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We show how Adjoint Algorithmic Differentiation (AAD) can be used to calculate price
sensitivities in regression-based Monte Carlo methods reliably and orders of magnitude faster
than with standard finite-difference approaches. We present the AAD version of the cele-
brated least-square algorithms of Tsitsiklis and Van Roy (2001) and Longstaff and Schwartz
(2001). By discussing in detail examples of practical relevance, we demonstrate how ac-
counting for the contributions associated with the regression functions is crucial to obtain
accurate estimates of the Greeks, especially in XVA applications.
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1 Introduction

The efficient calculation of the risk factor sensitivities of financial derivatives, also known as the
“Greeks”, is an essential component of modern risk management practices. Indeed, the aftermath
of the recent financial crisis has seen remarkable changes in the market practice whereby financial
institutions need to quantify (and risk-manage) counterparty, funding and capital exposures,
collectively known as XVA, in large portfolios, see e.g., Crépey et al. (2014).

The traditional approach for the calculation of the Greeks is the so-called bump and reval
or bumping technique. This comes with a significant computational cost as it generally requires
repeating the calculation of the P&L of a portfolio under hundreds of market scenarios in order
to form finite-difference estimators. As a result, in many cases, even after deploying vast amounts
of computer power, these calculations cannot be completed in a practical amount of time.

Conversely, Adjoint Algorithmic Differentiation (AAD), a numerical technique recently intro-
duced to financial engineering (see e.g., Capriotti (2011), Capriotti et al. (2011), Capriotti and
Giles (2010, 2012), Henrard (2011)), has proven to be effective for speeding up the calculation
of risk factor sensitivities, both for Monte Carlo (MC) and deterministic numerical methods,
see Capriotti and Lee (2014), Savickas et al. (2014), Capriotti et al. (2015), Xu et al. (2016),
Geeraert et al. (2017).

∗Corresponding author e-mail: a.macrina@ucl.ac.uk
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The main ideas underlying AAD can be illustrated by considering a computer implemented
function of the form

Y = FUNCTION(X) (1)

mapping a vector X ∈ Rn to a vector Y ∈ Rm through a sequence of intermediate steps

X → . . . → U → V → . . . → Y. (2)

Here, the real-valued vectors U and V represent intermediate variables utilised in the calculation.
Each step may be a distinct high-level function or even a specific instruction.

AAD, sometimes also simply known as adjoint mode of Algorithmic Differentiation (AD),
results from “propagating” the derivatives of the final output with respect to all the intermediate
variables – the so called adjoints – until the derivatives with respect to the independent variables
are formed. Using the standard AD notation, the adjoint of any intermediate variable Vk is
defined by

V̄k =

m∑
j=1

Ȳj
∂Yj
∂Vk

, (3)

where Ȳ is a vector in Rm. For each of the intermediate variables Ui, by applying the chain rule,
we get

Ūi =

m∑
j=1

Ȳj
∂Yj
∂Ui

=

m∑
j=1

Ȳj
∑
k

∂Yj
∂Vk

∂Vk
∂Ui

,

which corresponds to the adjoint mode equation for the intermediate step represented by the
function V = V (U). We thus have a function of the form Ū = V̄ (U, V̄ ) where

Ūi =
∑
k

V̄k
∂Vk
∂Ui

.

Starting from the adjoint of the outputs Ȳ , we may apply this rule to each step in the calculation,
working from the right to the left,

X̄ ← . . . ← Ū ← V̄ ← . . . ← Ȳ (4)

until we obtain X̄, namely, the linear combination of the rows of the Jacobian of the function
X → Y :

X̄i =

m∑
j=1

Ȳj
∂Yj
∂Xi

(5)

for i = 1, . . . , n.
One particularly important theoretical result is that given a computer program performing

some high-level function (1), the execution time of its adjoint counterpart

X̄ = FUNCTION b(X, Ȳ ) (6)

(with suffix b for “backward” or “bar”) that computes the linear combination (5), is bounded
by three to four times the cost of execution of the original one. That is,

Cost[FUNCTION b]

Cost[FUNCTION]
≤ ωA (7)

where ωA ∈ [3, 4], see Griewank (2000).

2



In this paper we present the application of AAD to regression-based MC approaches (also
known as least-square MC) such as those that are widely utilised for Bermudan-style options,
see Carriere (1996), Longstaff and Schwartz (2001), Tsitsiklis and Van Roy (2001), or for XVA
applications, see Cesari et al. (2009) and Joshi and Kwon (2016). We develop the AAD implemen-
tation of the well-known least-square algorithm for the computation of conditional expectations,
and we investigate numerically the impact on the Greeks arising from the sensitivities of the re-
gression functions, a component that is generally ignored for Bermudan-style options by invoking
arguments of quasi-optimality of the exercise boundary.

The paper is organised as it follows: In the next section, the regression-based MC algorithm
for both Bermudan-style options and XVA is presented. In Section 3 we discusses the AAD
algorithms for the regression-based MC method. We give two numerical examples, the best of
two stocks Bermudan-style call and its corresponding XVA in Section 4. Here we show how
smoothening out discontinuities associated with suboptimal exercise boundaries improves the
accuracy of the Greeks of Bermudan-style options, and why the contribution to the sensitivities
arising from the regression boundaries is essential for an accurate computation of XVA sensitiv-
ities. The efficiency and accuracy of AAD is also compared with bump and reval approaches in
the same section.

2 Valuation of Bermudan-style options and XVA by
regression-based Monte Carlo

2.1 Bermudan-style options

While European-style options can be exercised only at final maturity, Bermudan-style options
can be exercised on multiple dates up to trade expiry.

We denote by T1, . . . , TM the exercise dates of the option and define D(t) = {Tm ≥ t}. We
denote by η(t) the smallest integer such that Tη(t)+1 > t. An exercise policy is represented
mathematically by a stopping time taking values in D(t). We denote by T (t) the set of stopping
times taking values in D(t), see e.g., Andersen and Piterbarg (2010).

