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We present a mathematical study of two-dimensional
electrostatic and electromagnetic shielding by a cage
of conducting wires (the so-called ‘Faraday cage
effect’). Taking the limit as the number of wires in
the cage tends to infinity, we use the asymptotic
method of multiple scales to derive continuum
models for the shielding, involving homogenized
boundary conditions on an effective cage boundary.
We show how the resulting models depend on key
cage parameters such as the size and shape of
the wires, and, in the electromagnetic case, on the
frequency and polarization of the incident field. In
the electromagnetic case, there are resonance effects,
whereby at frequencies close to the natural frequencies
of the equivalent solid shell, the presence of the
cage actually amplifies the incident field, rather
than shielding it. By appropriately modifying the
continuum model, we calculate the modified resonant
frequencies, and their associated peak amplitudes.
We discuss applications to radiation containment
in microwave ovens and acoustic scattering by
perforated shells.

1. Introduction

The Faraday cage effect is the phenomenon whereby
electric fields and electromagnetic waves can be blocked
by a wire mesh. The effect was demonstrated experimen-
tally by Faraday in 1836 [1], was familiar to Maxwell [2],
and its practical application in isolating electrical
systems and circuits is well known to modern-day
engineers and physicists alike. However, somewhat
surprisingly there does not seem to be a widely known
mathematical analysis quantifying the effectiveness of
the shielding as a function of the basic cage properties
(e.g. the geometry of the cage, and the thickness, shape
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and spacing of the wires in the mesh from which it is constructed). The recent publication [3]
provided such an analysis for the two-dimensional electrostatic problem where the cage is a ring
of M equally spaced circular wires of small radius r « L/M (here L is a typical macro-lengthscale
of the cage, e.g. the circumference of the ring of wires) held at a common constant potential,
which can be formulated as a Dirichlet problem for the Laplace equation. It was found in [3] that
the shielding effect of such a Faraday cage is surprisingly weak: as the number of wires M tends
to infinity the magnitude of the field inside the cage in general decays at best only inverse linearly
in M, rather than exponentially, as one might infer from certain treatments of the Faraday cage
effect in the physics literature (e.g. [4, §7-5]).

One of the key tools used by Chapman et al. [3] to study the Faraday cage effect in the regime
of large M was a continuum model, in which the shielding effect of the discrete wires is replaced
by a homogenized boundary condition on an infinitesimally thin interface between the ‘inside’
and ‘outside’ of the cage. Such boundary conditions can be derived by matching asymptotic
expansions of the field away from the mesh with expansions in a boundary layer close to the
mesh, where a multiple scales approximation can be applied (cf. [3, §5 and appendix C], and the
closely related work in [5-8]).

This paper extends the analysis of Chapman et al. [3] in a number of significant ways. Firstly,
we explain how the homogenized boundary condition of Chapman et al. [3] generalizes to
arbitrary wire shapes (not necessarily circular). Secondly, we investigate the ‘thick-wire’ regime in
which r = O(L/M) (the model proposed in [3] is valid only for r « L/M and is in general ill-posed
for r=O(L/M).) Thirdly, we consider the analogous Neumann problem, where the interesting
regime is not that of small wires, but rather small gaps between wires. Finally, and perhaps most
significantly, we undertake a detailed study of the two-dimensional electromagnetic problem in
which an external time-harmonic wave field (a solution of the Helmholtz equation) is incident
on the cage. We show that, under appropriate assumptions on the wavelength (specifically,
the wavelength should be long compared with the inter-wire spacing), the leading-order wave
field satisfies the same homogenized boundary conditions as in the Laplace case. However, in
the wave problem there is the possibility of resonance, where the presence of the cage actually
amplifies the incident field, rather than shielding it. For the Dirichlet problem, such resonance
effects are the strongest in the ‘thick-wire’ regime in which r = O(L/M), and when the wavelength
is close to (but not in general equal to) a resonant wavelength of the idealized cage in which
the wire mesh is replaced by a solid shell. We show how to modify the continuum model to
deal with such resonances, and use our modified model to calculate precisely the wavelength at
which the maximum amplification is observed, and the associated peak amplitude, validating our
predictions against numerical simulations.

