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Abstract

Purpose

To describe an approach to the use of optical coherence tomography (OCT) imaging in

large, population-based studies, including methods for OCT image acquisition, storage,

and the remote, rapid, automated analysis of retinal thickness.

Methods

In UK Biobank, OCT images were acquired between 2009 and 2010 using a commercially

available “spectral domain” OCT device (3D OCT-1000, Topcon). Images were obtained

using a raster scan protocol, 6 mm x 6 mm in area, and consisting of 128 B-scans. OCT

image sets were stored on UK Biobank servers in a central repository, adjacent to high per-

formance computers. Rapid, automated analysis of retinal thickness was performed using

custom image segmentation software developed by the Topcon Advanced Biomedical Imag-

ing Laboratory (TABIL). This software employs dual-scale gradient information to allow for

automated segmentation of nine intraretinal boundaries in a rapid fashion.

Results

67,321 participants (134,642 eyes) in UK Biobank underwent OCT imaging of both eyes as

part of the ocular module. 134,611 images were successfully processed with 31 images

failing segmentation analysis due to corrupted OCT files or withdrawal of subject consent

for UKBB study participation. Average time taken to call up an image from the database

and complete segmentation analysis was approximately 120 seconds per data set per

login, and analysis of the entire dataset was completed in approximately 28 days.
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Conclusions

We report an approach to the rapid, automated measurement of retinal thickness from

nearly 140,000 OCT image sets from the UK Biobank. In the near future, these measure-

ments will be publically available for utilization by researchers around the world, and thus

for correlation with the wealth of other data collected in UK Biobank. The automated analy-

sis approaches we describe may be of utility for future large population-based epidemiologi-

cal studies, clinical trials, and screening programs that employ OCT imaging.

Introduction

UK Biobank is a community-based prospective cohort study, currently underway in the United
Kingdom (UK), which is unprecedented in terms of both its data collection “breadth” and
“depth”.[1–3] In this study, 500,000 participants, aged 40–69 years at enrollment, have been
recruited, and will be followed over a period of at least 25 years. For each subject, exhaustive
baseline data collection has already been performed based on questionnaires, physical mea-
surements, and biological samples. Questionnaires will assess a range of diverse factors, includ-
ing general health and disability, socio-demographicprofile, smoking/alcohol usage, and
dietary habits. Physical measurements included electrocardiography and exercise tolerance,
spirometry, and bone density measurement, amongst others. Biological samples collected
included blood, urine, and saliva. Using DNA extracted from the blood samples, high through-
put genotyping is underway on all 500,000 participants. As such, UK Biobank has the potential
to profoundly transform our understanding of the risk factors for disease.[3]

Although not included among the physical measurements from the initial cohort of sub-
jects, a detailed examination of ocular health was later incorporated into UK Biobank.[1, 3]
This ocular evaluation includedmeasurements of 1) best-corrected visual acuity, 2) refractive
error, and 3) intraocular pressure. Imaging of the eye was also performed, with color photogra-
phy and optical coherence tomography (OCT). OCTwas first described in 1991,[4] and has
revolutionized the diagnosis and management of ocular disease.[5] By providing high-resolu-
tion cross-sectional (tomographic) images of the neurosensory retina in a completely non-
invasive manner, OCT imaging has become indispensable for the assessment of patients with
retinal disease, the commonest causes of blindness in the developedworld.[6–9] Furthermore,
by allowing direct visualization of central nervous system (CNS) tissue and its associated vascu-
lature, retinal imaging with OCT and color photography may provide unique insights into the
aging process and into systemic diseases such as those affecting the cardiovascular and neuro-
logical systems.[10–12]

A unique advantage of OCT imaging is its extremely high axial resolution–typically 3–8 μm
when imaging the retina.[13] Image acquisition is also extremely fast, allowing comprehensive
retinal scanning in seconds (typically 100+ macular scans). As a result, OCT imaging has
sometimes been described as “in vivo clinical biopsy”. Due to its excellent resolution, OCT
allows for accurate measurements of thickness of the neurosensory retina.[14–16] OCT is also
well suited to visualization of the multi-layered architecture of the retina, and measurement of
individual retinal sublayers is possible.[15] In clinical research, OCT image “segmentation”
(delineation of boundaries to allow measurements) is often performedmanually by trained
image graders.[17, 18] While highly accurate, such an approach is time-consuming and there-
fore not feasible for large studies such as UK Biobank. Automated segmentation algorithms
have been developed, althoughmany are inaccurate, slow, and do not allow for batch
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processing of image sets from large studies.[19] As OCT imaging is increasingly incorporated
into large, population-based epidemiological studies, approaches to allow for rapid, automated,
quantitative analysis of OCT image sets will become increasingly necessary.