A rational investor will exercise the option that he holds in such a way as to maximise its
economic value. As a result, the value of a Bermudan-style option is the supremum of the option
value over all possible exercise policies. With the notation introduced above, the value of a
Bermudan-style option at time t can thus be expressed by

V (t)

N(t)
= sup
τ∈T (t)

Et
[
E(τ)

N(τ)

]
, (8)

where E(t) is the exercise value of the option, and N(t) is the chosen numéraire1, see Andersen
and Piterbarg (2010). In this equation, V (t) is to be interpreted as the value of the option
conditional on exercise not having taken place strictly before time t. Here and below we indicate
with Et the expectation, under the risk-neutral measure, conditional on the filtration of the
random process driving the option price, up to time t. For notations and standard mathematical
assumptions of this conventional setting see, e.g., Wilmott et al. (1995).

A useful concept is the hold value of the Bermudan-style option: We denote by H(t) the value
of the Bermudan-style option when the exercise dates are restricted to D(Tη(t)+1), that is

H(t)

N(t)
= Et

[
V
(
Tη(t)+1

)
N
(
Tη(t)+1

)] , (9)

1In the following, for simplicity of notation, we will set N(0) = 1.
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where we have assumed, for simplicity of exposition, no cashflow between t and Tη(t)+1.
The option holder, following an optimal exercise policy, will exercise his option if the exercise

value is larger than the hold value, i.e.,

V
(
Tη(t)

)
= max

(
E
(
Tη(t)

)
, H
(
Tη(t)

))
. (10)

This, when combined with Equation (9), leads to the so-called dynamic programming formulation:

H(t)

N(t)
= Et

[
max

(
E
(
Tη(t)+1

)
N
(
Tη(t)+1

) , H (Tη(t)+1

)
N
(
Tη(t)+1

))] , (11)

for Tη ≤ t < Tη+1, and η = 1, . . . ,M − 1. Starting from the terminal condition H(TM ) ≡ 0,
Equation (11) defines a backward iteration in time for H(t). By definition, this is also equal to
V (t) if t is not an exercise date, i.e., if Tη(t) < t < Tη(t)+1. Conversely, if t is an exercise date,
t = Tη(t), then V (Tη(t)) = max(E(Tη(t)), H(Tη(t))).

The dynamic programming formulation above implies that the stopping time, defining the
optional exercise date as seen at time t, is given by

τ? = inf[Tm ≥ t : E(Tm) ≥ H(Tm)] . (12)

The optimal exercise strategy defined by Equation (12) requires the computation of the hold
value H(t), m = η(t) + 1, . . . ,M − 1. In a setting in which the underlying risk factor process
{X(t)}0≤t≤T is a generic k-dimensional Markov process, the hold value H(t) is a function of the
state vector at time t. That is,

Ht(x) := E
[

N (X(t))

N (X(Tm+1))
V (X (Tm+1))

∣∣∣X(t) = x

]
. (13)

When the dimension of the Markov process k is small enough, the conditional expectation
value in Equation (13) can be computed in a straightforward way by discretising the risk-factor
process and performing standard backward induction on a tree or a grid, or by discretising
an associated Partial Differential Equation (PDE). Here we refer to, e.g., Wilmott et al. (1995).
However, the complexity of grid-based calculations is exponential in the dimension of the Markov
process and numerical implementations become infeasible when k ≥ 4.

As we will review in Section 2.3, regression-based MC techniques provide an effective way of
computing conditional expectation values of the form (13).

2.2 XVA

We next consider the computation of the Credit Valuation Adjustment (CVA) and the Debt
Valuation Adjustment (DVA) as the main measures of a dealer’s counterparty credit risk, see
e.g., Crépey et al. (2014). For a given portfolio of trades with the same investor or institution, the
CVA (resp. DVA) aims to capture the expected loss (resp. gain) associated with the counterparty
(resp. dealer) defaulting in a situation in which the position, netted for any collateral posted,
has a positive mark-to-market for the dealer (resp. counterparty).

This can be evaluated at time T0 = 0 by

XVA = −E
[
I(τc ≤ T )

Lc
N(τc)

(V (τc))
+

+ I(τd ≤ T )
Ld

N(τd)
(V (τd))

−
]
, (14)

where τc (resp. τd) is the default time of the counterparty (resp. the dealer), V (t) is the net
present value of the portfolio or netting set at time t from the dealer’s point of view (the so-
called conditional future exposure), Lc (resp. Ld) is the loss given default of the counterparty
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(resp. the dealer), and I(τc ≤ T ) (resp. I(τd ≤ T )) is the indicator that the counterparty’s
(resp. dealer’s) default happens before the longest deal maturity T in the portfolio. Here,
for simplicity of notation, we consider the unilateral CVA and DVA, the generalization to the
bilateral formulation, see e.g., Crépey et al. (2014), being straightforward.

Equation (14) is typically computed on a discrete time grid of “horizon dates” 0 = T0 < T1 <
. . . < TM = T . For instance, we may have

XVA ' −
M∑
m=1

E

[
Lc(SPc(Tm−1)− SPc(Tm))

(V (Tm))
+

N(Tm)

+Ld(SPd(Tm−1)− SPd(Tm))
(V (Tm))

−

N(Tm)

]
, (15)

where SPc(t) (resp. SPd(t)) is the survival probability of the counterparty (resp. the dealer)
up to time t, e.g., conditional on a realization of the default intensity (or hazard rate) process
in a Cox framework, see Lando (1998). Here we assume that the default times τc and τd are
independent of the portfolio values Vτc and Vτd , respectively. In general, the right hand side
of Equation (15) depends on several correlated random market factors, including interest rate,
recovery amounts, and all the market factors the net conditional future exposure of the portfolio,
V (t), depends on. As such, its calculation typically requires a MC simulation.