We conclude this introduction with some comments on related literature. Firstly, we
acknowledge that there is already a substantial literature concerning the rigorous analysis
of homogenization procedures for potential and scattering problems involving thin, rapidly
varying interfaces. While we do not attempt a comprehensive review, we note in particular
the works [5-7,9-16], which consider problems closely related (but different) to those studied
here. Many of these studies adopt a similar multiple scale-based approaches to ours, albeit from
a slightly more rigorous point of view, and some (e.g. [10]) derive higher order asymptotic
approximations than those considered here. What sets our work apart from this literature is
that we are concerned less with formulating high-order approximations and proving rigorous
error estimates and more with understanding the qualitative and quantitative behaviour of
the leading-order homogenized approximations—in particular, their shielding performance—
something which to date does not appear to have been studied systematically. Secondly, we
note that the two-dimensional cage problems we consider can be attacked by direct numerical
simulation, at least for M relatively small—indeed we shall compare our asymptotic results with
two different numerical methods in §4. In the small wire regime, one can obtain approximate
numerical solutions particularly efficiently, if the wires are modelled as simple point sources. Such
an approach to the electrostatic problem is described in [3, §6], where the associated amplitudes
of the point sources are found by an energy minimization procedure. We also mention [17], which
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treats the wave problem for a circular cage of small equally spaced wires using the so-called
‘Foldy method” from multiple scattering theory, in which the geometrical assumptions permit a
semi-analytical solution for the associated point source amplitudes in terms of the discrete Fourier
transform. This method appears to be closely related to the lowest-order version of the Mikhlin-
type numerical method used by Chapman et al. [3], higher order versions of which shall be our
main source of numerical approximations for the circular wire case. The analysis of Martin [17]
does not cover the regime r = O(1/M) and does not treat resonance effects.

2. Problem formulation

Let £2_ be a bounded simply connected open subset of the plane with smooth boundary I =
352_ and let £2; :=R?\ £2_ denote the complementary exterior domain. For convenience, we
will routinely identify the (x, y)-plane with the complex z-plane, z = x + iy. We consider a ‘cage’
of M non-intersecting wires {K]-}j]\i 1 (compact subsets of the plane, defined in more detail shortly)

centred at points {zj}jj\i ; along I' with constant separation! (measured with respect to arc length
along I'")
)
=0
where |I'| is the total length of I'; for an illustration, see figure 1a. We set D := R?\ (U]]\i 1 Kj)-
The electrostatic problem is formulated as follows. Given a compactly supported source

function f, we seek a real-valued potential ¢(z) satisfying

V2¢=f inD, (2.1)
¢=0 ondkK; j=1,...,M, 2.2)
and d(z) ~ (% JDf> log(|z]) + O(1) asz— oo. (2.3)

Condition (2.2) models the fact that the wires are electrically connected, e.g. at infinity in the

third dimension. Condition (2.3) ensures that the cage possesses zero net charge. We note that

the formulation (2.1)—(2.3) is different (but equivalent) to that in [3], where the constant term at

infinity in (2.3) was zero, with ¢ taking an unknown (and in general non-zero) constant value on

the wires. For completeness, we also consider the Neumann problem in which (2.2) is replaced by
a9

5o =0 ondK; j=1..M, (2.4)

where v denotes a unit normal vector on 9K;, and O(1) is replaced by o(1) in (2.3). While not having
any obvious electrostatic application, this could represent a model for inviscid incompressible
fluid flow due to a source in the presence of a cage of impermeable wires.

