaustible treasure trove for research into hearing

and acoustic communication.

A recent studymay exemplify these relationships and also indi-

cate some directions that future research could take. Hearing

in Drosophila was found to be independent of efferent control

[36], and no efferent innervation had previously been reported

for any other insect; however, it has now been detected in the

antennal ears of mosquitoes, where it modulates both frequency

tuning and amplificatory gain [124]. Efferent gain control is one of

the key features of vertebrate, and specifically mammalian, hear-

ing [125] and is thought to be key to the ear’s exquisite auditory

performance, especially in noisy environments (possibly contrib-

uting to the ‘cocktail party effect’). Acoustic interactions between

mosquitoes have provenmore varied than previously anticipated

(compare [126] and [127]), and most of these interactions are

likely to take place in larger swarms as part of the animals’mating

behavior [128]. From an auditory perspective, such a mosquito

mating swarmmaywell be described as themother of all cocktail

parties. It will be fascinating to see if — and if so how— efferent

modulation can help to prime the mosquitoes’ antennal ears for

their challenging tasks. Some of the major challenges for hearing

research, in turn, will be of a translational nature — to translate
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insect studies into vertebrate research, translate findings from

mosquitoes into experiments in Drosophila, translate studies on

tympanal ears into studies on antennal ears, and translate from

molecular to mechanistic (and always vice versa).

To understand how hearing works at the most basic level — a

spring pulling on an ion channel — it will be important to identify

the molecular composition of both the gating spring and the

MET channel. (For a discussion of potential MET channel candi-

dates in vertebrates, see [129].) Identifying and characterizing

molecular components of the mechanotransduction complex

and their interaction with each other will aid our understanding

of how sounds perform work on the MET channels, i.e., the na-

ture of the movement that transforms a sound’s mechanical

energy into the channel opening. This knowledge will also

help us to figure out how channel gating contributes to sound

amplification.

To understand how hearing works at the central level, i.e., at

the level of algorithms and their implementation in the central

auditory system, it will be important to establish more connec-

tions not only between insect and vertebrate hearing but also

between insect and vertebrate vision. Indeed, selectivity and

invariance are generic and sensory-modality-independent prin-

ciples underlying natural pattern (object) recognition, but they

have been mostly explored in natural and computer vision.

Bringing that knowledge to bear on problems in hearing research

will be a major task of future studies. Finally, comparing bio-

logical representations of natural sounds with representations

learned by artificial neural networks (i.e., adaptive computer pro-

grams) will help to reveal general principles of hearing in insects,

vertebrates . and machines.
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force generation explains active process in Drosophila hearing. Curr.
Biol. 18, 1365–1372.

27. Tauber, E., and Eberl, D.F. (2003). Acoustic communication in
Drosophila. Behav. Processes 64, 197–210.

28. Dickson, B.J. (2008). Wired for sex: The neurobiology of Drosophilamat-
ing decisions. Science 322, 904–909.

29. Arthur, B.J., Sunayama-Morita, T., Coen, P., Murthy, M., and Stern, D.L.
(2013). Multi-channel acoustic recording and automated analysis of
Drosophila courtship songs. BMC Biol. 11, 11.

30. Riabinina, O., Dai, M., Duke, T., and Albert, J.T. (2011). Active process
mediates species-specific tuning of Drosophila ears. Curr. Biol. 21,
658–664.

31. Eguiluz, V.M., Ospeck, M., Choe, Y., Hudspeth, A.J., and Magnasco,
M.O. (2000). Essential nonlinearities in hearing. Phys. Rev. Lett. 84,
5232–5235.
CURBIO
32. Coen, P., Xie, M., Clemens, J., and Murthy, M. (2016). Sensorimotor
transformations underlying variability in song intensity during Drosophila
courtship. Neuron 89, 629–644.

33. Coen, P., Clemens, J., Weinstein, A.J., Pacheco, D.A., Deng, Y., and
Murthy, M. (2014). Dynamic sensory cues shape song structure in
Drosophila. Nature 507, 233–237.

34. LaRue, K.M., Clemens, J., Berman, G.J., andMurthy, M. (2015). Acoustic
duetting in Drosophila virilis relies on the integration of auditory and
tactile signals. Elife 4, http://dx.doi.org/10.7554/eLife.07277.
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