In the k-dimensional Markov setting introduced above the conditional future exposure V (Tm)
is a function V (X(Tm)) of the state vector at time Tm. However, only for vanilla securities and
simple models for the evolution of the risk factors, such conditional future exposures can be
expressed in closed form, and regression based Monte Carlo is commonly employed to produce
approximate estimators see, e.g., Cesari et al. (2009).

2.3 Conditional expectation values and Bermudan-style options by re-
gression

Regression methods are based on the observation, see e.g., Friedman et al. (2001), that given a
real-valued random input vector X ∈ Rd and Y a real valued random output, the conditional
expectation E[Y |X] is the function of X that best approximates in the least-square sense the
output Y . That is,

E[Y |X] = argmincE
[
(Y − c)2

]
. (16)

In particular, assuming that the conditional expectation is a linear function of some unknown
vector of parameters β,

E[Y |X] = βTX, (17)

Equation (16) reduces to the well-known linear regression conditions, giving for the optimal
vector of parameters

β = E
[
XXT

]−1 E[XY ] . (18)

In the context of the valuation of Bermudan-style options, the hold value (13) on an exercise
date Tm is assumed to be of the form

Ĥm(x) := ĤTm(x) = βTmψ(x) (19)

where ψ(x) = (ψ1(x), . . . , ψd(x))T is a vector of d basis functions and βm = (β1m, . . . , βdm)T is
the vector of coefficients to be determined by regressing N(X(Tm))/N(X(Tm+1))V (X(Tm+1))
versus ψ(X(Tm+1)). This gives

βm = Ψ−1m Ωm , (20)
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where we define the d× d matrix

Ψm = E
[
ψ(X(Tm))ψT (X(Tm))

]
(21)

and the d× 1 vector

Ωm = E
[
N(X(Tm))V (X(Tm+1))

N(X(Tm+1))
ψ(X(Tm))

]
. (22)

These equations provide a straightforward recipe to compute the regression coefficients βm
by substituting Ψm and Ωm with their sample average over NMC MC replications, namely:

(R1) Simulate NMC independent MC paths X
(n)
m of X(Tm) by the recursion

X
(n)
m+1 = F

(
Tm, X

(n)
m , θ

)
(23)

for m = 0, . . . ,M − 1, and n = 1, . . . , NMC. Here F is a function based on the chosen
models for the risk factors, and θ ∈ RNθ is a vector of Nθ model parameters.

(R2) For n = 1, . . . , NMC, compute the terminal payoff of the contract by setting

V
(n)
M = E

(n)
M , (24)

where EM := E(X
(n)
M ) is the final exercise value of the option.

(R3) Apply the following backward induction steps for m = M − 1, . . . , 1:

(a) Compute the MC sample average of Ψm and Ωm
2 by

Ψm =
1

NMC

NMC∑
n=1

ψ(n)
m (ψ(n)

m )T , (25)

Ωm =
1

NMC

NMC∑
n=1

ψ(n)
m

N
(n)
m V

(n)
m+1

N
(n)
m+1

, (26)

where ψ
(n)
m := ψ

(
X

(n)
m

)
and N

(n)
m := N(X

(n)
m ).

(b) Compute the regression coefficients βm by matrix inversion and multiplication:

βm = Ψ−1m Ωm. (27)

(c) For the estimate of the hold value H
(n)
m := Hm

(
X

(n)
m

)
, set

H(n)
m = βTmψ

(n)
m , (28)

for n = 1, . . . , NMC.

(d) For the estimate of the Bermudan-style option value at time Tm, set

V (n)
m = max

(
E(n)
m , H(n)

m

)
, (29)

where E
(n)
m := E(X

(n)
m ) is the exercise value at time Tm, for n = 1, . . . , NMC.

2Here and in the following, to keep the notation simple, we do not introduce different symbols for expectations
and the respective sample averages.
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(R4) Compute the MC estimate of the Bermudan-style option at time T0 by

V0 =
1

NMC

NMC∑
n=1

V
(n)
1

N
(n)
1

. (30)

This approach was introduced by Tsitsiklis and Van Roy (2001) and they showed that the
estimator V0 converges for n→∞ to the true value V (0) provided that the representation (19)
holds exactly.

A modification of this algorithm was proposed by Longstaff and Schwartz (2001) and it entails
replacing Equation (29) in Step R3 (d) with

V (n)
m =

{
E

(n)
m if E

(n)
m > H

(n)
m ,

N
(n)
m V

(n)
m+1/N

(n)
m+1 otherwise,

(31)

which, in the examples considered, was shown to lead to more accurate results. In the following,
however, for simplicity of exposition, we will consider the estimator in Equation (29).

2.4 Lower bound algorithm for Bermudan-style options

The hold value obtained by regression as described in the previous section defines an exercise
policy whereby on each exercise date Tm the option is exercised if

E(X(Tm)) > βTmψ(X(Tm)) . (32)

Such policy, being an approximation of the solution of the dynamic programming equation (11),
will in general correspond to a suboptimal stopping time. As a result, when utilised in a second,
independent, MC simulation, the exercise policy obtained by regression, will result in a lower-
bound estimator for the Bermudan-style option value. The corresponding algorithm can be
schematically described as it follows.

For each MC replication indexed by n = 1, . . . , NMC perform steps (L1) to (L4) below:

(L1) Simulate the path X
(n)
m of the risk factor vector X(Tm) as in (R1).

(L2) For m = 1, 2, ...,M−1, compute the approximate hold value of the option at time Tm using
the associated regression vector βm, and regression functions ψ, by

H(n)
m = βTmψ

(n)
m (33)

with the hold value at expiry TM set to zero.

(L3) Compute the path-wise estimator for the discounted cash-flows of the option

P (n) =

M∑
m=1

[
1(n)(t1, tm)1

(
E(n)
m > H(n)

m

) E(n)
m

N
(n)
m

]
, (34)

where

1(n)(t1, tm) =

(
m−1∏
i=1

1
(
H

(n)
i > E

(n)
i

))
, (35)

for m > 1, and the convention 1(n)(t1, t1) = 1.