The time-harmonic electromagnetic problem can be formulated in terms of two complex-
valued scalar fields, representing the out-of-plane components of the electric and magnetic fields,
respectively, both of which satisfy the Helmholtz equation

(V2+K)p=f inD, (2.5)

for appropriate source functions f, where k > 0 is the (non-dimensional) wavenumber. (Incident
plane waves can also be considered.) The out-of-plane component of the electric field (TE mode)
satisfies the Dirichlet boundary condition (2.2) and the out-of-plane component of the magnetic
field (TM mode) satisfies the Neumann boundary condition (2.4). At infinity, both fields are
assumed to satisfy an outgoing radiation condition. These two problems also model the analogous
acoustic scattering problems with sound-soft and sound-hard boundary conditions, respectively.

The goal of this paper is to determine the leading-order asymptotic solution behaviour of the
above problems as the number of wires M tends to infinity, equivalently, as the wire separation ¢
tends to zero. For the wave problem we shall assume throughout that k= O(1) as ¢ — 0, so that

!We assume that lengths have been non-dimensionalized relative to a suitable macro-lengthscale (e.g. the radius of the
smallest circle containing I") so that ¢ is a non-dimensional parameter.
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Figure 1. (q) Faraday cage geometry and the outer coordinates (x, y) and (n, s), with the curve I" on which the wires are
centred shown as a dashed line. The dotted lines either side of the wire ; are curves of constants = s5; &= £//2, corresponding
to the lines S = :I:% in the boundary layer coordinates. (b) The cell problem geometry and the boundary layer coordinates
(N,S) = (n/e,s/e), showing the scaled wire shape /C (solid boundary; Model 2) and the perturbation /C (dashed boundary;
Model 1). (c) The reference wire shape K and the inner coordinates (£, ).

1

the wavelength is comparable to the macro-dimensions of the cage and much longer than the
inter-wire separation. We also need to specify how the wire size, shape and orientation should
vary as ¢ — 0. In particular, in order that the wires remain disjoint as ¢ — 0 (so that the wires form
a‘cage’ and not a solid shell), the wire radii must in general decrease in proportion to ¢ (or faster).

We consider two different models, defining a reference wire shape either in local Cartesian
coordinates aligned with I', or in local curvilinear coordinates that conform to I". Since I' is
smooth there is no difference between these models at leading order, but the distinction affects
higher order corrections (due to the curvature of I") that will enter some of our calculations. To
make the definitions specific, we must introduce some further notation.

Close to I" we can change from Cartesian coordinates (x,y) to orthogonal curvilinear
coordinates (1, s), such that n is the distance from (x, y) to the closest point on I" (positive/negative
n representing points inside 2 and £2_, respectively), and s is arc length along I" to this closest
point measured counterclockwise from some reference point on I". Given a reference point z; on I”
with curvilinear coordinates (0, s j), we define local curvilinear coordinates (i1,5) by i =n,5§ =5 — Sj,
and local Cartesian coordinates (X, 7j) such that the positive ¥-axis is aligned to the positive ri-axis
at z;. Explicitly, ¥ + iy = e iz - zj), where 6; is the counter-clockwise angle from the positive
x-axis to the outward normal vector to I" at z;. To convert between these coordinate systems, there
exists a diffeomorphism F; : (—nj, nj) x (—¢/2,¢/2) — U;, where U; is an open neighbourhood of z;
and 7; > 0 is a constant, such that (%, j) = F;(71, 5) (see appendix A).

We are now ready to specify the wire geometries and their dependence on ¢. For both models,
we assume a fixed reference wire shape K; a compact subset of the plane for which the smallest
closed disc containing K has radius one and is centred at the origin (figure 1c).

