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ABSTRACT  

 

Conventional GNSS positioning in dense urban areas can 

exhibit errors of tens of meters due to blockage and 

reflection of signals by the surrounding buildings. Here, we 

present a full implementation of the intelligent urban 

positioning (IUP) 3D-mapping-aided (3DMA) GNSS 

concept. This combines conventional ranging-based GNSS 

positioning enhanced by 3D mapping with the GNSS 

shadow-matching technique. Shadow matching determines 

position by comparing the measured signal availability 

with that predicted over a grid of candidate positions using 

3D mapping. Thus, IUP uses both pseudo-range and signal-

to-noise measurements to determine position. All 

algorithms incorporate terrain-height aiding and use 

measurements from a single epoch in time. 

 

Two different 3DMA ranging algorithms are presented, one 

based on least-squares estimation and the other based on 

computing the likelihoods of a grid of candidate position 

hypotheses. The likelihood-based ranging algorithm uses 

the same candidate position hypotheses as shadow 

matching and makes different assumptions about which 

signals are direct line-of-sight (LOS) and non-line-of-sight 

(NLOS) at each candidate position. Two different methods 

for integrating likelihood-based 3DMA ranging with 

shadow matching are also compared. In the position-

domain approach, separate ranging and shadow-matching 

position solutions are computed, then averaged using 

direction-dependent weighting. In the hypothesis-domain 

approach, the candidate position scores from the ranging 

and shadow matching algorithms are combined prior to 

extracting a joint position solution. 

 

Test data was recorded using a u-blox EVK M8T 

consumer-grade GNSS receiver and a HTC Nexus 9 tablet 

at 28 locations across two districts of London. The City of 

London is a traditional dense urban environment, while 

Canary Wharf is a modern environment. The Nexus 9 tablet 

data was recorded using the Android Nougat GNSS 



receiver interface and is representative of future 

smartphones. Best results were obtained using the 

likelihood-based 3DMA ranging algorithm and hypothesis-

based integration with shadow matching. With the u-blox 

receiver, the single-epoch RMS horizontal (i.e., 2D) error 

across all sites was 4.0 m, compared to 28.2 m for 

conventional positioning, a factor of 7.1 improvement. 

Using the Nexus tablet, the intelligent urban positioning 

RMS error was 7.0 m, compared to 32.7 m for conventional 

GNSS positioning, a factor of 4.7 improvement. 

 

An analysis of processing and data requirements shows that 

intelligent urban positioning is practical to implement in 

real-time on a mobile device or a server. 

 

Navigation and positioning is inherently dependent on the 

context, which comprises both the operating environment 

and the behaviour of the host vehicle or user. No single 

technique is capable of providing reliable and accurate 

positioning in all contexts. In order to operate reliably 

across different contexts, a multi-sensor navigation system 

is required to detect its operating context and reconfigure 

the techniques accordingly. Specifically, 3DMA GNSS 

should be selected when the user is in a dense urban 

environment, not indoors or in an open environment. 

Algorithms for detecting indoor and outdoor context using 

GNSS measurements and a hidden Markov model are 

described and demonstrated. 

 

1. INTRODUCTION  

 

This work was first presented at ION GNSS+ 2016 [1][2]. 

Further details of 3DMA GNSS and context determination 

are presented in [1] and [2], respectively 

 

The positioning performance of global navigation satellite 

systems (GNSS) in dense urban areas is poor because 

buildings block, reflect and diffract the signals. If the real-

time position accuracy using low-cost equipment could be 

improved to 5m or better, a host of potential applications 

would benefit. These include situation awareness of 

emergency, security and military personnel and vehicles; 

emergency caller location; mobile mapping; tracking 

vulnerable people and valuable assets; intelligent mobility; 

location-based services; location-based charging; 

augmented reality; and enforcement of curfews, restraining 

orders and other court orders. A further accuracy 

improvement to around 2m would also enable navigation 

for the visually impaired; lane-level road positioning for 

intelligent transportation systems; aerial surveillance for 

law enforcement, emergency management, building 

management and newsgathering; and advanced rail 

signaling. 

 

Buildings and other obstacles degrade GNSS positioning in 

three ways. Firstly, where signals are completely blocked, 

they are simply unavailable for positioning, degrading the 

signal geometry. Secondly, where the direct signal is 

blocked (or severely attenuated), but the signal is received 

via a (much stronger) reflected path, this is known as non-

line-of-sight (NLOS) reception. NLOS signals exhibit 

positive ranging errors corresponding to the path delay (the 

difference between the reflected and direct paths). These 

are typically a few tens of meters in dense urban areas, but 

can be much larger if a signal is reflected by a distant 

building. Thirdly, where both direct line-of-sight (LOS) 

and reflected signals are received, multipath interference 

occurs. This can lead to both positive and negative ranging 

errors, the magnitude of which depends on the signal and 

receiver designs. NLOS reception and multipath 

interference are often grouped together and referred to 

simply as ñmultipathò. However, to do so is highly 

misleading as the two phenomena have different 

characteristics and can require different mitigation 

techniques [3]. 