(L4) Compute the MC estimate of the Bermudan-style option at time T0 = 0 by

V0 =
1

NMC

NMC∑
n=1

P (n) . (36)
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2.5 XVA by regression

As described in Section 2.2, the calculation of the XVA in Equation (15) requires the conditional
future exposure V (t) on a set of dates determined by a discretisation time grid T1 . . . TM . The
regression algorithm described in the previous section can be easily adapted to compute such
quantity. Indeed, the conditional value of each of the options contained in the netting set can be
obtained using the same least-square procedure.

Once the regression algorithm is completed, we can use the regression functions to compute
the hold value of each option in the portfolio on the discretisation time grid by Hm = βTmψm.
If the discretisation time Tm is not an exercise opportunity for the option under consideration,
then this is also its conditional future exposure. Conversely, the conditional future exposure is
obtained by comparing the hold value to the exercise value as in Equations (29) and (31). These
observations translate in the following algorithm.

For each MC replication indexed by n = 1, . . . , NMC perform steps (X1) to (X3) below:

(X1) Simulate the path X
(n)
m of the risk factor vector by the recursion:

X
(n)
m+1 = F

(
Tm, X

(n)
m , θ

)
, (37)

for m = 0, . . . ,M − 1. Simulate the path of the counterparty’s and the dealer’s default
intensity, λd,cm = λd,c(Tm) by the recursions

λ
c,(n)
m+1 = Gc

(
Tm, λ

c,(n)
m , θ

)
, (38)

λ
d,(n)
m+1 = Gd

(
Tm, λ

d,(n)
m , θ

)
, (39)

for m = 0, . . . ,M − 1, where Gc (resp. Gd) is the function describing the dynamics of the
counterparty’s (resp. the dealer’s) hazard rate.

(X2) Compute the (discretised) path-wise survival probabilities for the counterparty and the
dealer by

SPc,(n)
m = exp

−m−1∑
j=0

λ
c,(n)
j (Tj+1 − Tj)

 , (40)

SPd,(n)
m = exp

−m−1∑
j=0

λ
d,(n)
j (Tj+1 − Tj)

 , (41)

for m = 1, 2, ...,M .

(X3) For m = 1, 2, ...,M − 1, approximate the hold value of the p-th option in the portfolio at
time Tm using the associated regression vector βp,m and regression functions ψp by

H(n)
p,m = βTp,mψp,m , (42)

with p = 1, . . . , P . The hold value at the expiry date TM is set to zero. The conditional

expectation value of the portfolio is given by V
(n)
m =

∑P
p=1 V

(n)
p,m, where

V (n)
p,m =

{
max

{
H

(n)
p,m, E

(n)
p,m

}
, if Tm is an exercise date for the p-th option

H
(n)
p,m , otherwise,

(43)

for m = 1, 2, ...,M , where E
(n)
p,m is the exercise value of the p-th option at time Tm on the

n-th path.

8



(X4) Compute the path-wise XVA by

XVA(n) = −
M∑
m=1

Lc (SP
c,(n)
m−1 − SPc,(n)

m

) (V (n)
m

)+
N

(n)
m

+ Ld

(
SP

d,(n)
m−1 − SPd,(n)

m

) (V (n)
m

)−
N

(n)
m

 .
(44)

(X5) Form the MC estimator

XVA =
1

NMC

NMC∑
n=1

XVA(n) . (45)

3 The AAD algorithm for regression-based Monte Carlo

3.1 Function regularizations

In the context of MC methods, Capriotti and Giles (2012) show that AAD allows to calculate
the sensitivities by differentiating the relevant estimator on a path by path basis. As a path-wise
method, the MC estimators must satisfy specific regularity conditions, see Glasserman (2003).
For instance, all the functions appearing in each step leading to the computation of the payout
estimator must be Lipschitz continuous. A practical way of addressing non-Lipschitz estimators
is to smoothen out the singularities they contain. This can be achieved by observing that in most
cases the singularities in the payout functions, although not necessarily implemented as such, can
be expressed in terms of Heaviside functions. For instance, the payoff function of a digital option
(for a one-dimensional underlying asset) is,

P (X(T )) = 1(X(T ) > K) , (46)

while the payoff of a knock-out, path-dependent option with barrier monitored at the time
T1, . . . , TM is of the form

P (X(T1), . . . , X(TM )) =

M∏
m=1

1(X(Tm) > Bm) (47)

where Bm is the the barrier level at time Tm.
The singularities in such payoff functions can be regularized by replacing the indicator function

with one of its smoothened counterparts. A very common choice, for instance, is to approximate
the step function with a “call spread” payoff functions,

1 (x > K) ≈ Hδ (x−K) =

(
min

(
x− (K − δ)

2δ
, 1

))+

, (48)

where 0 < δ � K. This is a standard choice for digital options, because it has a useful interpre-
tation in terms of the hedging portfolio of a long and a short position in two calls with strike price
K − δ and K + δ. This regularization gives rise to functions that are Lipschitz continuous with
respect to x and can be differentiated in a straightforward manner. In particular, the adjoint
regularized Heaviside function (48) is given by

H̄δ(x−K, x̄) =

{
x̄/2δ if K − δ ≤ x ≤ K + δ
0 otherwise

(49)
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where x̄ is the adjoint of the input variable. When δ → 0, (48) gives the correct derivative of
the Heaviside function in the distributional sense, i.e., the Dirac delta function. However, while
approaching this limit, its derivative is zero or vanishingly small, apart from a very small portion
of the sample space where instead it is very large. This leads to exceedingly large variances in the
MC sampling of the estimators expressed in terms of such functions, signalling the breakdown
of the Lipschitz continuity condition. Hence, the choice of the smoothening parameter δ is
necessarily a tradeoff between the bias, vanishing for δ → 0, and the statistical errors of the MC
sampling, diverging in the same limit.

