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receiver interface and is representative of future
smartphones. Best results were obtained using the
likelihood-based 3IMA ranging algorithm and hypothesis
based integration with shadow matching. With tHelax
receiver, thesingleepochRMS horizontal (i.e.2D) error
across all sites wa4.0 m, compared to28.2 m for
conventional positioning, a factor af.1 improvement.
Using the Nexus tablet, thatelligent urban positioning
RMS error wag.0 m, compared to 3Z.m for conventional
GNSSpositioning, a fator of 47 improvement.

An analysis of processing and data requirements shows that
intelligent urban psitioning is practical to implement in
reattime on a mobile device or a server.

Navigation and positioning is inherently dependent on the
context, which comprises both the operating environment
and the behaviour of the host vehicle or user. No single
technique is capable of providing reliable and accurate
positioning in all contexts. In order to operate reliably
across different contexts, a medgnsor navigation system

is requirel to detect its operating context and reconfigure
the techniques accordingl Specifically, 3DMA GNSS
should be selected when the user is in a dense urban
environment, not indoors or in an open environment.
Algorithms for detecting indoor and outdoor context using
GNSS measurements and a hidden Markov model are
described and demetrated.

1.INTRODUCTION

This work was first presented at ION GNSS+ 201j§2].
Further details of 3DMA GNSS and context determination
are presented ifi] and[2], respectively

The positioning performance of global navigation satellite
systems (GNSS) in dense urban areas is poor because
buildings block, reflect and diffract the signdisthe reat

time position accuracy using legostequipment could be
improved to 5m or better, a host of potential applications
would benefit. These include situation awareness of
emergency, security and military personnel and vehicles;
emergency caller location; mobile mapping; tracking
vulnerable peopland valuable assets; intelligent mobility;
locationbased  services; locatidrased  charging;
augmented reality; and enforcement of curfews, restraining
orders and other court orders. A further accuracy
improvement to around 2m would also enable navigation
for the visually impaired; lankevel road positioning for
intelligent transportation systems; aerial surveillance for
law enforcement, emergency management, building
management and newsgathering; and advanced rail
signaling.

Buildings and other obstacles degrade GNSS positioning in
three ways. Firstly, where signals are completely blocked,
they are simply unavailable for positioning, degrading the
signal geometry. Secondly, where the direct signal is
blocked (or severely attaated), but the signal is received

via a (much stronger) reflected path, this is known as non

line-of-sight (NLOS) reception. NLOS signals exhibit
positive ranging errors corresponding to the path delay (the
difference between the reflected and direct patithese

are typically a few tens afetersin dense urban areas, but
can be much larger if a signal is reflected by a distant
building. Thirdly, where both direct liref-sight (LOS)

and reflected signals are received, multipath interference
occurs. Thigan lead to both positive and negative ranging
errors, the magnitude of which depends on the signal and
receiver designs. NLOS reception and multipath
interference are often grouped together and referred to
simply as Amul tipatho.ly Howe
misleading as the two phenomena have different
characteristics and can require different mitigation
techniqueg3].

There are many different approaches to multipath and
NLOS mitigation[4]. A good GNSS antenna is more
sensitive to righhand circularlypolarized(RHCP) signals
than to lefthand circularlypolarized(LHCP) signals. As
direct LOS signals are RHCP while most reflected signals
are LHCP or mixedpolarization this reducesnultipath
errorshy attenuating the reflected signal components with
respect to the direcFurthermore,NLOS reception can
usually be detected from the signal to noise ratio (SNR)
measurementsenabling NLOS signals to beliminated
from the position calculatm However, cheaper antennas
offer less polarization discrimination and smartphone
antennas none at all.

Much of the literature on multipath mitigation is dominated
by receiverbased signaprocessing techniqueg5].
However becaise they work by separating out the direct
and reflected signals within the receiver, they can only be
used to mitigate multipath; they have no effect on NLOS
reception at all.Consistency checkingelects the most
consistent subset of the signals receitedcompute a
position solution from. Thiss based on the principle that
measurements from ficleano
more consistent navigation solution than those from NLOS
and severely multipatbontaminated signalsln dense
urban areas, aibset comparison approach is more robust
that @nventional sequentigsting[6].

di

Over the passix years, there has been a lot of interest in
3D-mappingaided (3DMA) GNSS, a range of different
techniques that use 3D mapping data to improve GNSS
positioning accuracy in dense urban areas. The simplest
form of 3DMA GNSS is terrain height aidingror nmost
land applications, the antenisat a known height above
the terrain. By using a digital terrain model (DTM), also
known as a digital elevation model (DEM), the position
solution may be constrained to a surfaceconventional
leastsquares positiong, this is done by generating a
virtual ranging measuremefit]. By effectively removing

a dimension from the position solutiahjs improves the
accuracy of the remaininglimensions. In open areas,
terrain height aiding only impves the vertical position
solution (as one might expect). However, in dense urban



areas where the signal geometry is poor, it can improve the
horizontal accuracy by almost a factortwb [8].