 

There are many different approaches to multipath and 

NLOS mitigation [4]. A good GNSS antenna is more 

sensitive to right-hand circularly polarized (RHCP) signals 

than to left-hand circularly polarized (LHCP) signals. As 

direct LOS signals are RHCP while most reflected signals 

are LHCP or mixed polarization, this reduces multipath 

errors by attenuating the reflected signal components with 

respect to the direct. Furthermore, NLOS reception can 

usually be detected from the signal to noise ratio (SNR) 

measurements, enabling NLOS signals to be eliminated 

from the position calculation. However, cheaper antennas 

offer less polarization discrimination and smartphone 

antennas none at all. 

 

Much of the literature on multipath mitigation is dominated 

by receiver-based signal-processing techniques [5]. 

However, because they work by separating out the direct 

and reflected signals within the receiver, they can only be 

used to mitigate multipath; they have no effect on NLOS 

reception at all. Consistency checking selects the most 

consistent subset of the signals received to compute a 

position solution from. This is based on the principle that 

measurements from ñcleanò direct LOS signals produce a 

more consistent navigation solution than those from NLOS 

and severely multipath-contaminated signals. In dense 

urban areas, a subset comparison approach is more robust 

that conventional sequential testing [6]. 

 

Over the past six years, there has been a lot of interest in 

3D-mapping-aided (3DMA) GNSS, a range of different 

techniques that use 3D mapping data to improve GNSS 

positioning accuracy in dense urban areas. The simplest 

form of 3DMA GNSS is terrain height aiding. For most 

land applications, the antenna is at a known height above 

the terrain. By using a digital terrain model (DTM), also 

known as a digital elevation model (DEM), the position 

solution may be constrained to a surface. In conventional 

least-squares positioning, this is done by generating a 

virtual ranging measurement [7]. By effectively removing 

a dimension from the position solution, this improves the 

accuracy of the remaining dimensions. In open areas, 

terrain height aiding only improves the vertical position 

solution (as one might expect). However, in dense urban 



areas where the signal geometry is poor, it can improve the 

horizontal accuracy by almost a factor of two [8].  

 

3D models of the buildings can be used to predict which 

signals are blocked and which are directly visible at any 

location [9][10]. This can be computationally intensive. 

However, the real-time computational load can be reduced 

dramatically by using building boundaries [11]. These 

describe the minimum elevation above which satellite 

signals can be received at a series of azimuths and are 

precomputed for each candidate position. A signal can then 

be classified as LOS or NLOS simply by comparing the 

satellite elevation with that of the building boundary at the 

corresponding azimuth. 

 

The shadow-matching technique [12] determines position 

by comparing the measured signal availability and strength 

with predictions made using a 3D city model over a range 

of candidate positions. Several research groups have 

demonstrated this experimentally, using both single and 

multiple epochs of GNSS data [13][14][15][16][17] 

[18][19][20]. Cross-street position accuracies of a few 

meters have been achieved in dense urban areas, enabling 

users to determine which side of the street theyôre on. This 

complements GNSS ranging, which is more accurate in the 

along-street direction in these environments because more 

direct LOS signals are received along the street than across 

it. Shadow matching has also been demonstrated in real 

time on an Android smartphone [21]. A review of shadow 

matching, including its error sources and how it could be 

developed further may be found in [22]. 

 

3D models of the buildings can also be used to aid 

conventional ranging-based GNSS positioning. Where the 

user position is already approximately known, it is 

straightforward to use a 3D city model to predict the NLOS 

signals and eliminate them from the position solution 

[23][24][25]. However, for most urban positioning 

applications there is significant position uncertainty. One 

solution is to define a search area centered on the 

conventional GNSS position solution and compute the 

proportion of candidate positions at which each signal is 

receivable via direct LOS. This can then be used to re-

weight a least-squares position solution and aid consistency 

checking [8]. More sophisticated approaches which score 

position hypotheses using the GNSS pseudo-range 

measurements and satellite visibility predictions at each 

candidate position are presented in [26] and in Section 2.2 

of this paper. 

 

Several groups have extended 3D-mapping-aided GNSS 

ranging by using the 3D city model to predict the path delay 

of the NLOS signals across an array of candidate positions 

[27][28][29][30]. A single-epoch positioning accuracy of 

4m has been reported [29]. However, unless the search area 

is small, this approach is very computationally intensive as 

the path delay cannot easily be pre-computed. The urban 

trench approach presented in [31] enables the path delays 

of NLOS signals to be computed very efficiently, but only 

if the building layout is highly symmetric, so it can only be 

used in suitable environments. Therefore, NLOS path delay 

predictions are not used in the work presented here. 