In general, the payoff estimator for Bermudan-style options (34) is not differentiable with

respect to the pathwise value of the approximate exercise boundary H
(n)
m , and it requires the

regularization described above. A common approximation among practitioners, see e.g., Leclerc et
al. (2009), is to assume that that exercise boundary implied by the rule (32) is close to optimality
so that the value of the contract is approximatively continuous across the exercise boundary
and no regularization is required. Under this assumption, no contribution to the sensitivities
is associated with the perturbations of the exercise boundary, and one can therefore keep the
regression coefficients fixed while calculating the sensitivities, see Andersen and Piterbarg (2010).
As discussed in Section 4, depending on the accuracy of the basis functions in representing the
exercise boundary, this may or may not be an accurate approximation.

3.2 AAD for the lower bound algorithm for Bermudan-style options

The AAD implementation of the lower bound algorithm for Bermudan-style options described in
Section 2.4, producing the MC estimators for the sensitivities of the estimator (36) with respect
to a set of model parameters θk, k = 1, . . . , Nθ, given by

θ̄k =
∂V (θ)

∂θk
, (50)

consists of the adjoint of steps (L1) to (L4) executed backwards for each MC replication n =
1, . . . , NMC. After setting the adjoint of the option value V̄0 = 1, the adjoint of the model
parameters θ̄ = 0, and the adjoint of the regression coefficients β̄m = 0, the steps to perform are:

(L4) Set

P̄ (n) = V̄0
1

NMC
. (51)

(L3) Assuming the indicator functions in the estimator in (34) have been regularized as discussed
in Section 3.1, compute

H̄(n)
m = H̄δ

(
H(n)
m − E(n)

m , P̄ (n)
)(

J (n)
m −Q(n)

m

)
,

Ē(n)
m = P̄ (n)R(n)

m + H̄δ
(
E(n)
m −H(n)

m , P̄ (n)
)(

J (n)
m −Q(n)

m

)
, (52)

N̄ (n)
m = −P̄ (n)

Q
(n)
m Hδ

(
E

(n)
m −H(n)

m

)
N

(n)
m
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for m = M, . . . , 1 and where

J (n)
m =

M∑
k=m+1

E
(n)
k

N
(n)
k

1
(
E

(n)
k > H

(n)
k

) k−1∏
j=2,j 6=m

1
(
H

(n)
j > E

(n)
j

)
,

Q(n)
m =

E
(n)
m

N
(n)
m

1(n)(t1, tm) ,

R(n)
m =

1

N
(n)
m

1
(
E(n)
m > H(n)

m

)
1(n)(t1, tm) .

Here we also adopt the conventions
∏1
j=2,j 6=m . . . = 1,

∑M
M+1 . . . = 0. Initialise the adjoints

of the risk factors so that

X̄(n)
m = Ē(n)

m

∂E
(n)
m

∂X
(n)
m

+ N̄ (n)
m

∂N
(n)
m

∂X
(n)
m

. (53)

(L2) For m = M, . . . , 1, update the adjoint of the regression coefficients βm to give

β̄m +=ψ(n)
m H̄(n)

m , (54)

as well as the adjoints of the basis functions ψ
(n)
m ,

ψ̄(n)
m = βmH̄

(n)
m , (55)

and update the adjoints of the state vector

X̄(n)
m +=(ψ̄(n)

m )T
∂ψ

(n)
m

∂X
(n)
m

, (56)

where we use the standard notation “+=” for the addition assignment operator.

(L1) For m = M, . . . , 0 compute the adjoint of the risk factor evolution such that

X̄(n)
m += X̄

(n)
m+1

∂F

∂X
(n)
m

(
Tm, X

(n)
m ; θ

)
, θ̄+= X̄

(n)
m+1

∂F

∂θ

(
Tm, X

(n)
m , θ

)
, (57)

where the gradients are computed by applying the rules of adjoint differentiation following
the instructions that implement the function F . Finally, the adjoint X̄0 is utilised to
populate the component of θ̄ corresponding to the adjoint of the model parameter X0.

3.3 AAD for XVA by regression

The AAD implementation of the algorithm for the calculation of XVA described in Section 2.5,
producing the MC estimators for the sensitivities of the estimator (45) with respect to a set of
model parameters θk, k = 1, . . . , Nθ, given by

θ̄k =
∂XVA(θ)

∂θk
, (58)

consists of the adjoint of steps (X1)-(X5) executed backwards for each MC replication n =
1, . . . , NMC:
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(X5) Set the adjoint of the XVA value, XVA = 1, the adjoint of the model parameters θ̄ = 0 and

XVA
(n)

= XVA
1

NMC
. (59)

(X4) For m = M, . . . , 1 compute:

V̄ (n)
m = −XVA

(n)

N
(n)
m

[
Lc

(
SP

c,(n)
m−1 − SPc,(n)m

)
1(V (n)

m > 0)

+Ld

(
SPd,(n)m − SPd,(n)m

)
1(V (n)

m < 0)
]
, (60)

N̄ (n)
m =

XVA
(n)(

N
(n)
m

)2 [Lc (SP
c,(n)
m−1 − SPc,(i)m

)(
V (n)
m

)+
+Ld

(
SP

d,(n)
m−1 − SPd,(n)m

)(
V (n)
m

)− ]
, (61)

SP
c,(n)

m = XVA
(n)

[
V

(n)
m

N
(n)
m

(1− δm,0)−
V

(n)
m+1

N
(n)
m+1

]
1(V (n)

m > 0) , (62)

SP
d,(n)

m = XVA
(n)

[
V

(n)
m

N
(n)
m

(1− δm,0)−
V

(n)
m+1

N
(n)
m+1

]
1(V (n)

m < 0) , (63)

where δm,n is the Kronecker symbol, and V
(n)
M+1/N

(n)
M+1 = 0.