In this report, we describe an approach to the use of OCT imaging in large, population-
based studies, including methods for OCT image acquisition, storage, remote analysis, and–
most importantly–rapid, automated analysis of retinal thickness.

Materials and Methods

Ocular Examination in UK Biobank

Ocular data collection in UK Biobank commenced in September 2009 and involved six study
centers around the UK (Sheffield, Liverpool, Birmingham, Croydon, Hounslow, and Swansea).
Acquisition of OCT images and retinal photography began in December 2009. No additional
eligibility criteria were required for those UK Biobank participants undergoing ocular data col-
lection. The methods and protocol for the ocular examination component of UK Biobank were
designed by ophthalmologists from Moorfields Eye Hospital, London, UK. Best corrected
visual acuity was measured using logMAR (logarithm of the minimum angle of resolution),
refractive error was measured using an autorefractor (Tomey, Japan), intraocular pressure and
corneal biomechanics were assessed using an Ocular Response Analyzer (Reichert Technolo-
gies, USA). These ocular examinations, plus OCT imaging and retinal photography (see
below), were typically performed in around 11 minutes. The North West Multi-centre
Research Ethics Committee approved the study (REC Reference Number: 06/MRE08/65), in
accordance with the principles of the Declaration of Helsinki. Written, informed consent was
obtained for all participants in UK Biobank.

Optical Coherence Tomography Image Acquisition and Training

OCT images were acquired using a commercially available “spectral domain” OCT device (3D
OCT-1000 Mark II, Topcon, Japan). This system has an axial resolution of 6μm and an image
acquisition speed of 18,000 A-scans per second (each A-scan is the measurement of the reflec-
tance profile along the optical axis within the retina). OCT images were obtained using a raster
scan protocol, 6 mm x 6 mm in area, centered on the fovea. This raster scan consisted of 128 B-
scans, each composed of 512 A-scans (a B-scan is a two-dimensional, cross-sectional image of
retinal tissue) (Fig 1). Using this protocol, a whole macular 3D volume of 512 A-scans by 128
B-scans is obtained in 3.6 seconds (512�128/18000). A very small galvanometer overhead time
to complete the image acquisition is also required, leading to a total image acquisition time of
3.7 seconds.

The 3D OCT-1000 system also incorporates a digital camera to allow acquisition of color
photographs of the ocular fundus (posterior pole images centered on the macula but including
the optic disc).

A training program was developed as a collaboration between the UK Biobank training
team (for consistency with other UK Biobank protocols) and by the Moorfields Eye Hospital
Reading Centre (MEHRC) (for eye and imaging related knowledge). The approach to training
followed the approach taken for other UK Biobank data modules with a focus on practical
steps needed to acquire an OCT scan. All personnel selectedwere either already involved in, or
subsequently trained in, other aspects of UK Biobank workflow. No pre-requisite qualifications
were required for the eye component training. Training on the components of the ocularmod-
ule (visual acuity testing, auto-refraction, intraocular pressure measurement) focused on the
practical elements needed to be applied in a step-wisemanner to acquire the data using
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standard operating procedures or instructions and all technicians had to pass a structured
exam to enable them independently carry out these tests

In addition, UK Biobank technicians working on OCT image acquisition underwent a struc-
tured training program and competency exam during which they had to demonstrate that they
read and understood the standard operating procedure for OCT image acquisition and demon-
strated the ability to acquire well centered images with good signal strength. Once certified, all
images from the first day of independent images were quality controlled by the MEHRC oph-
thalmologists (D.T. and T.P.), and an UK Biobank site duty manager, to resolve any questions
or difficultiesduring the initial phase of independent image acquisition. An additional approxi-
mately 10% of the OCT images were also assessed for quality by certifiedOCT graders at
MEHRC. Re-training was provided on any issues that proved less than ideal during the real-
time quality assurance review.