 

3DMA GNSS ranging has also been combined with ódirect 

positioningô which uses the receiver correlator outputs to 

score an array of position hypothesis [32]. 

 

Clearly, to get the best performance out of GNSS aided by 

3D mapping, as much information as possible should be 

used. Thus, both pseudo-range and SNR measurements 

from a multi-constellation GNSS receiver should be used, 

together with both LOS/NLOS predictions and terrain 

height from 3D mapping. This concept is known as 

intelligent urban positioning (IUP) [33]. 

 

A preliminary implementation of the IUP concept is 

presented in [34]. This integrates shadow matching with a 

3DMA least-squares GNSS ranging algorithm 

incorporating terrain height aiding, consistency checking, 

and weighting of the pseudo-ranges according to the 

average predicted satellite visibility over a search area. 

Position-domain integration is used with two different 

weighting approaches. Error covariance-based weighting 

was found to perform slightly better than weighting using 

the street azimuth. The overall root mean square (RMS) 

horizontal (i.e., 2D) single-epoch position accuracy 

obtained using a u-blox EVK M8T receiver was 6.1 m, 

compared to 25.9 m using conventional GNSS positioning, 

a factor of four improvement. 

 

This paper extends this work, incorporating: 

¶ A 3DMA GNSS ranging algorithm based on computing 

the likelihood of an array of candidate position 

hypotheses based on the satellite visibility predictions 

at each position (the least-squares algorithm is retained 

for initialization); 

¶ Hypothesis-domain integration of 3DMA ranging with 

shadow matching; 

¶ Additional test sites in the Canary Wharf area of 

London, which is similar to modern urban 

environments in North America and Asia; 

¶ Test results using a Nexus 9 tablet equipped with the 

Android Nougat GNSS receiver interface that will 

enable 3DMA GNSS ranging to be implemented on a 

smartphone. 

All results presented here are based on a single epoch of 

GNSS measurements, which suits many location-based 

service (LBS) applications that require a quick one-time 

fix . 3DMA GNSS is particularly important for single-epoch 

positioning because other augmentations, such as carrier-

smoothing, carrier-phase positioning and integration with 

inertial sensors, only work with multiple epochs of GNSS 

data [4]. 

 

An alternative implementation of the intelligent urban 

positioning concept is presented in [26]. The shadow-

matching algorithm is simpler than that used here. A 

different likelihood-based 3DMA GNSS ranging algorithm 

is also implemented which uses only the signals predicted 



to be direct LOS at each candidate position. The 

experimental tests demonstrate that the method works well. 

However, as the results presented combine measurements 

from multiple epochs, they are not directly comparable with 

the single-epoch results presented here. 

 

Extending the IUP implementation presented here to 

multiple epochs for navigation and tracking applications is 

a subject for future work. Better performance can be 

expected as several researchers have already demonstrated 

that filtering can improve 3DMA GNSS performance 

[19][20][26]. Conventional GNSS positioning also works 

much better with multiple epochs of data. With an extended 

Kalman filter (within which carrier-smoothing is normally 

inherent), it is much easier to detect outliers due to NLOS 

reception and severe multipath interference than it is using 

single-epoch least-squares positioning. However, 3DMA 

GNSS also has an important role to play in multi-epoch 

positioning as it will enable carrier-smoothed, inertially 

aided and potentially even real-time kinematic (RTK) 

carrier-phase positioning to be accurately initialized and re-

initialized in challenging urban environments. 

 

The IUP algorithms are designed for outdoor positioning in 

dense urban areas. They do not work indoors and are not 

needed in open areas where conventional GNSS 

positioning works well. To determine when to use IUP, it 

is thus necessary to detect the environmental context. 

Indoor-outdoor context detection has been demonstrated 

using both GNSS [35][36][37][38] and Wi-Fi [37][38][39]. 

However, GNSS-based approaches were found to be more 

reliable. Therefore, here GNSS-based indoor-outdoor 

context detection is developed further here. A full 

implementation of context-adaptive navigation should also 

consider behavioural context and its association with 

environmental context [2] [37][38]. 

 

Section 2 summarizes the 3DMA GNSS positioning 

algorithms, including the least-squares and likelihood-

based 3DMA ranging algorithms, the shadow matching 

algorithm and the integration algorithms.  Section 3 

presents experimental test results from data collected using 

a u-blox EVK M8T consumer-grade GNSS receiver and a 

Nexus 9 tablet at 28 locations across two districts of 

London. Section 4 then discusses the practicality of real-

time implementation of intelligent urban positioning. 

Section 5 describes environmental context detection using 

GNSS signals. Finally, Sections 6 and 7 summarize the 

conclusions and plans for future work, respectively.  