3D models of the buildings can be used to predict which
signals are blocked and which are directly visible at any
location [9][10]. This can be computationally intensive.
However, the reafime computational load oabe reduced
dramatically by using building boundarig$l1]. These
describe the minimum elevation above which satellite
signals can be received at a series of azimuths and are
precomputed for each candidate position. A signalloan t
be classified as LOS or NLOS simply by comparing the
satellite elevation with that of the building boundary at the
corresponding azimuth.

The shadowmatching techniqul2] determines position
by comparing the measured sigaahilability and strength
with predictions made using a 3D city model over a range
of candidate positionsSeveral research groups have
demonstrated this experimentallysing both singleand
multiple epochs of GNSS dat§13][14][15][16][17]
[18][19][20]. Crossstreet positionaccuracies ofa few
meters have been achieveddiense urban areasnabling
users to determine which
complements GNSS ranging, which is more accurate in the
alongstreet direction irthese environmentsecause more
direct LOS signd are received along the street than across
it. Shadow matching has also been demonstrated in real
time on an Android smartphoifi21]. A review of shadow
matching, including its error sources and how it could be
developed further ay be found if22].

3D models of the buildings can also be used to aid
conventional rangirdpased GNSS positioningVhere the
user position is already approximately known, it is
straightforward to use a 3D city model to predict the NLOS
signals and eliminate them from the positisealution
[23][24][25]. However for most urban positioning
applications there is significant position uncertairfiyne
solution is to define a search areacenteredon the
conventional GNSS position solution amdmpute the
proportion of candidate positions at which each digna
receivable via direct LOS. This can then be used 1o re
weight a leassquares position solution and aid consistency
checking[8]. More sophisticated approachekich score
position hypotheses using the GNSS psewtme
measuements and satellite visibility predictions edch
candidate positioare presented if26] and in Section 2.2

of this paper.

Several groups havextended3D-mappingaided GNSS
ranging by using the 3D city model to predict the path delay
of the NLOS signals across an array of candigatgtions
[27][28][29][30]. A singleepoch positioning accuracy of
4m has been report¢20]. However, unless the search area
is small, this approach is very computationally intensive as
the path delay cannot easily be qgmmputed. The urban
trench apprach presented if81] enables the path delays
of NLOS signalgo be computed very efficiently, but only

if the building layout is highly symmetrisoit can only be

used in suitable environmentherefore, NLOS path delay
predidions are not used in the work presented here.

has al so
uses

3DMA GNSS ranging
positioningd which
score an array of positidrypothesig32].

Clearly, to get the besterformance out of GNSS aided by
3D mapping, as much information as possible should be
used. Thus, both pseudange and SNR measurements
from a multiconstellation GNSS receiver should be used,
together with both LOS/NLOS predictions and terrain
height fom 3D mapping. This concept is known as
intelligent urban positioninUP) [33].

A preliminary implementation of the IUP concept is
presented iri34]. This integrates shadow matching with a
3DMA leastsquares GNSS ranging algorithm
incorporating terrain height aiding, consistency checking,
and weighting of the pseudanges according to the
average predicted satellite visibility over a search area.
Positiondomain integration is used with two different
weighting approaches. Error covariafuzagsed weighting

s i dwas fouhd ta gerormsslightlg leetter thaim eveightingeusiogn .

the street azimuthThe overallroot mean squareRMS)
horizontal (i.e., 2D) singleepoch position accuracy
obtained using u-blox EVK M8T receiver was 6.1 m,
compared to 25.9 m using conventional GNSS positioning,
a factor of four improvement.