In Model 1, we define a wire K; of radius r > 0 centred at zj by the formula Kj=rKin the (%, 7)
coordinate system, which in the original z-coordinates gives

K=z + € (rK). (2.6)

In Model 2, we use the same formula Kj = rKbut interpreted in the (77, 5) coordinate system, which
in the original z-coordinates gives
K =zj + e“IF;(rK). (2.7)

Examples are illustrated in figure 2. The rationale for considering both wire models is that
Model 1 is the more natural from a physical point of view as the wire shape is independent of
r in the original Cartesian coordinate system, whereas Model 2 is simpler from a mathematical
point of view as the wire shape is independent of r in the curvilinear coordinates in which we
derive our homogenized boundary conditions (see §3). In many aspects of our analysis, the two
models produce the same results. But for some problems requiring higher order boundary layer
expansions, they may produce different results.
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Figure 2. Faraday cage geometries for I” a circle. (a) The reference wire shape K is a closed disc, (b) itis the line segment [—1, 1]
and (c) it is the line segment [—i, i]. Model 1is used in (a) (the wires would be slightly deformed discs under Model 2), there
is no difference between the two wire models in (b), and Model 2 is used in (c) (the wires would be tangential line segments
under Model 1, rather than circular arcs).

In order that the wires remain disjoint as ¢ — 0, we assume that the wire radius r satisfies
r=34e,

where 0 < 8 = 8(¢) < Smax and Smax = O(1) is the critical scaling that gives rise to touching wires in
the limit as ¢ — 0. For example, dmax = % for both the case of circular wires, when K is the unit disc
(cf. figure 2a) and the case of tangential line segments (cf. figure 2c). An exceptional case where
no such dmay exists is that of line-segment wires perpendicular to I", when K is the interval [-1, 1]
(cf. figure 2b). Note in particular that a fixed value for § corresponds to the wires taking up a fixed
total fraction of the length of I'", as the number of wires is increased.

Our aim is to describe both qualitatively and quantitatively how the asymptotic solution
behaviour of the boundary value problems as ¢ — 0 depends on the reference wire shape K, the
scaling parameter § and in the electromagnetic case the wavenumber k. In doing so, we generalize
the analysis of Chapman ef al. [3], which considered only the electrostatic case, with circular wires
and the small wire regime § <« 1.

3. Homogenized boundary conditions

In the limit ¢ — 0, we look for outer approximations in £+ of the form
() =y (v, ) + edi (6, y) + O(?)  in 2, (6.1)

where, assuming that both f and k are O(1), the functions ¢0i satisfy either (2.1) or (2.5) (as
appropriate) in £2+, with qﬁllL satisfying the homogeneous version of the same equation. Our aim is
to derive homogenized boundary conditions for these functions on the interface I, by matching
with an appropriate boundary layer solution in a region of width O(¢) around I' in which a
multiple scales approximation can be applied.

We first note that in the curvilinear coordinates (1, s) the Laplacian is [18, (6.2.4)]

1 9 1 9 k9 9
v2— < = — 3.2
1+«nds [1—1—/(1185] + 3.2

T+xnon ' on2’

where k =«(s) is the local (signed) curvature of I" at the point (0,s), defined with respect to
a counterclockwise parametrization. We introduce boundary layer variables (N, S) via (n,5) =
(eN, €S). The inner limits of the outer solutions correct to O(g) are found by rewriting (3.1) with n
replaced by ¢N and re-expanding, giving

+
RUDER: (Naa(i?(o,s) +¢7°(0, s)) + O(£2), (3.3)

with the 4+ and — signs for the cases N > 0 and N < 0, respectively.

29000107 2L ¥ 205 4 201 BioBuiysigndiaposieforeds;


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on December 12, 2016

In the boundary layer, we look for a solution in multiple-scales form
#(n,s)=D(N,S;s), (3.4)

where @ (N, S;s) is assumed to be 1-periodic in the fast tangential variable S. To determine the
equation satisfied by @ (N, S;s), we replace d/0n by £719/0N and 9/9s by £ 19/05 4+ 3/ds in (3.2)
and expand. The leading-order result, for both the electrostatic and the wave problems (assuming
k= 0(1)), and for both wire Models 1 and 2, is

2o 3o ,
W + ﬁ +O(8)=O m B, (3.5)
where B={(N,S):|S| < %} \ K, and K = 8K (figure 1b). Periodicity requires
0P 1
gzo OnS=:l:§, (36)

and the conditions on dKC are homogeneous Dirichlet or Neumann conditions, as appropriate. The
solution is required to match with the outer solution in (3.3) as N — =oo.