(X3) For m = M, . . . , 1, set V̄
(n)
p,m = V̄

(n)
m and compute the adjoint of Equation (43) by

H̄(n)
p,m = V̄ (n)

p,m1
(
H(n)
p,m > E(n)

p,m

)
, Ē(n)

p,m = V̄ (n)
p,m1

(
H(n)
p,m < E(n)

p,m

)
, (64)

if Tm is an exercise date for the p-th option, and

H̄(n)
p,m = V̄ (n)

p,m , Ē(n)
p,m = 0 , (65)

otherwise. Initialise the adjoints of the risk factors,

X̄(n)
m = Ē(n)

p,m

∂E
(n)
p,m

∂X
(n)
m

+ N̄ (n)
m

∂N
(n)
m

∂X
(n)
m

. (66)

Initialise the adjoint of the regression coefficients βp,m, and update them together with the
adjoints of the basis functions ψp,m, and the adjoints of the state vector as in Equations (54)
to (56).

(X2) Update the adjoint of the simulated hazard rates according to

λ̄c,(n)m +=− (Tm+1 − Tm)

M∑
j=m+1

SP
c,(n)

m SPc,(n)m , (67)

λ̄d,(n)m +=− (Tm+1 − Tm)

M∑
j=m+1

SP
d,(n)

m SPd,(n)m . (68)
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(X1) For m = M, . . . , 0 compute the adjoint of the hazard rate evolution

λ̄c,(n)m +=λ̄
c,(n)
m+1

∂Gc

∂λ
c,(n)
m

(
Tm, λ

c,(n)
m ; θ

)
, λ̄d,(n)m +=λ̄

d,(n)
m+1

∂Gd

∂λ
d,(n)
m

(
Tm, λ

d,(n)
m ; θ

)
, (69)

θ̄+= λ̄
c,(n)
m+1

∂Gc
∂θ

(
Tm, λ

c,(n)
m ; θ

)
, θ̄+= λ̄

d,(n)
m+1

∂Gd
∂θ

(
Tm, λ

d,(n)
m ; θ

)
, (70)

where the gradients can be computed through the AAD implementation of the function G
and of the risk factor evolution as in step (L1).

3.4 AAD for the regression algorithm

In the AAD implementations presented in Section 3.2 and Section 3.3 the adjoint of the regression
coefficients in Equation (54) do not contribute to the calculation of sensitivities. As mentioned
in Section 3.1, and illustrated with numerical examples in Section 4, this can be justified as
a reasonable approximation in the case of Bermudan-style options when the exercise boundary
approximated by regression is close to the optimal one. However, such arguments are generally
approximations for Bermudan-style options, and cannot be invoked at all when regression is
utilised for XVA. In this case, the contributions associated with the sensitivities of the regres-
sion coefficients must be taken into account in order to obtain accurate estimates of the model
parameters sensitivities.

In this section, we discuss how these contributions can be computed by the AAD implemen-
tation of the least-square MC algorithm described in Section 2.3.

(R4) Skip this step if the regression algorithm is utilised in conjunction with a second independent
simulation for Bermudan-style options or in the context of XVA. Initialise the adjoint of
the option value V̄0 = 1, the adjoint of the model parameters θ̄ = 0, the adjoint of the
regression coefficients β̄m = 0, m = 1, . . . ,M − 1 and set

V̄
(n)
1 =

V̄0
NMC

1

N
(n)
1

, N̄
(n)
1 = − V̄0

NMC

V
(n)
1(

N
(n)
1

)2 , (71)

for n = 1, . . . , NMC.

(R3) For m = 1 to M − 1, we have:

(d) For n = 1, . . . , NMC, compute

Ē(n)
m = V̄ (n)

m 1
(
E(n)
m > H(n)

m

)
, H̄(n)

m = V̄ (n)
m 1

(
E(n)
m < H(n)

m

)
, (72)

and initialise the adjoint of the risk factor path value X
(n)
m by

X̄(n)
m = Ē(n)

m

∂E
(n)
m

∂X
(n)
m

. (73)

(c) Set:

β̄m+=

NMC∑
n=1

ψ(n)
m H̄(n)

m , (74)

and initialise the adjoint of the basis functions ψ as in Equation (55)
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(b) Compute the adjoint of the two intermediate variables Ωm and Ψm in Equation (27)
using the results in Giles (2008) by

Ω̄m = Ψ−Tm β̄m , Ψ̄m = −Ω̄mβ
T
m . (75)

(a) For n = 1, . . . , NMC compute the adjoint of Equation (26) by

ψ̄(n)
m +=

1

NMC
N (n)
m V

(n)
m+1Ω̄m ,

V̄
(n)
m+1 =

1

NMC
N (n)
m (ψ(n)

m )T Ω̄m , (76)

N̄ (n)
m =

1

NMC
V

(n)
m+1(ψ(n)

m )T Ω̄m ,

where N (n)
m = N

(n)
m /N

(n)
m+1, and compute the adjoint of Equation (25) by

ψ̄(n)
m +=

1

2NMC

(
Ψ̄(n)
m +

(
Ψ̄(n)
m

)T)
ψ(n)
m . (77)

Then update the adjoint of the risk factor vectors by

X̄(n)
m +=

N̄ (n)
m

N
(n)
m+1

∂N
(n)
m

∂X
(n)
m

+ ψ̄T
∂ψ̄

∂X
(n)
m

, X̄
(n)
m+1+=− N̄

(n)
m N (n)

m

N
(n)
m+1

∂N
(n)
m+1

∂X
(n)
Tm+1

. (78)

(R2) Compute the adjoint of the risk factor vector at expiry by

X̄
(n)
M = V̄

(n)
M

∂E
(n)
M

∂X
(n)
M

, (79)

for n = 1, . . . , NMC.

(R1) For m = M, . . . , 0, compute the adjoint of the risk factor evolution as in step (L1).