This paper extends this work, incorporating:

1 A 3DMA GNSS ranging algorithm based on computing
the likelihood of an array of candidate position
hypothesedased on the satellite visibility predictions
at each positiofthe leastsquares algorithm is retained
for initialization);

1 Hypothesisdomain integration of 3DMA ranging with
shadow matching;

1 Additional test sites in the Canary Wharf area of
London, which is similar to modern urban
environments in North America and Asia;

1 Test results using a Nexus 9 tablet equipped with the
Android Nougat GNSS receiver interface that will
enable 3DMA GNSS ranging to be implemented on a
smartphone.

All results presented herare based on a single epoch of
GNSS measurements, which suits many locabased
service (LBS) applicationthat require a quick oréme

fix. SBDMA GNSS igparticularlyimportant for singleespoch
positioning because other augmentations, such as earrier
smoothing, carriephase positioning and integration with
inertial sensors, only work with multiple epochs of GNSS
data[4].

An alternative implementation of the intelligent urban
positioning concept is presented [B6]. The shadow
matching algorithm is simpler than that used here. A
different likelihoodbased 3DMA GNSS ranging algorithm
is alsoimplementedwhich uses only the signals predicted

t he



to be direct LOS at each candidate position. The
experimentatestsdemonstrate that the method works well.
However, aghe results presentambmbine measurements
from multiple epochs, they are not directly comparable with
the singleepoch results presented here.

Extending the IUP implementation presented heie
multiple epochdor navigation and tracking applications is
a subjectfor future work Better performance can be

expected as several researchers have already demonstrated

that filtering can improve 3DMA GNSS performance
[19][20][26]. Conventional GNSS positioning also works
muchbetter withmultiple epochs of data. With an extended
Kalman filter (within which carriesmoothing is normally
inherent), it is much easier to detectlimus due to NLOS
reception and severe multipath interference than it is using
single-epoch leassquares positioningdowever, 3DMA
GNSS also has an important role to play in meftoch
positioning as it will enable carri@mmoothed, inertially
aided ad potentially even redime kinematic (RTK)
carrierphase positioning to be accurately initialized and re
initialized in challenging urban environments.

The IUP algorithms are designed for outdoor positioning in
dense urban areas. They do not work indcard are not
needed in open areas where conventional GNSS
positioning works well. To determine when to use IUP, it
is thus necessary to detect the environmental context.
Indoor-outdoor context detection has been demonstrated
using both GNS$35][36][37][38] and WiFi [37][38][39].
However, GNSShased approaches were found to be more
reliable. Therefore, here GNSfsed indoeputdoor
context detection is developed further here. A full
implementation of contexddaptive navigation should also
consider behavioural context and itss@sation with
environmental contex] [37][38].

Section 2 summazés the 3DMA GNSS positioning
algorithms including the leassquares and likelihoed
based 3DMA ranging algoriths, the shadow matching
algorithm and the integration algorithms.Section 3
presents experimental test resfiitsn data collectedising

a ublox EVK M8T consumegrade GNSS receivenda
Nexus 9 tablet at 28 locations across two districts of
London. Sedion 4 then discusses the practicality of real
time implementation of intelligent urban positioning.
Section 5 describes environmental context detection using
GNSS signalsFinally, Sectios 6 and 7 summarze the
conclusions and plans for future work, restively.

2.3DMA GNSSPOSITIONING ALGORITHMS

The intelligent urban positioning system comprises four
main algorithms as shown in Figure 1. The leagtares
3DMA GNSS ranging algorithm is used to initialize the
likelihood-based 3DMA GNSS ranging algorithm and the
shadowmatching algorithm, enablingpém to use a much
smaller search area than if the conventional GNSS position
was used for initialization. The integration algorithms then
compute a joint position solution from likelihodsed

3DMA ranging and shadow matching. Both a position
domain integation algorithm and a hypothesismain
integration algorithm are presented. The leagtares
3DMA GNSS ranging solution is also integrated with
shadow matching in the position domain to enable
comparison of the new IUP algorithms with those presented
in [34]. Thus, three integrated position solutions are
produced altogether. The following subsections summarize
each algorithm.

1. Least-
Squares
3DMA
Ranging
\ 4 \ 4
2. Likelihood
3. Shadow i Based
Matching 3DMA
Ranging
A 4 \ 4 x \ 4
. . 5.
4. Posm_on- 4. Posm_on- Hypothesis-
Domain Domain :
. . Domain
Integration Integration B
Integration

v v v

Intelligent Urban Positioning Solutions

Figure 1: urban

configuration

Intelligent positioning algorithm

2.1. LeastSquares 3ADMA GNSS Ranging

The leastsquares 3DMAanging algorithm comprésthe
following six steps:

1. A search area is determined using the conventional
GNSS position solution on the first iteration and the
previous solution on subsequent iterations, together
with an appropriate confahce interval.