Once able to take the images competently, further training focused on pattern recognition to
allow the technician to recognize: 1) significant artifactitious variations in signal intensity across
the image (generally a sign of irregularmedia opacity or poormydriasis, 2) artifactitious severe
anomalies in retinal contour (generally a sign of severe refractive error, and 3) generalized reduc-
tions in OCT signal strength. This enabled the technician to immediately recognize image acqui-
sition problems and act on these while the subject was still attending the Biobank site. Training
was performed by a UK Biobank Trainer and an MEHRC-trained ophthalmologist.

Fig 1. Optical coherence tomography (OCT) image sets. OCT image sets were obtained using a raster scan protocol on a spectral domain OCT system

(3D OCT-1000 Mark II, Topcon, Japan).

doi:10.1371/journal.pone.0164095.g001

Optical Coherence Tomography in UK Biobank

PLOS ONE | DOI:10.1371/journal.pone.0164095 October 7, 2016 4 / 15



On average, at any given time of the study, a minimum of three examiners per site worked
as trained and certifiedUK Biobank Ophthalmic Technicians. The staff were multi-skilled for
ocular and non-ocular assessments and were able to move between stations when required to
increase efficiencyand prevent delay in the flow through the patient pathway. This process was
controlled by a "floormanager" whomonitored the patient's progression through the assess-
ment pathway via a USB key carried by the patient. This person was able to re-assign staff to
different areas using a strategy not dissimilar to that used in supermarkets where staff are uti-
lized for floor tasks and check out points. There was a minimal turnover of personnel during
the study, but there was a mechanism in place to ensure that trained operators were always
available at everyUK Biobank site. There was never a day when patients could not be imaged
due to lack of trained operator or when patients were imaged by an untrained operator.

Data Monitoring and Quality Assessment Feedback

Custom software was created by the Clinical Trials ServiceUnit at the University of Oxford to
allow for live, ongoing data monitoring during the OCT image acquisition period using elec-
tronic direct data entry case reports forms. Grading of OCT image quality was performed on
electronic case report forms (CRF). On each CRF, the visual acuity and refractive error were
automatically imported and the grader assessed each image set for overall image quality, image
focus and centration relative to the fovea, and central macular thickness and accuracy of mea-
surements. In the event of image error, its possible source was attributed to one of the following
categories: 1) participant, 2) operator, 3) equipment, or 4) indeterminate. Quality assessment
feedback was then provided to each center on an ongoing basis.

Image Storage and Remote Access

OCT image sets were stored on UK Biobank servers in a central repository at Advanced Research
Computing, University of Oxford (previously known as Oxford Supercomputing Centre (OSC)),
adjacent to high performance computers. This consists of: 1) a couple of 1000-core Linux servers,
2) an Nvidia graphics processing unit (GPU) cluster, and 3) a Windows 2012 serverwhich cre-
ates and manages a collectionof Windows XP/Windows Vista/Windows 7 virtualmachines. At
the time of our initial analyses, UK Biobank data access rules and procedures for bulk data pro-
hibited copying, storage or removal of OCT files (source data) outside of the Oxford computing
system. Instead, researchers were given access to computers at the central repository via remote,
secure login and can then install any analysis software needed.A copy of the stored OCT image
file is fetched before execution of the segmentation analysis software (see below). The derived
data are then extracted, after which the OCT image file is deleted.Multiple logins can be imple-
mented in parallel, increasing the processing throughput (Fig 2).