A more detailed derivation of this boundary-layer problem is given in appendix A, where we
also continue the expansion to O(g). The analysis of the O(¢) terms is more involved for Model 1
than for Model 2, because we have to account for the curvature of I" and its distorting effect on the
wire shape in the (N, S) coordinates (shown by K, in figure 1b). This distortion can be neglected
in the leading-order problem above (and does not arise in Model 2); consequently, we leave these
awkward details to the appendices.

(a) Dirichlet boundary conditions

In the case of Dirichlet boundary conditions, the leading-order behaviour of the boundary layer
solution @(N, S;s) with linear behaviour as N — +o00 (required for matching with (3.3)) can be
written as

@(N, S;s)=e(AT(s)@H(N,S) + A~ (s)®@ (N, S)) + O(c?), 3.7)
where the functions ®*(N, S) satisfy the following canonical cell problems (cf. figure 1b):
ot o ,
aNT + FoN = in B, (3.8)
Lok 1
35 0 onS > (3.9
@+ =0 ondk (3.10)
N 7 N 4 — -7 N 7
and o, s~ T N sy~ LT e (3.11)
T, N — —o0, —N+o0_, N— —oo.

For any given reference wire shape K and scaled radius §, one must solve (3.8)-(3.11), either
analytically or numerically, to determine the far-field constants o=+ and 7+; some specific examples
are studied in appendix B. We note that if K is symmetric in & (so that the scaled wire K is
symmetric in N, cf. figure 1) then

@& (N,S)=d"(=N,S), oy=0_ and 1 =r1_. (3.12)

Furthermore, we note that if § <1 the scaled wire K effectively acts as a point sink in the
cell domain, and a generalization of the argument in [3, §C] proves that, outside an O(5)
neighbourhood of K,

1 1
®T(N,S) ~ 2—9’{ {nZ +log(2sinh wZ) + log 778 + ao} , Z=N-+IiS§, (3.13)
T T

where the K-dependent constant ag satisfies ag = limy—. (¥ — log ), where ¢ is the unique
solution of Laplace’s equation in R2\ K such that ¥ =0 on 9K and ¥ ~ logo + O(1) as ¢ — oo,

29000107 2L ¥ 205 4 201 BioBuiysigndiaposieforeds;


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on December 12, 2016

where ¢ =+/£2 + n2. This constant is related to the logarithmic capacity of K, ¢(K), by ap=
—log c(K) [19]. For K the unit disc, a9 = 0; for K a line segment of length 2, a9 =log 2 (for details,
see appendix B). From (3.13), it follows that

1 1
O, T4 ™~ o (log 78 + ao) +0(), §—0. (3.14)

Having extracted the far-field constants o, r+ from the solutions of (3.8)—(3.11), matching the
linear behaviour of (3.7) with that of (3.3) gives

+ —
AT(s)= %(O, s) and A (s)= —%(O, s), (3.15)
on on

and matching constant terms then requires

dpy dy
80’+W — ST_W = ¢J =+ 8¢1+ onl’ (316)
and
Ao Aoy
8‘[4_& - ea_& =¢y +ep; onl. (3.17)
on on

To proceed further, we must consider the magnitude of the parameters o4, 7+, which depend on
the size of § (e.g. figure 9). There are essentially three different regimes to consider.

(i) Thick wires (6 = O(1))
If 8 is strictly O(1), then o+, 7+ are O(1). Hence, at O(1) in (3.16) and (3.17),

¢f =dy =0 onT, (3.18)

so the leading-order solution is that for a perfectly reflecting (Dirichlet) boundary at I". At O(e),

Ao Ao
+ 0 0
=0r—— —T_—— r 3.19
e (3.19)
and
Bl g
d)l_:ur& —o,& on I (3.20)
an on

(ii) Thin wires (§ << 1)