2. Using 3D mapping converted orecomputeduilding
boundaries, the proportion of the search area within
which each satellite is directly visible is computed,
giving the probability that the signal is direct LOS.

3. A consistencychecking proess is applied to the
ranging measurements,using the direct LOS
probabilities from the 3D mapping.

4. The set of signals resulting from the consistency
checking process is subjected to a weighting strategy
based on the previously determined LOS probalslitie
and carriefpowerto-noisedensity ratio C/No.

5. Terrain height is extracted from the 3D mappamg a
virtual range measurement is generated using the
position at the centre of the search area.

6. Finally, a position solution is derived from theeude
ranges and virtual range measurement usiaigghted
leastsquares estimation.

The algorithm is then iterated several times to improve the
position solution. Full details are presented[8h (final
version) ad [40] (preliminary version)



2.2. Likelihood-based 3DMA GNSS Ranging

In likelihood-based 3DMA GNSS ranging an array of
candidate position hypotheses are scored according to the
correspondence between the predicted and measured
pseuderangesThis enables different error distributions to
be assumed for a given GNSS signalifferent candidate
positions. Thus, at positions where a signal is predicted
from the 3D mapping (via precomputed building
boundaries to be NLOS, a skew normal (Gaussian)
distribution is assumed, biased towards positive ranging
errors. Elsewhere, a ceentional symmetric normal
distribution is assumed.

Terrain height aiding is inherent in generating the position
hypotheses, enabling a single height to be associated with
each horizontal position and thus avoiding the
computational load of a 3D searctear The receiver clock
bias is eliminated by differencing all pseudmge
measurements across satellites.

Other likelihood-based 3DMA GNSS ranginglgorithms
based orcandidate position hypothassscoing have been
described in the literature. Howevehngy differ from the
approach proposed here. [28] and [29], pseuderanges
predicted to be NLOS are corrected using path delays
predicted from the 3D mapping. This is potentially more
accurate, but the patdelay computation is highly
computationally intensive. If26], a leastsquares position
solution is computed using only those signals predicted to
be direct LOS and the candidate position is then scored
according to its Mahalathdis distancefrom the least
squares position solution.

The likelihoodbased 3Bmodetaided ranging algorithm
compriesthe followingsix steps:

1. Acircular search area of radius 40m is defined with its
centre at theleastsquares 3DMA rangingosition
solution. Within this search area, a grid of candidate
positions is set uprith a spacing of 1m

2. For each candidate position, the satellite visibility is
predicted using the building boundaries precomputed
from the 3D city model. At each candidate positithre
highest elevation satellite predicted to be direct LOS is
selected as the reference satellite.

3. Ateach candidate position, the direct LOS range to each
satellite is computed. Measurement innovations are
then computed by subtracting the computadges
from the measured pseudanges and then differencing
with respect to the reference satellite.

4. Ateach candidate position, the measurement innovation
for each satellite predicted to be NLOS igmapped to
a skew normal distribution.

5. A likelihood swore for each candidate position is
computed usinghe vector of measurement innovations
and the measurement error covariance matrix

6. A position solution is derivethy using the likelihood
scores to weighhe candidate positions

Further details are presented 1, while full details of the
algorithm will be presented in a forthcoming journal
submission, currently under preparation.

2.3. Shadow Matching

The shadow matching algorithm is a modified versibn
that presented ifiL8]; further details are presented[i].
The shadow matching algorithm comprigks following
five steps:

1. Acircular search area of radius 40m is defined with its
centre at theleastsquares 3DMA rangingposition
solution. Within this search area, a grid of candidate
positions is set ufs set upwith a spacing of 1m

2. For each candidate position, the satellite visibility is
predicted using the building boundaries precomputed
from the 3D city model. If the satellite elevation is
above the building boundary at the relevant azimuth, the
LOS probability predicted from the building boundary,
p(LO9BB), is set to 0.85. Otherwise, it is set to 0.2.
These values allow for diffraction aB® model errors.

3. The observed satellite visibility is determined from the
GNSS r e €®ljov ®gnad t® noise ratio (SNR)
measurements. From these, a probability that each
received signal is direct LOS is estimated

4. Each candidate positiois scoredaccording to the
match between the predicted and measured satellite
visibility. The overallikelihood scordor each position
is then the product of the individual satellite
probabilities.