 

2. 3DMA GNSS POSITIONING ALGORITHMS  

 

The intelligent urban positioning system comprises four 

main algorithms as shown in Figure 1. The least-squares 

3DMA GNSS ranging algorithm is used to initialize the 

likelihood-based 3DMA GNSS ranging algorithm and the 

shadow-matching algorithm, enabling them to use a much 

smaller search area than if the conventional GNSS position 

was used for initialization. The integration algorithms then 

compute a joint position solution from likelihood-based 

3DMA ranging and shadow matching. Both a position-

domain integration algorithm and a hypothesis-domain 

integration algorithm are presented. The least-squares 

3DMA GNSS ranging solution is also integrated with 

shadow matching in the position domain to enable 

comparison of the new IUP algorithms with those presented 

in [34]. Thus, three integrated position solutions are 

produced altogether. The following subsections summarize 

each algorithm. 

 

 
 

Figure 1: Intelligent urban positioning algorithm 

configuration 

 

2.1. Least-Squares 3DMA GNSS Ranging  

The least-squares 3DMA ranging algorithm comprises the 

following six steps: 

1. A search area is determined using the conventional 

GNSS position solution on the first iteration and the 

previous solution on subsequent iterations, together 

with an appropriate confidence interval.  

2. Using 3D mapping converted to precomputed building 

boundaries, the proportion of the search area within 

which each satellite is directly visible is computed, 

giving the probability that the signal is direct LOS.   

3. A consistency-checking process is applied to the 

ranging measurements, using the direct LOS 

probabilities from the 3D mapping. 

4. The set of signals resulting from the consistency 

checking process is subjected to a weighting strategy 

based on the previously determined LOS probabilities 

and carrier-power-to-noise-density ratio, C/N0. 

5. Terrain height is extracted from the 3D mapping and a 

virtual range measurement is generated using the 

position at the centre of the search area. 

6. Finally, a position solution is derived from the pseudo-

ranges and virtual range measurement using weighted 

least-squares estimation. 

The algorithm is then iterated several times to improve the 

position solution. Full details are presented in [8] (final 

version) and [40] (preliminary version). 
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2.2. Likelihood-based 3DMA GNSS Ranging  

In likelihood-based 3DMA GNSS ranging an array of 

candidate position hypotheses are scored according to the 

correspondence between the predicted and measured 

pseudo-ranges. This enables different error distributions to 

be assumed for a given GNSS signal at different candidate 

positions. Thus, at positions where a signal is predicted 

from the 3D mapping (via precomputed building 

boundaries), to be NLOS, a skew normal (Gaussian) 

distribution is assumed, biased towards positive ranging 

errors. Elsewhere, a conventional symmetric normal 

distribution is assumed. 

 

Terrain height aiding is inherent in generating the position 

hypotheses, enabling a single height to be associated with 

each horizontal position and thus avoiding the 

computational load of a 3D search area. The receiver clock 

bias is eliminated by differencing all pseudo-range 

measurements across satellites. 

 

Other likelihood-based 3DMA GNSS ranging algorithms 

based on candidate position hypothesis scoring have been 

described in the literature. However, they differ from the 

approach proposed here. In [28] and [29], pseudo-ranges 

predicted to be NLOS are corrected using path delays 

predicted from the 3D mapping. This is potentially more 

accurate, but the path delay computation is highly 

computationally intensive. In [26], a least-squares position 

solution is computed using only those signals predicted to 

be direct LOS and the candidate position is then scored 

according to its Mahalanobis distance from the least-

squares position solution. 

 

The likelihood-based 3D-model-aided ranging algorithm 

comprises the following six steps: 

1. A circular search area of radius 40m is defined with its 

centre at the least-squares 3DMA ranging position 

solution. Within this search area, a grid of candidate 

positions is set up with a spacing of 1m. 

2. For each candidate position, the satellite visibility is 

predicted using the building boundaries precomputed 

from the 3D city model. At each candidate position, the 

highest elevation satellite predicted to be direct LOS is 

selected as the reference satellite. 

3. At each candidate position, the direct LOS range to each 

satellite is computed. Measurement innovations are 

then computed by subtracting the computed ranges 

from the measured pseudo-ranges and then differencing 

with respect to the reference satellite. 

4. At each candidate position, the measurement innovation 

for each satellite predicted to be NLOS is re-mapped to 

a skew normal distribution. 

5. A likelihood score for each candidate position is 

computed using the vector of measurement innovations 

and the measurement error covariance matrix. 

6. A position solution is derived by using the likelihood 

scores to weight the candidate positions. 

Further details are presented in [1], while full details of the 

algorithm will be presented in a forthcoming journal 

submission, currently under preparation. 