Automated Analysis of Retinal Thickness

Rapid, automated analysis of retinal thickness was performed using custom image segmenta-
tion software developed and validated by the Topcon Advanced Biomedical Imaging Labora-
tory (TABIL) (New Jersey, United States). This software, called Topcon Advanced Boundary
Segmentation (TABSTM), employs dual-scale gradient information to allow for automated seg-
mentation of the inner and outer retinal boundaries, and retinal sublayers, in a rapid fashion
(generally less than 60 seconds per raster scan in the UK Biobank analysis using multi-threaded
implementation) (Fig 3). The location of the fovea within the scan volume was also automati-
cally determined, allowing for centered sector grid placement. The accuracy and reproducibil-
ity of this software has previously been reported,[20] as has its use in a cohort of 256 healthy
subjects.[21]
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A number of quality control indices were also employed in an effort to highlight and exclude
cases with segmentation error. These included an image quality score, an internal limiting
membrane (ILM) indicator, a validity count, and motion indicators. The ILM indicator is a
measure of measure of minimum localized edge strength along the ILM boundary across the
entire scan. It is useful for identifying blinks and segmentation errors. The validity count index
is used to identify scans with a significant degree of clipping in the OCT B-scan’s Z-axis direc-
tion. Finally, the motion indicators assess the correlation between retinal nerve fiber layer
thickness and total retinal thickness, across consecutive B-scans. This last indicator helps to
identify blinks, eye motion artifacts and segmentation failures. A more detailed description of
these indices is described elsewhere.[23]

Fig 2. UK Biobank Data Processing Scheme. The source data (optical coherence tomography (OCT) image

sets) were stored on a central repository and accessed via remote, secure login.

doi:10.1371/journal.pone.0164095.g002
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Results

OCT Image Acquisition

67,321 participants (134,642 eyes) in UK Biobank underwentOCT imaging of both eyes as
part of the ocularmodule. The mean age (± standard deviation (SD)) of patients was 57 (±8)
years, with 36,623 females and 30,698 males. OCT image acquisition was completed in six cen-
ters across the UK beginning in December 2009.

OCT Data Size

A single Topcon 3D-OCTMark-II macular 3D volume has a file size of 97.8MB. The OCT
scan data therefore had a total data size in excess of 10TB for the initial round of UK Biobank
work. In addition, the computed segmentation and measurement data increased this total by
approximately one percent.

OCT Image Analysis

A total of 134,642 macular OCT images were available for processing from the 134,642 eyes
that underwentOCT scanning. Of these images, 134,611 images were successfully processed
with 31 images failing segmentation analysis due to corruptedOCT files or withdrawal of sub-
ject consent for UKBB study participation. Therefore, successful automated analysis of retinal
thickness was obtained for 99.98% of all OCT images acquired.

The time taken to fetch each data set from the database was approximately 70 seconds. The
time taken to segmentation analysis was approximately 58 seconds. Therefore, the entire pro-
cess for each image set was typically completed in 128 seconds. By utilizingmultiple logins in
parallel, the effective throughput was up to 11 times greater (12 logins minus one which was
used largely for data transfers) than these per-login times. As a result, the whole analysis was
completed in 28 days. It should also be noted that the 28 days here were not completely effi-
ciently executed, as pauses were intentionally inserted in the batch processes to ensure that the
limited shared disk space provided by UK Biobank did not reach capacity. If there had been no
pauses whatsoever (i.e., 100% efficiencyusing 11 login resources), then the entire process

Fig 3. Automated Segmentation of Optical coherence tomography (OCT) image sets. Topcon Advanced

Boundary Segmentation (TABSTM) software was used to perform automated segmentation of nine intraretinal

boundaries. in a rapid fashion. Boundary 7 has previously been described as the inner aspect of the photoreceptor

inner segment-outer segment junction (and is still described as this by Topcon Inc.); however, in a recent proposed

nomenclature for classification of retinal layers on OCT, this boundary is referred to as the photoreceptor ellipsoid

zone.[22]

doi:10.1371/journal.pone.0164095.g003
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would have taken only 18 days. This implies that our execution efficiencywas approximately
65%, leaving room for some degree of improvement.

The average signal strength (Q factor) for all images was 65 (±13). Signal strength and other
quality indicator. As described above, quality control indicators were applied to highlight and
exclude image sets with segmentation error. Use of these indicators led to the exclusion of
15,177 patients. The remaining subset of 51,978 patients had good quality, well-centered
images and central, stable fixation during their OCT scan.