5. A position solution is derivethy using the likelihood
scores taveightthe candidate positions

2.4. Position-Domain Integration

The positiondomain integration algorithm uses the error
covariance matrices of the 3DMA ranging and shadow
matching position solutions to compute a weighted average
of the two positions

For leastsquares 3DMA GNSS rangingthe error
covariance is calculatedsing the weighting matrix and
measurement matrix then transformed from Cartesian
ECEF to Easting and Northing components.

For shadow matching and likelihothsed 3DMA
ranging, aninitial error covariancés computedrom the
second statistical moments of the likelihood surfadee
likelihood surface is nofBaussian and potentially
multimodal. The error covariances therefore adjusted to
account for multimodal distributionsby rescahg it
according to the kurtoses along thmeaximum and
minimum-covariance directions.

Further details are presented 1 andfull details in[34].

2 5. HypothesisDomain Integration

Both shadow matching and likelihodzthsed 3DMA
ranging can produce multimodal position distributions
where there is a good match between predictions and
measurements in more than one part of the search area.



These will typically comprise the true positibgpahesis
and one or more false hypothesés.general, the true
position hypothesis will be consistent across the two
positioning methods whereas the false hypotheses will not
be. Hypothesisdomain integrationtherefore helps to
eliminate false position hypleeses by computing a joint
ranging and shadow matching likelihood surfabg
multiplying the ranging and shademvatching likelihoods
for each candidate position, then computing a position
solution byusing the joint likelihood scores to weigie
candidae positions Further details are presented1h.

3.3DMA GNSSEXPERIMENTAL RESULTS

GNSS nmeasurementscomprising GPS and GLONASS,
were collected irAugust2016 using au-blox EVK M8T
GNSS receiveland a HTC Nexus 9 tablet)-blox data
collection was performed by interfacing the receiver to a
Raspberry Pi (via USB) for data logging, where this latter
was powered by a battery pack and configured as a WiFi
hotspot to which a smartphone was connected (using the
mobile SSH App)d configure the system and enable data
logging. Figure? illustrates the tblox-based hardware.

The Nexus 9 data collection was performed using a
purposely written App capturing both NMEA sentences as
wellas GNSSrawdatd , | n GNSS dateltitgpsalo
ranges. This latter was possible as the tablet was running
the latestAndroid operating system version 7.0, also
known as NougafThe tablet device is illustrated in Figure
3The tabletds GNSS
those found on smattpnes, so the results should be a good
prediction of the performance of smartphones compatible
with the Nougat GNSS interface.

Battery pack

EVK MS8T f{

= p <— Raspberry Pi

Smartphone

GNSS antenna

Figure2. U-blox EVK M8T-based data loggingardware

receiver !

Figure 3. Nexus 9 tablet running Android 7.0 (Nougat)
Operating System anddeedicatedApp for raw GNSS data

logging

Two rounds of data collection were performesing both
devicesattwo different sites: at 18 locations in the City of
London and 10 locations in Canary Whaffgures 4i 7
illustrate theesites.The City of London area is typical of

a traditional European city with narrow streets and
buildings packed close together. The Canary Wharf area is
representative of a modern city environment, found more
commonly in North American and East Asian citiebeT
streets are wider and the buildings taller with more space
between them. There is also a greater ratio of glass and steel
to brick and stone than in the City of London district.

Figure 4. Data collection sites in the City of London
(GoogleTM earth).



Figure5. Part of déta collection sites in the City of London
1 3D view (GoogleTM earth).

Figure6. Part of cita collection sites in the City of London
1 3D view(GoogleTM earth).

Figure7. Data collection sites in thea@ary Wharf area
Londoni 3D view(GoogleTM earth).

All tablet data collection was collocated with the
correspondingblox data collection. The sites were paired
with data collected on opposite sides of the street on the
edge of the footpath next to the road. The truth was
established to decimetégvel accuracy usg a 3D city
model to identify landmarks and tape measure to measure
the relative positionof the user from those identified
landmarks. The two rounds of data at each site were

separated byapproximately 2 hours, ensuring that the
satellite positions in thtwo datasets were independent. The
first dataset was used for calibrating the shadwatching
algorithm. The second dataset was then frsetbsting the
positioning algorithms. 4 minutes of data were caédaat
each site on each round.