 

2.3. Shadow Matching 

The shadow matching algorithm is a modified version of 

that presented in [18]; further details are presented in [1]. 

The shadow matching algorithm comprises the following 

five steps: 

1. A circular search area of radius 40m is defined with its 

centre at the least-squares 3DMA ranging position 

solution. Within this search area, a grid of candidate 

positions is set up is set up with a spacing of 1m. 

2. For each candidate position, the satellite visibility is 

predicted using the building boundaries precomputed 

from the 3D city model. If the satellite elevation is 

above the building boundary at the relevant azimuth, the 

LOS probability predicted from the building boundary, 

p(LOS|BB), is set to 0.85. Otherwise, it is set to 0.2. 

These values allow for diffraction and 3D model errors. 

3. The observed satellite visibility is determined from the 

GNSS receiverôs C/N0 or signal to noise ratio (SNR) 

measurements. From these, a probability that each 

received signal is direct LOS is estimated. 

4. Each candidate position is scored according to the 

match between the predicted and measured satellite 

visibility. The overall likelihood score for each position 

is then the product of the individual satellite 

probabilities.  

5. A position solution is derived by using the likelihood 

scores to weight the candidate positions. 

 

2.4. Position-Domain Integration 

The position-domain integration algorithm uses the error 

covariance matrices of the 3DMA ranging and shadow 

matching position solutions to compute a weighted average 

of the two positions. 

For least-squares 3DMA GNSS ranging, the error 

covariance is calculated using the weighting matrix and 

measurement matrix then transformed from Cartesian 

ECEF to Easting and Northing components. 

For shadow matching and likelihood-based 3DMA 

ranging, an initial error covariance is computed from the 

second statistical moments of the likelihood surface. The 

likelihood surface is non-Gaussian and potentially 

multimodal. The error covariance is therefore adjusted to 

account for multimodal distributions by rescaling it 

according to the kurtoses along the maximum- and 

minimum-covariance directions. 

Further details are presented in [1] and full details in [34]. 

 

2.5. Hypothesis-Domain Integration 

Both shadow matching and likelihood-based 3DMA 

ranging can produce multimodal position distributions 

where there is a good match between predictions and 

measurements in more than one part of the search area. 



These will typically comprise the true position hypothesis 

and one or more false hypotheses. In general, the true 

position hypothesis will be consistent across the two 

positioning methods whereas the false hypotheses will not 

be. Hypothesis-domain integration therefore helps to 

eliminate false position hypotheses by computing a joint 

ranging and shadow matching likelihood surface by 

multiplying the ranging and shadow-matching likelihoods 

for each candidate position, then computing a position 

solution by using the joint likelihood scores to weight the 

candidate positions. Further details are presented in [1]. 

 

3. 3DMA GNSS EXPERIMENTAL RESULTS  

 

GNSS measurements, comprising GPS and GLONASS, 

were collected in August 2016 using a u-blox EVK M8T 

GNSS receiver and a HTC Nexus 9 tablet. U-blox data 

collection was performed by interfacing the receiver to a 

Raspberry Pi (via USB) for data logging, where this latter 

was powered by a battery pack and configured as a WiFi 

hotspot to which a smartphone was connected (using the 

mobile SSH App) to configure the system and enable data 

logging. Figure 2 illustrates the u-blox-based hardware.  

 

The Nexus 9 data collection was performed using a 

purposely written App capturing both NMEA sentences as 

well as GNSS ñraw dataò, including GNSS satellite pseudo-

ranges. This latter was possible as the tablet was running 

the latest Android operating system, version 7.0, also 

known as Nougat. The tablet device is illustrated in Figure 

3. The tabletôs GNSS receiver and antenna are similar to 

those found on smartphones, so the results should be a good 

prediction of the performance of smartphones compatible 

with the Nougat GNSS interface.    

 

 

Figure 2. U-blox EVK M8T-based data logging hardware. 

 

 

Figure 3. Nexus 9 tablet running Android 7.0 (Nougat) 

Operating System and a dedicated App for raw GNSS data 

logging.  

 

Two rounds of data collection were performed using both 

devices at two different sites: at 18 locations in the City of 

London and 10 locations in Canary Wharf. Figures 4ï7 

illustrate these sites. The City of London area is typical of 

a traditional European city with narrow streets and 

buildings packed close together. The Canary Wharf area is 

representative of a modern city environment, found more 

commonly in North American and East Asian cities. The 

streets are wider and the buildings taller with more space 

between them. There is also a greater ratio of glass and steel 

to brick and stone than in the City of London district. 

 

 

Figure 4. Data collection sites in the City of London 

(GoogleTM earth). 
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Figure 5. Part of data collection sites in the City of London 

ï 3D view  (GoogleTM earth). 

 

 

Figure 6. Part of data collection sites in the City of London 

ï 3D view (GoogleTM earth). 