Discussion

In this report, we describemethods used for the acquisition, storage, and remote, automated
analysis of OCT image sets from the UK Biobank study. Our approach provides rapid, non-
invasive, quantitative measures of retinal thickness (including measures of individual retinal
sublayers) for a large population based cohort involving>100,000 eyes. To our knowledge, this
is the first study that involves quantitative analysis of OCT images sets on this scale. By com-
parison, the Beaver Dam Eye Study has recently reported the results of spectral domain OCT
imaging; this was also performedwith the Topcon 3D-OCT system, but only involved 1544
individuals, and did not include measurements of retinal sublayers.[24] The Beijing Eye Study
has also included spectral domain OCT imaging, but with the Heidelberg Spectralis system and
involving 3468 individuals. In this study, measurements of subfoveal choroidal thickness were
obtainedmanually using a calipers.[25]

We present these methods in isolation from the specific retinal thickness results for a num-
ber of reasons. Firstly, UK Biobank is an open-access resource that encourages researchers
from around the world–including those from the academic, nonprofit, public, and commercial
sectors–to access the data and biological samples for any health-related research that is in the
public interest.[2] As such, the retinal thickness measurements provided by our study will be
incorporated back into the resource and made publically available so that others can evaluate
their significance as risk factors for disease. Secondly, we believe that our approach has implica-
tions for ongoing and future studies incorporatingOCT imaging, whether they be large popu-
lation-based epidemiological studies, phase IV or phase V clinical trials, “real-world” outcome
studies, or national screening programs for ocular and systemic disease. For example, the use
of electronicmedical record (EMR) systems offer the ability to capture and pool a large propor-
tion or even all data from patients undergoing a specific treatment.[26] Such systems have the
benefit that all data can be collected as a by-product of routine clinical practice and can be
designed to mandate capture of definedminimum datasets. Consequently, they offer a unique
opportunity to assess how clinical trial results translate into “real-world” outcomes. In the
recent UK Neovascular Age-RelatedMacular Degeneration (AMD) Database study, use of an
EMR allowed assessment of visual outcomes following 92,976 treatments with ranibizumab for
this condition.[27, 28] In almost all cases, OCT imaging was obtained at each treatment epi-
sode. However, without a method for automated analysis this vast quantity of clinically rele-
vant information is not easily accessible. Similarly, our approach may be of use for screening
programs for diseases such as diabetic retinopathy, where OCT is increasingly being incorpo-
rated.[29] At present, this typically involves manual assessment of images by trained “grad-
ers”–an approach that is expensive, time-consuming, subjective, and often only semi-
quantitative. Without the use of rapid, automated OCT analysis techniques, such an approach
may not be feasible for inclusion in screening programs on a national scale.

In our study, OCT image sets provided cross-sectional images of the neurosensory retina in
the macular region, covering a 6 x 6 mm2 area of each participant’s eye. By allowing detailed
quantitative analysis of individual retinal sublayers, OCT imagingmay thus be of considerable
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value for the assessment of systemic disease in epidemiological studies. For example, reductions
in the thickness of the retinal nerve fiber layer (RNFL) have recently been reported in patients
with mild cognitive impairment, Alzheimer’s disease, and Parkinson’s disease.[30, 31] Interest-
ingly, in patients with multiple sclerosis, RNFL thinning appears to correlate with atrophy in
both white matter and deep gray matter structures as visualized by magnetic resonance imag-
ing (MRI).[32] In addition to ocular and neurological disease, OCTmay be useful for the study
of cardiovascular, metabolic, and endocrine disease–in patients with diabetes mellitus, for
example, preliminary evidence from small studies suggests that neurodegenerationmay pre-
cede vascular degeneration.[33, 34] We specifically highlight these medical specialties as, in
May 2014, UK Biobank began a multimodal imaging extension study in 100,000 participants.
This study will encompass MRI scanning of the brain, heart, and abdomen, carotid artery ultra-
sonography, and whole-body dual-energy x-ray absorptiometry (DXA) of the bones and joints
(http://imaging.ukbiobank.ac.uk, accessedOctober 1st, 2014). Correlation of these findings
with OCTmeasures of retinal thickness is likely to be of particular interest.