If § « 1 then o, v+ > 1 (cf. (3.14)). In particular, there is a distinguished scaling in which o, 74 =
O(1/¢), which requires § to be exponentially small with respect to 1/, i.e. § = O(e~/?) for some
¢ > 0. (This is essentially the same scaling as that considered in [9,11,12] in a related context.)
Suppose that we are in this regime, with o, 4. ~ 1 /¢ + do for some dy, dp. (e.g. if § ~ Ae ™/, then
a1 =c¢/(2m) and ap = (log(1/(27 A)) + ag)/(27).) Then at O(1) in (3.16) and (3.17), we find that ¢y is
continuous across I" (i.e. (f)a' =@, ) and satisfies

[3¢o

™ :| =da¢py onl, (3.21)

where [d¢g/dn] = Bd)ar /dn — ¢, /dn and & =1/d;. Higher order matching not detailed here

(requiring higher order expansion of the boundary layer problem as in appendix A) reveals that

the two-term approximation ¢y + e¢1 is also continuous across I" and satisfies a similar condition
[ dgo | O

. + 587] =a(pg+ep1) onTl, (3.22)
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where o =1/(41 + dp). Recalling (3.14), we can express « in terms of § as

. 2
“= e(log1/(278) +ap)’

(3.23)

which, in the special case of circular wires (for which ag = 0) agrees with the effective boundary
condition derived in [3, §C]. Note that (3.22) is valid for the two-term approximation ¢y + s¢1;
hence in this distinguished scaling, the boundary condition derived in [3, §C] gives the solution
correct to O(g), not just to O(1). This explains the excellent agreement observed in [3] between
numerical solutions of the electrostatic problem and solutions of the outer problem subject
to (3.22), even when § is not particularly small. We also note, however, that as § increases, there
may (depending on the value of ap) come a point at which o blows up to infinity; precisely, this
occurs at the critical value 8o, = e~ /(27) (for circular wires 800 =1/(27) 7 0.16 < $max = %). For
8 > 800, @ is negative and the resulting outer problem may be ill-posed (see later). But of course
for such large values of § we are outside of this ‘thin-wire’ regime and the conditions (3.18)-(3.20)
should be used instead of (3.22).

(iii) Very thin wires (8 < O(e™/¢))

If § <« O(e~¢/%) for every ¢ >0, then o4,7+ > 1/¢ and o <1, so that the leading-order outer
solution ¢y is just the free field solution of (2.1) or (2.5), i.e. that which would exist without the
presence of the cage, and there is no shielding.

(b) Neumann boundary conditions

In the case of Neumann boundary conditions, the requirement of linearity as N — +oo means that
the leading-order boundary layer solution can be expressed as

@(N, S;5) = Ao(s) + £(A1(s) + B1(s)¥ (N, S)) + O(£?), (3.24)

where ¥ (N, S) satisfies the canonical cell problem

2w 9y i

PR =0 inB, (3.25)
ow 1
a— S=+4_, 3.26
35 on 2 (3:26)
ow
— =0 ondK (3.27)
v

and U(N,S)~N+21, N— +oo, (3.28)

in which the constant A is determined as part of the solution. This problem also appears elsewhere

in acoustics and fluid flow; it is sometimes referred to as a ‘blockage problem’, and the constant A

as a ‘blockage coefficient” [20-22]. Example solutions for ¥ (N, S) and A are given in appendix B.
Matching linear terms between (3.3) and (3.24) gives that

dog ey
Bi(s) = 9 _%%0 T, (3.29)
on on
so the gradient of the outer problem is continuous across I". Matching constant terms then gives
ddo 4 +
Ap(s) + eAq1(s) £ Asa—n =¢y tepy onl. (3.30)

As in the Dirichlet case, to interpret (3.30) we must consider the magnitude of A, which
depends on both K and §. The interesting limit in which A is large is now not § — 0, but rather
8§ — Smax, Where Smay is the critical value of § for which 9K touches the cell walls S = :I:%. (Recall
that Smax = % for K a disc.) When 8max — 8 < 1 we have 1 >3 1. We consider separately the cases
A=01),2r=0(1/¢)and 1> 1/¢.
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(i) Large gaps (Smax — & = O(1))
In this case A = O(1), and (3.30) implies that
Aos)=¢; =¢y onT, (3.31)

so that, recalling (3.29), both ¢y and its normal derivative are continuous across I". Hence the
leading-order outer solution is just the free field solution of (2.1) or (2.5), and there is no shielding.