 

 

Figure 7. Data collection sites in the Canary Wharf area -  

London ï 3D view (GoogleTM earth). 

  

All tablet data collection was collocated with the 

corresponding u-blox data collection. The sites were paired 

with data collected on opposite sides of the street on the 

edge of the footpath next to the road. The truth was 

established to decimeter-level accuracy using a 3D city 

model to identify landmarks and tape measure to measure 

the relative position of the user from those identified 

landmarks. The two rounds of data at each site were 

separated by approximately 2 hours, ensuring that the 

satellite positions in the two datasets were independent. The 

first dataset was used for calibrating the shadow-matching 

algorithm. The second dataset was then used for testing the 

positioning algorithms. 4 minutes of data were collected at 

each site on each round.  

 

A 3D city model of the area, from Ordnance Survey (OS), 

was used to generate the building boundary data used for 

the subsequent analysis. The model is stored in the Virtual 

Reality Modelling Language (VRML) format. Figures 8 

and 9 illustrate the 3D model used in this study. 

 

 

Figure 8. The 3D model of City of London used in the 

experiments. 

 

 

Figure 9. The 3D model of Canary Wharf used in the 

experiments. 

 

Figures 10 and 11 shows the combined RMS errors across 

all sites for each positioning method using the u-blox EVK 

M8T and HTC Nexus 9 tablet running Android 7.0 

(Nougat), respectively. Results for individual sites are 

presented in [1]. 

 

It can be clearly seen that likelihood-based 3DMA ranging 

outperforms least-squares 3DMA ranging. Comparing 

3DMA ranging with shadow matching, it can be seen that 

both ranging algorithms are more accurate in the along-

street direction, while shadow matching is more accurate in 

the across-street direction. This is effect is greater at the 

City of London sites than at the Canary Wharf sites. This 

because there is a much greater different between along-



street and across-street geometry in the City of London than 

at Canary Wharf. 

 

The integrated solution is much more accurate than 3DMA 

ranging or shadow matching alone with hypothesis-domain 

integration 5-10% more accurate than position-domain 

integration. 

 

The Nexus 9 results are not as good as the u-blox results, 

with conventional GNSS positioning affected least and 

shadow matching affected most. This is due to the inferior 

characteristics of a tablet (or smartphone) antenna, 

compared to the u-blox antenna. As the tablet antenna has 

no polarization discrimination, the direct LOS ranging 

measurements are subject to greater multipath interference 

and it is more difficult to distinguish LOS from NLOS 

signals using SNR measurements. Conventional 

positioning is least affected because it is dominated by the 

NLOS ranging errors that 3DMA positioning helps to 

minimize; these are not affected by the antenna design. 

 

 

 

 

Figure 10. u-blox all sites across-street and overall 

horizontal RMS positioning error. 

 

 

Legend for Figures 10 and 11. 

 

 

 

 

Figure 11. Nexus 9 all sites along-street, across-street and 

overall horizontal RMS positioning error. 
 

Comparing the best solution, hypothesis-domain 

integration, with conventional GNSS positioning, it can be 

seen that intelligent urban positioning is a factor of 7.1 

more accurate using the u-blox receiver and antenna and a 

factor of 4.7 more accurate using the Nexus 9 tablet. 

 

4. PRACTICAL IMPLEMENTATION  OF 3DMA 

GNSS 

 

There are four ways in which 3D-mapping-aided GNSS, 

including the intelligent urban positioning algorithms 

presented here, could be implemented in a practical system: 

¶ Post-processing of recorded data is suited to data 

collection applications such as mapping, and 

Conventional GNSS positioning (Conv) 

Least-squares 3DMA GNSS ranging (LSR) 

Likelihood-based 3DMA GNSS ranging (LBR) 

Shadow Matching (SM) 

Position-domain integration (least-squares ranging) (PI-LS) 

Position-domain integration (likelihood-based ranging) (PI-LB) 

 Hypothesis-domain integration (likelihood-based ranging) (HI-LB) 

 



monitoring the movement of people, animals or 

vehicles for research purposes. 

¶ Real-time implementation on a remote server is suited 

to location-based services requiring a one-time position 

fix and to tracking applications with long update 

intervals. 

¶ Real-time implementation on a mobile device using 

pre-loaded mapping data is suited to professional 

navigation and continuous tracking applications within 

a limited area. 

¶ Real-time implementation on a mobile device using 

streamed mapping data is suited to consumer and 

professional navigation and continuous tracking 

applications. 

 

A practical real-time implementation of any 3DMA GNSS 

system requires the following [41]: 

¶ Real-time access to GNSS pseudo-range and SNR or 

C/N0 measurements; 

¶ Computationally efficient positioning algorithms; 

¶ Access to 3D mapping data; 

¶ A means of distributing the GNSS measurements and 

mapping data to the positioning algorithms. 