While the opportunities afforded by current OCT technology are numerous, they likely rep-
resent only the tip of the proverbial iceberg. Since its initial description in 1991,[4] and even
since its utilization in UK Biobank in 2009, OCT technology has continued to evolve rapidly.
[35] Commercially available OCT systems now allow cross-sectional imaging of the choroid, a
tissue with the highest vascular flow rate in the human body.[36–38] The choroidal circulation
lacks the autoregulation of the retinal circulation and thus choroidal thickness may be affected
by factors such as age,[39] refractive error,[40] diurnal variation,[41] inflammatory disease,
[42] renal disease,[43] and numerous medications.[44, 45] Such variability is likely to be of
value when studied in large, cross-sectional epidemiological studies. The approaches to auto-
mated analysis of retinal thickness describedherein have already beenmodified to incorporate
automated measures of choroidal thickness in newer OCT systems.

Recent commercial OCT systems also demonstrate greatly increased image acquisition
speed, providing new capabilities such as “widefield” imaging of the ocular fundus (e.g., 12 x 9
mm2 in area or greater, incorporating the macula and optic nerve regions in a single scan), and
so-called “OCT angiography”, allowing non-invasive mapping of the retinal and choroidal vas-
culature.[46–48] Recently developed high-speed (100KHz or higher scan rate) OCT systems
employ wavelength tunable “swept source” lasers as their light source.[35] The first commer-
cially available swept source OCT system is the DRI OCT-1 Atlantis from Topcon. Swept
source lasers are also small and robust lasers and may thus allow future OCT devices to become
more readily portable, and even handheld.[49] The adoption of “binocular” designs may fur-
ther remove the need for additional personnel to acquire OCT by enabling patients to align the
optical axes of the instrument with the optical axes of their own eyes.[50] The potential cost-
saving implications for large epidemiological studies are clear.

Our approach to automated analysis of OCT image sets has a number of potential limita-
tions and caveats. Although the accuracy and reproducibility of the analysis software has previ-
ously been reported in patients with glaucoma, and in healthy volunteers of varying ages, it is less
likely to produce accurate results in the presence of ocular diseasewhere there is complex mor-
phological disturbance of the retina (e.g., in patients with advanced neovascularAMD).[20] In
such cases, manual segmentation of images at an OCT image-reading center, or using a crowd-
sourced approach,[51] is likely to be required. Of note, UK Biobank did not specifically exclude
patients with macular disease and this will have affected the accuracy of retinal boundary detec-
tion in a proportion of imaged eyes. Another limitation to consider is that although automated
segmentation was completed in over 99% of eyes, this should not be confusedwith accuracy of
automated retinal and sublayer boundary detection. Segmentation accuracy depends on a variety
of factors including image quality and indeed the prevalence of morphological abnormalities in
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the sample of OCT images analyzed. In the UK Bioabnk OCT images we excluded 22% of the
sample based on indicators of segmentation accuracywhen reporting and analyzing retinal thick-
ness in the cohort. In addition, our algorithm provides measures of retinal sublayer thickness but
does not provide measures of other morphologic features that may be present as a result of retinal
fluid exudation, hemorrhage, or scarring.Again, manual image analysis is likely to be required to
achieve this aim.[52] Efforts are underway to develop algorithms that allow for automated detec-
tion of ocular diseases, and which place less emphasis on directmeasurements of retinal thick-
ness.[53] These algorithmsmay facilitate selection of those image sets most likely to require
reading center grading in large studies. A further limitation of our approach is that the software
program employed for this study was OCT system specific (i.e., it is only capable of performing
automated analysis of OCT images from the Topcon OCT system). However, the principle of uti-
lizing dual scale gradient information is not OCT vendor specific, and studies are underway uti-
lizing updated versions of the software to perform automated analysis of both SpectralisOCT
(Heidelberg Engineering) and CirrusOCT (Carl ZeissMeditec) datasets.

Conclusion

In conclusion, we report an approach to the rapid, automated measurement of retinal thickness
from OCT images in the UK Biobank study. Analysis of images from ~140,000 eyes was com-
pleted in an entirely automated fashion over a 28 day period.Measurements for the neurosen-
sory retinal thickness as whole, and for individual retinal sublayers, were obtained. In the near
future, these measurements will be publically available for utilization by researchers around
the world, and thus for correlation with the wealth of other data collected in UK Biobank.
Finally, the automated analysis approaches we describemay be of utility for future large popu-
lation-based epidemiological studies, clinical trials, and screening programs that employ OCT
imaging.
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