4 Numerical results

4.1 Best of two assets Bermudan-style option

As a first example, we consider the classical case of a Bermudan-style option on the maximum of
two assets under a standard lognormal model for the asset price processes {X1(t)} and {X2(t)}.
The payoff function at exercise time t is given by

(max {X1(t), X2(t)} −K)
+
, (80)

where K is the strike price. A similar example is also studied in Glasserman (2003), Broadie and
Glasserman (1997) and Broadie and Glasserman (2004). Andersen and Broadie (2004) obtain
nearly exact estimates for this example using twelve basis functions, including the value of a
European-style option. We assume the option can be exercised every three months up to 3
years. We assume the underlying assets are independent geometric Brownian motion processes
with the same initial values X(0), volatilities σ, and dividend rates d. In particular, we choose
X1(0) = X2(0) = 1, σ1 = σ2 = 0.2 and d1 = d2 = 0.1 and the risk-free rate r = 0.05. We
compute the Bermudan-style option prices, the Deltas (i.e., the sensitivity with respect to the
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spot values, Xi(0)) and the Vegas (i.e., the sensitivity with respect to the volatilities σi) for
K = 0.9, 1.0 and 1.1 with AAD and bumping. We also compare these with their “exact” value,
which is obtained by a PDE approach (using finite differences to estimate sensitivities). The
numerical results are found in Table 1 and in Figure 1 demonstrating an excellent agreement
between the AAD and PDE results. The regression basis functions we adopt are the terms of
the third-order polynomial {

1, x1, x2, x
2
1, x

2
2, x1x2, x

3
1, x

2
1x2, x1x

2
2, x

3
2

}
(81)

and the payoff functions up to power three, i.e.,{
(max(x1, x2)−K)

+
,
(

(max(x1, x2)−K)
+
)2
,
(

(max(x1, x2)−K)
+
)3}

. (82)

Here the smoothening parameter for the calculation of the Greeks, discussed in Section 3.1,
δ = 0.005, was chosen as a reasonable compromise between variance and bias of the estimator.
This is illustrated in Figure 2, showing how for δ = 0.005 the bias introduced by the finite δ is of
the same order of magnitude of the statistical uncertainty for the chosen computational budget,
and is negligible for any practical application.

As discussed in Section 3.1, neglecting to smoothen out the exercise boundary, although
common in the financial practice, introduces a bias in the computation of sensitivities because the
exercise boundary is in general not optimal. This is illustrated in Figure 3, in which we compare
the Delta, with and without smoothening, for different choices of the basis functions. These
results are obtained with the inputs (81) and (82). Here for Delta, the smoothened estimator
turns out to be more accurate, especially when the exercise boundary obtained by regression is a
less accurate approximation of the real one. However, it is difficult to establish a priori whether
the unsmoothened estimator provides a smaller or a larger bias than the smoothened one. This is
because the bias introduced by the lack of smoothening may be offset by the bias arising from the
sub-optimality of the exercise boundary. This is illustrated in the right panel of Figure 3 showing
that for Vega the smoothened and unsmoothened estimators have a comparable accuracy. In
any case, a consideration to keep in mind is that smoothening the exercise boundary is generally
required to obtain stable second-order risk values.

The quasi-optimality of the exercise boundary is also generally invoked among industry prac-
titioners as a justification for neglecting the contributions to the sensitivities arising from the
exercise boundary. Clearly, the quality of this approximation is dependent on the accuracy of
the regression functions in reproducing the actual exercise boundary. This is illustrated in Fig-
ure 4 where we plot Delta and Vega of the Bermudan-style option (80) for different choices of
the regression basis functions. Here we compare the results obtained by the AAD algorithm, as
described in Section 3.4, in the case where a) the exercise boundary is kept fixed, and b) when
accounting instead for its contributions to the sensitivities. As expected, the difference between
the two approaches vanishes as the regression functions become more accurate. However, as
it is shown for the Vega, it can lead to a significant bias if a simple (e.g., linear or quadratic)
representation of the exercise boundary is adopted.

4.2 XVA sensitivities

As another example, we compute the sensitivities of XVA (14) for the same option defined
in Equation (80). Here, for simplicity, we assume that the hazard rate and the volatility are
piecewise constants. The following results are obtained with the specifications (81) and (82).
The XVA sensitivities with respect to some of the model parameters, namely the term structure
of hazard rates of the counterparty and of volatilities of the underlying, obtained with the AAD
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algorithm described in Section 2.5 are compared with the ones obtained by standard bumping
in Tables 2 and 3. As expected, the AAD sensitivities are in excellent agreement with those
obtained by bumping with any discrepancies attributable to the bias of the finite-difference
approach completely masked in this example by the MC uncertainties.

Similar to the case of Bermudan-style option Greeks, keeping the regression boundary fixed
while computing the sensitivities, introduces a bias. However, for XVA, this issue is much
more severe than in the case of the Bermudan-style option Greeks because no quasi-optimality
argument can be invoked. As shown in Figure 5, the volatilities sensitivities obtained by bumping
and AAD keeping into account of the regression contributions are almost identical. Instead, the
results of AAD keeping the regression coefficients fixed are remarkably different and, if utilised
for risk management, would lead to significant mis-hedging. On the other hand, as expected, the
XVA sensitivities with respect to the hazard rates are not affected by the contribution arising
from the regression functions. This is because the hazard rates do not enter the computation of
the portfolio value conditional on default, and hence do not appear in the regression parameters.

Finally, the remarkable computational efficiency of the AAD approach is illustrated in Fig-
ure 6. Here we plot the cost of computing the XVA sensitivities with respect to the term structure
of the counterparty hazard rate and the underlying volatility, relative to the cost of performing a
single valuation. The calculation of the sensitivities by means of AAD can be performed in about
three times the cost of computing the XVA value, that is, well within the theoretical bound (7).
In contrast, the cost of bumping, for one-sided finite-difference estimators, is in general (1 +N)
times the cost of as single valuation, where N is the number of model parameters, i.e., in this
case over 20 times the cost of computing the value of the XVA.