 

Survey receivers have always provided the necessary 

GNSS measurements, but are not practical for most 3DMA 

GNSS applications. Obtaining them from consumer 

receivers has historically been problematic. However, 

today, receivers such as the u-blox M8T provide pseudo-

range and SNR measurements from all GNSS 

constellations and a new interface provides access to this 

data through the application programming interface (API) 

on smartphones and tablets running the Android Nougat 

operating system that have a compatible GNSS chipset. 

 

By using building boundaries instead of accessing the 3D 

mapping directly, the intelligent urban positioning 

algorithms presented here are able to run quickly. On a 

DELL Precision M2800 laptop computer (running the 

Microsoft Windows 7 operating system equipped with 

16GB RAM and a quad-core processor with a 2.5GHz base 

frequency) it takes about 233 ms to compute a position 

solution from one epoch of GNSS measurement data. A 

new smartphone or tablet has 25-75% as much processing 

power as this laptop. Therefore, these algorithms should 

easily be able to run at 1 Hz on a mobile device.  

 

CityGML (the Open Geospatial Consortiumôs approved 

standard for storage and exchange of virtual 3D city 

models, [42]) defines 3D city models as having varying 

levels of detail (LOD) [43]. LOD 0 is a digital terrain 

model, sometimes called a 2.5D model. LOD1 is a block 

model without any roof structures, i.e. all the buildings 

have flat roofs. Finally, LOD 2 is a full 3D city model 

having explicit roof structures and potentially associated 

texture.   

 

City models are commonly stored using a boundary-

representation approach, where each face (wall, floor, roof) 

of a building is described separately and a collection of 

faces grouped to represent the building. To minimize 

storage, these can be represented as polygons, described by 

the coordinates of each node (corner point).  However, due 

to rounding errors this may not result in planar faces, which 

can cause problems for some of the techniques used to 

predict GNSS signal propagation, such as ray tracing.  

Thus, polygons are frequently triangulated, either on the fly 

or as a pre-processing stage, and a triangular mesh created 

prior to visualization or further processing. The greater the 

level of detail, the greater the number of triangles and hence 

the greater the time required for triangulation and the 

computational complexity of subsequent steps. Figures 12 

and 13 show two 3D models of the same area of London, 

with Figure 12 derived from LOD 1 data and Figure 13 

derived from LOD 2 data.    

 

 
 

Figure 12. LOD 1 3D model of Central London near 

Fenchurch Street (data from Ordnance Survey) 

 

 
 

Figure 13. LOD 2 3D model of Central London near 

Fenchurch Street (data from Z Mapping) 

 

Highly detailed 3D mapping is expensive. However, LOD 

1 models are sufficient for most 3D-mapping-aided GNSS 

implementations. Open Street Map provides freely 

available building mapping for the worldôs major cities and 

many other places, much of it in 3D. Data is also available 

from national mapping agencies. Although coverage is not 

universal, it tends to be available in the dense urban areas 

where it is most needed. 

 



This leaves data distribution. For server-based positioning, 

existing assisted GNSS interfaces can be used to transmit 

pseudo-range and SNR measurements from mobile devices 

to a server. 

 

To run the positioning algorithms on a mobile device, 

mapping data is required. The terrain height data are easiest 

to handle. A 5m grid spacing is sufficient, corresponding to 

40,000 points per km2. 12 bits is sufficient to describe the 

relative height of a point within a tile, while 4 bytes are 

needed for the height of each tileôs origin with respect to 

the datum. Thus, about 60 kB per km2 is needed, so 1GB of 

storage could accommodate about 17,000 km2 of data, 

much more with compression. Thus, this data could be pre-

loaded in a mobile device. 

 

Building boundaries require a lot more data. To a 1 ̄

precision, about 300 bytes are needed per building 

boundary. Assuming about half the space in a city is 

outdoor (building boundaries are not required for indoor 

locations), a 100³100m tile would require 1.5MB of data 

without compression, so 1GB of storage would only 

accommodate about 7 km2 of data, maybe 70 km2 with 

compression. Thus, pre-loading is only practical for users 

that operate within a relatively small area. 

 

To stream building boundary data, only the search area is 

needed, which should be no bigger than 100³100m, 

considering only outdoor locations. Furthermore, only 

azimuths corresponding to the current set of GNSS 

satellites are needed, which reduces the amount of data 

required to 90kB without compression. Less than a kilobyte 

of terrain height data would be needed. 3G mobile 

download speeds are higher than 500 kB/s (4 Mbit/s). 

Therefore, streaming is easily practical and substantial data 

buffering could be accommodated to bridge gaps in 

communications coverage. Note that for continuous 

positioning, successive search areas will considerably 

overlap so it is not necessary to transmit a full set of 

mapping data at every epoch. 