(ii) Small gaps (Smax — 8 K1)

In this case A > 1. We first consider the case A = O(1/¢) and suppose 1 ~ b1 /e + by. For the case
of circular wires, this would occur if % — 8§ = O(e2); for line segments it would require % — 8=
O(e~/%) for some ¢ > 0 (see appendix B). Matching the constant terms then gives

Ao(s) £ b1Bi(s)=¢F onT, (3.32)

which together with (3.29), and defining B= 251 and [¢g] = ¢0+ — ¢ , implies

[¢o]l = B? onT. (3.33)
n

A similar boundary condition was derived for a related problem in [16].
For completeness, we quote the higher order matching conditions, obtained using the results
in appendix A

a1 NI . %o . 0%
=2(fi — )22 424520 23" 0 onr 34
[ on } (=P on * Fonas ~ H oz 1 (3:34)
and
. _ (o dor
(1] = 26y 220 +bl( T ¢1> on T, (3.35)
on on on

where i, /1 and [i are constants determined from the higher order boundary-layer solutions. These
depend on the precise shape of the wires.

Rather than embarking on a detailed study of different cases, we concentrate on the case that
is perhaps of most interest for this small-gap situation; namely, when the wires form a perforated
shell around I (cf. figure 2c). This corresponds to tangential line segments (i.e. K =[—i,i]) under
Model 2, for which we find =g =/01=0, and 1~ —(1/n)(10gn(% —8)) (appendix B). In this
case, (3.34) and (3.35) combine with (3.33) to give

ad ad

[¢o +ep1]=p %0 + £22) on r, (3.36)
on on

where B=2(b; + el;o). If §= % —Ae~¢/¢, then B=2c/m —2¢ log(wrA)/m. There is a duality

between (3.36) and condition (3.22) that holds in the Dirichlet case, although we note that for

more general wire shapes (3.36) may become more complicated.

(iiii) Very small gaps (Smax — & < 1)

In the case that A >> O(1/¢), matching constant terms in (3.30) simply indicates that Bi(s) =0.
Thus, (3.29) gives

by Ay
=0 =70 —p, r, 37
o o 0, on (3.37)

so that the leading-order solution is that for a perfectly reflecting (Neumann) boundary at I".

Continuing the expansion for the perforated shell, and supposing A ~ by/e% + - - -, the next-order
matching requires

0y

on 252

[po] onT. (3.38)
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4. Shielding performance of Faraday cages

Having derived homogenized boundary conditions for the leading-order outer approximations,
we now consider their shielding performance in the context of the boundary-value problems
introduced in §2, concentrating on the case when the source function f is compactly supported
outside of the cage, in D N 2. For the Laplace problems, the measure of good shielding is that
V¢ should be small inside the cage interior £2_ (since the physical field of interest is the gradient
of the potential). For the Helmholtz problems, we require ¢ itself to be small in £2_.

We shall illustrate our general results using explicit solutions for the special case where I
is the unit circle and the external forcing is due to a point source of unit strength located at
a point zg outside the cage (|zg| > 1). Explicitly, f = —8,,, where 8, represents a delta function
supported at zp. For this example, we express solutions in standard polar coordinates (p,0)
centred at the cage centre, with 6 =0 corresponding to the direction of the source. We compare
the homogenized solutions with numerical solutions to the full problem in the case of disc-
shaped or line-segment wires (using Model 1 to define the wire geometry). For disc-shaped wires,
these are computed using the same method as [3, appendix A]; the solution is expressed as a
truncated sum of radially symmetric solutions to the Laplace or Helmholtz equation centred
on the wire centres z;; the coefficients in the expansion are determined by a least-squares fit
to the boundary conditions at discrete points on the wires. For Laplace problems, solutions for
line-segment wires can be computed using a similar method (by conformal mapping; cf. [23]),
although our results for this case are computed with a boundary integral equation method using
Si ngul ar I nt egr al Equati ons. j |, a Julia package for solving singular integral equations
implementing the spectral method of [24].