A 3D city mockl of the area, from Ordnance Survey (OS),
was used to generate the building boundary data used for
the subsequent analysis. The model is stored in the Virtual
Reality Modelling Language (VRML) format. Figed
and9 illustrate the 3D model used in thisidy.

. Vi

Figure 8. The 3D model of City of London used in the
experiments.

_13—3).) —— . .

S )

Figure 9. The 3D model ofCanary Wharfused in the
experiments.

Figures10and11 shows the combined RMS errors across
all sites for each positioning method using tHelax EVK
M8T and HTC Nexus 9 tablet running Android 7.0
(Nougat), respectively. Results for individual sites are
presented ifil].

It can be tearly seen that likelihoetased 3DMA ranging
outperforms leassquares 3DMA ranging. Comparing
3DMA ranging with shadow matching, it can be seen that
both ranging algorithms are more accurate in the along
street direction, while shadow matching is marelaate in

the acrosstreet direction. This is effect is greater at the
City of London sites than at the Canary Wharf sites. This
because there is a much greater different between-along



street and acrosstreet geometry in the City of London than
at Canay Whatrf.

The integrated solution is much more accurate than 3DMA
ranging or shadow matching alone with hypothelsimain
integration 510% more accurate than positidomain
integration.

The Nexus 9 results are not as good as thex results,
with corventional GNSS positioning affected least and
shadow matching affected most. This is due to the inferior
characteristics of a tablet (or smartphone) antenna,
compared to the-blox antenna. As the tablet antenna has
no polarization discrimination, the dae LOS ranging
measurements are subject to greater multipath interference
and it is more difficult to distinguish LOS from NLOS
signals using SNR measurements. Conventional
positioning is least affected because it is dominated by the
NLOS ranging errors #t 3DMA positioning helps to
minimize; these are not affected by the antenna design.
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Conventional GNSS positioning (Conv)
Least-squares 3DMA GNSS ranging (LSR)
Likelihood-based 3DMA GNSS ranging (LBR)
Shadow Matching (SM)

Position-domain integration (least-squares ranging) (PI-LS)
Position-domain integration (likelihood-based ranging) (PI-LB)
Hypothesis-domain integration (likelihood-based ranging) (HI-LB)

Legend for Figures@and 1.
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Comparing the best solution, hypothed@main
integration, with conventional GNSS positioniiiggan be
seen that intelligent urban positioning is a factor of 7.1
more accurate using theblox receiver and antenna and a
factor of 4.7 more accurate using the Nexus 9 tablet.

4. PRACTICAL IMPLEMENTATION OF 3DMA
GNSS

There are four ways in which 3MDappingaided GNSS,
including the intelligent urban positioning algorithms
presented here, could be implemented in a practical system:

9 Postprocessing of recorded data is suited to data
collection applications such as mapping, and



monitoring the movement fopeople, animals or
vehicles for research purposes.

1 Realtime implementation on a remote server is suited
to locationbased services requiring a eti@e position
fix and to tracking applications with long update
intervals.

1 Realtime implementation on a abile device using
preloaded mapping data is suited to professional
navigation and continuous tracking applications within
a limited area.

1 Reattime implementation on a mobile device using
streamed mapping data is suited to consumer and
professional navigtion and continuous tracking
applications.

A practical reatime implementation of any 3DMA GNSS
system requires the followir{g1]:

1 Reattime access to GNSS pseudmge and SNR or
C/No measurements;

1 Computationally efficienpositioning algorithms;
Access to 3D mapping data

1 A means of distributing the GNSS measurements and
mapping data to the positioning algorithms

|

Survey receivers have always providdte necessary
GNSS measurements, but are not practical for most 3DMA
GNSS applications Obtaining them from consumer
receivers has historically been problematitowever,
today, receivers such as théolox M8T provide pseudo
range and SNR measurements from all GNSS
constellations and a new interface provides access to this
daa through the application programming interface (API)
on smartphones and tablets running the Android Nougat
operating system that have a compatible GNSS chipset.

By using building boundaries instead of accessing the 3D
mapping directly, the intelligenturban positioning
algorithms presented here are able to run quickly. On a
DELL Precision M2800laptop computer(running the
Microsoft Windows 7 operating system equipped with
16GB RAM and a quadore processor with a 2.5GHz base
frequency)it takes abou33 ms to computea position
solution from one epoch of GNSS measurement duta.
new smartphone or tablet has 25% as much processing
power as this laptoplherefore, these algorithms should
easily be able to ruat 1 Hzon a mobile device.