 

5. ENVIRONMENTAL CONTEXT DETECTION  

 

To develop a GNSS-based environmental context 

determination algorithm, GNSS measurements were 

collected at 1 Hz from both GPS and GLONASS signals 

received by the smartphone. The data was collected at 

different locations of various indoor and outdoor 

environments, such as deep indoor, urban, outer indoor and 

open sky. About 200s of static data was collected at each 

site. Figure 14 presents histograms showing the normalised 

distributions of signal-to-noise ratio (SNR) measurements 

from four types of environment. 

 

A number of trends may be identified from the histograms. 

A signal with a higher SNR is more likely to be LOS (Line-

of-Sight) than NLOS (Non-Line-of-Sight). As expected, 

the average received SNR is lower in indoor environments 

than in deep urban and open sky environments, which is 

useful for environmental context detection. By comparing 

the GNSS SNR distributions, it can also be seen that the 

proportions of signals weaker than 25 dB-Hz vary between 

different environment types. Almost all the signals received 

in deep indoor environments are weaker than 25 dB-Hz 

while increasing proportions of signals stronger than 25 

dB-Hz are observed for outer indoor, deep urban and open 

sky. 

 

Figure 14. SNR measurement distributions under different 

environments 

 

The number of satellites received and the total measured 

SNR, summed across all the satellites received at each 

epoch, were considered as features for the environmental 

classification algorithm. However, these were found to be 

poor at distinguishing the outer indoor and deep urban 

environments [2].  

 

As a larger percentage of weak signals (less than 25 dB-Hz) 

are received indoors than outdoors, it was found that the 

differences in the classification features between 

environments are greater if  these signals are deducted from 

the observations. Therefore context detection here is based 

on two features: 

¶ The total number of GNSS signals received with an 

SNR of 25 dB-Hz or more, numSNR25; 

¶ The sum of the SNRs of the GNSS signals received with 

an SNR of 25 dB-Hz or more, sumSNR25. 

 



These features are plotted in Figure 15 for the test 

environments shown in Figure 14, demonstrating that all 

four environments can be distinguished using these 

features. 

 

Figure 15. Features based on signals above 25 dB-Hz 

 

In reality, the boundaries between indoor and outdoor 

environment can be ambiguous, rendering some scenarios 

hard to classify as either one. For a practical detection 

system, an uncertain decision is better than a wrong 

classification. Because an uncertain environment decision 

can be used in other ways (e.g. environment connectivity, 

environment and behaviour association) to improve the 

classification, but a wrong classification cannot. Similarly, 

it is better to inform a context-adaptive navigation system 

that the environment is uncertain than to provide it with an 

incorrect context. Therefore, to have a smooth transition 

between indoor and outdoor categories and reduce the 

likelihood of wrong classification, a new environment 

category of ñintermediateò is introduced to serve as a bridge 

between the indoor and outdoor categories. The portico of 

UCLôs Wilkins building, shown in Figure 16, is a typical 

example of an intermediate environment. This is covered 

by the roof of the building, but there is only one wall and 

the other three sides of this area are open.  

 

 

Figure 16. The portico of UCLôs Wilkins building, an 

example of the intermediate category 

 

The features numSNR25 and sumSNR25 can be computed 

sequentially from the outputs of a GNSS receiver module. 

A hidden Markov model (HMM) is used in this study to 

determine the environmental context by integrating the 

observations over time. 

 

The HMM assumes a Markov process with the states that 

cannot be visible directly [44] (indoor, intermediate or 

outdoor environment in this study), so that it is capable of 

modelling the inherent dynamic temporal relationships of 

environments. In general, a HMM comprises the following 

five elements [2]: 

1) The state space S that consists of N hidden states S={S1, 

S2,é, SN}. In this research, there are only three hidden 

states: indoor, intermediate and outdoor, which are denoted 

as S1, S2 and S3 respectively. At each epoch k, the 

probabilities that the system is in each state sum to unity. 

2) The set of observations at each epoch k, Zk= {z1,k, 

z2,k,é, zǎ,k,é, zm,k}, where zǎ,k is the ǎ-th observation at 

epoch k and m is the number of observations. In this study, 

z1,k refers to numSNR25 while z2,k is sumSNR25. 

3) The matrix of state transition probabilities A={Aij}. 

Each element of the state transition probabilities matrix, Aij, 

defines the probability that the state transits from a value Si 

at the immediately prior epoch to another value Sj at the 

current epoch. The following values are assumed: 
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4) The vector of emission probabilities B={B i(k)} that 

defines the conditional distributions P(Zk|Si) of the 

observations from a specific state. The following values are 

assumed where N(ɛ, ů2) denotes a normal distribution with 

mean ɛ and variance ů2. 
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