5 Conclusions

We have shown how Adjoint Algorithmic Differentiation (AAD) can be utilised to implement
efficiently the computation of sensitivities in regression-based MC methods. We have derived
the AAD version of the celebrated least-square algorithms of Tsitsiklis and Van Roy (2001)
and Longstaff and Schwartz (2001) and, by discussing in detail examples of practical relevance,
we have demonstrated how accounting for the sensitivities contributions associated with the
regression functions is crucial to obtain accurate estimates of the Greeks in XVA applications and
for Bermudan-style options, especially when the exercise boundary is not particularly accurate.
We have also shown how smoothening out the discontinuities associated with suboptimal exercise
boundaries can lead in some situations to more accurate estimates of the sensitivities.

From a computational stand point, similarly to what was previously found in other MC
and PDE settings, see e.g., Capriotti and Giles (2012), Capriotti et al. (2015), the proposed
method allows the computation of the complete first-order risk at a cost which is at most four
times the cost of calculating the value of the portfolio itself. This typically results in orders of
magnitude of savings in computational time with respect to standard finite-difference approaches,
thus making AAD an ever so indispensable technique in the toolbox of modern financial and
insurance engineering.
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6 Tables

Table 1: Prices, Deltas and Vegas for the Bermudan-style option in (80) with three different
strike values. The smoothening parameter in the call spread regularization (48) is δ = 0.005.
The number of MC paths employed in the AAD approach is 400,000. The results are obtained
with the setting (81) and (82). The MC uncertainty (in parenthesis) is computed using the
binning technique of Capriotti and Giles (2010) with 20 bins for each set of simulations.

K = 0.9 Price Delta Vega
AAD 0.2012(2) 0.415(3) 0.456(2)
PDE 0.20107 0.41423 0.45740

K = 1.0
AAD 0.1396(1) 0.337(2) 0.486(2)
PDE 0.13959 0.33588 0.48440

K = 1.1
AAD 0.0941(2) 0.258(1) 0.463(2)
PDE 0.09431 0.25635 0.46253
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Table 2: The XVA sensitivities with respect to the piecewise volatility. The results are obtained
with the setting (81) and (82). Both sets of the results are computed with 1,000,000 MC paths
and 25 bins.

σ0 σ1 σ2 σ3 σ4 σ5
AAD 0.00298(1) 0.00297(2) 0.00294(1) 0.00283(1) 0.00271(1) 0.00255(1)

Bumping 0.00298(1) 0.00297(2) 0.00294(1) 0.00283(1) 0.00271(1) 0.00255(1)

σ6 σ7 σ8 σ9 σ10 σ11
AAD 0.00236(1) 0.00218(1) 0.00201(1) 0.00183(1) 0.00165(1) 0.001450(8)

Bumping 0.00236(1) 0.00218(1) 0.00201(1) 0.00183(1) 0.00165(1) 0.001450(8)
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Table 3: The XVA sensitivities with respect to the piecewise hazard rates. The results are
obtained with the setting (81) and (82). Both sets of the results are computed with 1,000,000
MC paths and 25 bins.

λ0 λ1 λ2 λ3 λ4 λ5
AAD 0.03337(1) 0.03336(2) 0.03329(2) 0.03306(3) 0.03269(3) 0.03218(3)

Bumping 0.03337(1) 0.03336(2) 0.03329(1) 0.03306(3) 0.03269(3) 0.03218(3)

λ6 λ7 λ8 λ9 λ10 λ11
AAD 0.03151(3) 0.03074(4) 0.02989(4) 0.02893(4) 0.02784(4) 0.02669(4)

Bumping 0.03151(3) 0.03074(3) 0.02989(4) 0.02893(4) 0.02784(4) 0.02669(4)
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7 Figures

Figure 1: Deltas (left panel) and Vegas (right panel) for the Bermudan-style option in (80) as a
function of strike. The smoothening parameter in the call spread regularization (48) is δ = 0.005.
The number of MC paths is 400,000. The results are obtained with the setting (81) and (82).
The MC uncertainty (in parenthesis) is computed using the binning technique with 20 bins for
each set of simulations.
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Figure 2: AAD Delta (left panel) and Vega (right panel) of the Bermudan-style option in (80)
for K = 1 vs the smoothening parameter δ for the call spread regularization (48). The number
of simulated paths is 3,000,000 for δ = 0.01 and is increased as δ is decreased in order to keep
statistical uncertainties roughly constant. The results are obtained with the setting (81) and
(82). The values in the graphs are fitted based on a quadratic polynomial function (green lines).
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Figure 3: AAD Delta (left panel) and Vega (right panel) of the Bermudan-style option in (80) for
K = 1 as obtained with the unsmoothened and the smoothened estimators with the call-spread
regularization (48) for five choices of the regression basis functions. The number of simulated
paths is 1,000,000 with 20 bins and the smoothening parameter is δ = 0.005.
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Figure 4: AAD Delta (left panel) and Vega (right panel) of the Bermudan-style option in (80)
for K = 1 as obtained by keeping the exercise boundary fixed (Fixed) and accounting instead
for its contributions to the sensitivities (Flexible). The number of simulated paths is 1,000,000
with 20 bins and the call-spread smoothening parameter is δ = 0.005.
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Figure 5: XVA sensitivities with respect to the piecewise volatility (left panel) and hazard rate
(right panel), computed by AAD keeping into account of the contributions of the regression
coefficients (Flexible), by AAD keeping the regression coefficients fixed (Fixed), and by finite-
differences (Bumping). The number of MC paths is 1,000,000 and the number of bins is 25. The
results are obtained with the setting (81) and (82).
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Figure 6: Ratio of the CPU time required for the calculation of the XVA, and its sensitivities,
and the CPU time spent for the computation of the XVA alone.
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