CityGML (theOpen Geospati al
standard for storage and exchange of virtual 3D city
models,[42]) defines 3D city models as having varying
levels of detail (LOD)[43]. LOD 0 is a digital terrain
model, sometimes called a 2.5D model. LOD1 is a block
model without any roof structures, i.e. all the buildings
have flat roofs. Finally, LOD 2 is a full 3D city model
having explicit roof structures and potentially associated
texture.

City models are commonly stored using a boundary
representation approach, where each face (wall, floor, roof)
of a building is described separately and a collection of
faces grouped to represent the building. To minimize
storage, these can be representepaygons, described by
the coordinates of each node (corner point). However, due
to rounding errors this may not result in planar faces, which
can cause problems for some of the techniques used to
predict GNSS signal propagation, such as ray tracing.
Thus, polygons are frequently triangulated, either on the fly
or as a prgrocessing stage, and a triangular mesh created
prior to visualization or further processing. The greater the
level of detail, the greater the number of triangles and hence
the greate the time required for triangulation and the
computational complexity of subsequent steps. Figlipes
and B show two 3D models of the same area of London,
with Figure 12 derived from LOD 1 data and Figur& 1
derived from LOD 2 data.

Figure 12. LOD 1 3D model of Central London near
Fenchurch Street (data from Ordnance Survey)

Figure 13. LOD 2 3D model of Central London near

Cons OFreﬁchu#bH“SIréet (cat Rofn Z W&pfing)

Highly detailed 3Dmapping is expensivéHowever, LOD

1 modelsare sufficient for rast 3D mappingaided GNSS
implementations. Open Street Map provides freely
available buildingnappi ng for the wor|
many other places, much of it in 3D. Dataisoavailable

from national mapping agencies. Although coveragets
universal, it tends to be available in the dense ugraas
where it is most needed.



This leaves data distribution. For ser@sed positioning, the GNSS SNR distributions, it can also be seen that the
existing assisted GNSS interfaces can be used to transmit  proportions of signals weaker than 25-HB vary between
pseuderange and SNR measurements from mobile devices  different environment types. Almost all the signals reaive

to a server. in deep indoor environments are weaker than 25HdB

while increasing proportions of signals stronger than 25
To run the positioning algorithms on a mobile device, dB-Hz are observed for outer indoor, deep urban and open
mapping data is requiredihe terrain height data are et sky.

to handle. Aom grid spacing is sufficient, corresponding to
40,000 points per kin12 bits is sufficient to describe the

reldive height of a point within a tile, while 4 bytes are

needed for the height of eat

the datum. Thus, about 60 kB per#isineeded, so 1GB of

storage could accommodate about 17,00¢ kindata, 5 86 b
much more with compressiohhus, this data could be pre SNR (dB-Hz)
|Oaded in a mobile deVice. (a) Deep indoor (inside Chadwick Building, UCL)

boundary. Assuming about half the space in a city is n

outdoor (building boundaries are not required for indoor

locations), a 100100m tile would require 1.5MB of data - My
without compression, so 1GB of storageould only (b) Outer indoor (by the window of Chadwick Building)
accommodate about 7 Krof data, maybe 70 kinwith
compressionThus, preloading is only practical for users
that operate within a relatively small area.

o

Normalized Counts (%)
=]

o

5}

Building boundaries require a lot more data. To a 1
precision, about 300 bytes are needed per building
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To stream building boundary data, only the search area is
needed, which should be no b& than 109100m, 0 20 30 40 50
considering only outdoor locations. Furthermore, only SNR (dB-Hz)
azimuths corresponding to the current set of GNSS (6) Qutdoor deep urban (Fenchureh Stet, Londor)
satellites are needed, which reduces the amount of data
required to 90kB without compressidress than a kilobyte

of terrain heightdata would be needed3G mobile
download speeds are higher than 500 kB/s (4 Mbit/s).
Therefore, streaming is easily practical and substantial data

Normalized Counts (%)

(=)

Normalized Counts (%)
N » o (==

o

buffering could be accommodated to bridge gaps in SNR (dB-Hz)

communications coverageNote that for continuous () Qutdoor, open sky (Regents Park, London)

positioning, successive search areas will considerably Figure 14 SNR measurement distributions under different
overlap soit is not necessary to transmit a full set of environments
mapping data at every epoch.

The numbe of satellites received and the total measured

5. ENVIRONMENTAL CONTEXT DETECTION SNR, summed across all the satellites received at each
epoch, were considered as features for the environmental

To develop a GNSBased environmental context classification algorithmHowever these were found to be

determination algorithm, GNSS measurement were poor at distinguishing the outer indoand deep urban

collected at 1 Hz from both GPS and GLONASS signals environment$2].
received by the smartphone. The data was collected at

different locations of various indoor and outdoor As a larger percentage of weak signals (less than 29z2)B
environments, such as deep indoor, urban, outer indoor and  are received indoors than outdodtswas found thathe
open sky. About 200s of static datvas collected at each differences in the classification features between
site.Figure 14presentistograms showing the normalised environmentsre greateif these signals are deducted from
distributions of signato-noise ratio (SNR) measurements the observations herefore context detection here is based
from four types of environment. on twofeatures

A n_umber _of trends may be_identifie_d from the histogrgms. T ;R;tgftzzlsn;;bze;ror;c?rgl ?usmssl?\lnglzss received with an
A signal with a higher SNR is more likely to be LOS (L-ine i i )
of-Sight) than NLOS (Noitine-of-Sight). As expected, 1 The sum of the SNRs of the GNSS signals received with
the average received SNR is lower in indoor environments an SNR of 25 dBz or more sumSNR25

than in deep urban and opeky £nvironments, which is
useful for environmental context detection. By comparing



These features are plotted in Figure 15 for the test
environments shown in Figurk4, demonstratinghat all
four environments can be distinguished using these
features.

Figure 15 Features based on signals above 254B

In reality, the boundaries between indoor and outdoor
environment can be ambiguous, rendering some scenarios
hard to classify as either onBor a practical detection
system, an uncertailecision is better than a wrong
classification. Because an uncertain environment decision
can be used in other ways (e.g. environment connectivity,
environment and behaviour association) to improve the
classification, but a wrong classification cannot. igirty,

it is better to inform a contexddaptive navigation system
that the environment is uncertain than to provide it with an
incorrect context. Therefore, to have a smooth transition
between indoor and outdoor categories and reduce the
likelihood of wmwong classification, a new environment
category of Aintermediateo
between the indoor and outdoor categorigge portico of
UCLOS&s Wil k,jshosn iFigurd 16 is a typical
exampleof an intermediate environmerithis is covered

by the roof of the building, but there is only one wall and
the other three sides of this area are open.

Figure 16. The portico of UCL O s

example of the intermediate category

The featuremumSNR; and sumSNR can becomputed
sequentially from the outputs of a GNSS receiver module.
A hidden Markov model (HMM) is used in this study to
determine theenvironmental context by integrating the
observations over time.

The HMM assumes a Markov process with the states that
cannot be visible directlyj44] (indoor, intermediate or
outdoor environment in this study), 8wt it is capable of
modelling the inherent dynamic temporal relationships of
environments. In general, a HMdbmprises the fowing

five elementg2]:

1) The state spacgthat consists dfl hidden stateS={S,

S, € S} In this research, there are only three hidden
states: indoor, intermediate and outdoor, which are denoted
as S, & and S respectively At each epochk, the
probabilities that the system is in each state sum to unity.

2) The set of observations at each ep&¢chzi= {zk,
Kk € Zi, k€ Zmyg, Where z:  is the &th observation at
epochk andmis the number of observations. In this study,
z.k refers tonumSNR while zk is SUMSNE.

3) The matrix of state transition probabilities={A;}.
Each element of the state transition probabilities maiix,
defines the probability that the state transits from a v@alue
at the immediately prior epoch to another vafuat the
current epochThe following values are assumed:

k Intermediat Outdoo
kel Indoor
e r
Indoor 23/ 1/3 0
Intermediat 1/ 1/3 1/3
~ H -+ e.- A A v oA A 3,4 + A~ o~ v i~ ~ -~
Outdoor 0 1/3 2/3

4) The vector of emission probabilitieB={Bi(k)} that
defines the conditional distributions RS) of the
observations from a specific stafdne following values are
assumed whemd(e, 0% denotes a normal distributiavith
meane and variance?.

P(z, | X =)~ N4,1.6)
P(z, ] X =3)~ N7.51.36
P(z, | X =3)~ N9,4)