(a) Laplace equation with Dirichlet boundary conditions on wires

In the case of thin wires (§ « 1), the O(1) outer solutions satisfy
V2¢f =f inf2y, V¢, =0 in2_ (4.1)

and

9o

+_— p 1-"
¢0 d’o on an

:| =a¢g onl, (4.2)
with ¢3‘ also satisfying (2.3) at infinity. As mentioned previously, this problem is well posed for
O<a<ooie0<d<e™™/2m.

For I the unit circle and f = —§,, the leading-order solution inside the cage is

_ p™ cos mo .
¢y = Z @t 2 in 2_ (4.3)
and in particular
1
Vo~ (0)] ~ ————. 44
V6~ O~ @4)

For shielding, we need « >> 1, in which case |V¢~(0)| ~ 1/(am|zo]). Recalling the definition of «
in (3.23), the field inside the cage scales inverse linearly in M and logarithmically in r, as discussed
in [3].

In the case of thick wires (§ = O(1)), the O(1) outer solutions satisfy (4.1) but now with

¢;=0 onT, (4.5)

with ¢3’ also satisfying (2.3) at infinity. Hence the interior and exterior problems decouple, and in
particular since I” is a closed curve one deduces that

¢y =0 inQ_. (4.6)
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Figure 3. Magnitude of potential gradient at the origin for the electrostatic problem for 7™ the unit circle with a source at
2o = 2, for (a) circular wires, (b) perpendicular line segments and (c) tangential line segments, for varying scaled wire radius §.
Results are shown for M = 20 (¢ = 0.314; upper curves), and M = 40 (¢ = 0.157). Black lines/circles show numerical result,
dashed blue lines show the ‘thin-wire" asymptotic result valid for § = O(e~¢), and dotted-dashed green lines show the
“thick-wire’ asymptotic result valid for § = O(1). (Online version in colour.)

Hence the leading-order solution in £2_ is the O(¢) term, which by (3.20) (noting that d¢,, /91 = 0)
satisfies the inhomogeneous Dirichlet boundary condition

_ dy
=71, — r. 4.7
¢ =74 an on (4.7)

Note that only 7} (not o4, o— or t_) appears in this condition for the leading-order interior
solution. The field in §2_ is therefore O(r4¢) as ¢ — 0.
For I' the unit circle and f = —§,, the leading-order solution inside the cage is

Tre o p" cosmb
_ _ + .
m=1
and in particular
_ l74le
IV$—(0) ~ ———. (4.9)
7|20l

In figure 3, we show the excellent agreement between these approximations and the result of
numerical calculations. Note that (4.4) and (4.9) are consistent, since 7 ~ 1/« as § — 0.

(b) Helmholtz equation with Dirichlet boundary conditions on wires
In the thin wire case, the analysis is similar to that for the Laplace case, with gboi satisfying
(V2+K)gf =f in2y and (V2+K)¢, =0 ins2-, (4.10)

the boundary conditions (4.2), and an outgoing radiation condition on ¢6r .
For I the unit circle and f = —§,, the leading-order solution inside the cage is

_ J— emJm(kp) cos mo
¢~ = & n2_, (4.11)
’ n{‘; 1+ (/)T (0)/ T () — Hiy (k) /HL ()1
where ¢y = (i/4)H(()l)(k|zo |) and e, = (i/2)H,(1P(k|zo [), m € N. In particular,
. 1)
. (i/9H] K0 W

1+ (@/RHD 0/HP K) = 10/ Tol)
As in the Laplace case, the field strength is O(1/a) when o > 1.
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Figure 4. Amplitudes at z =0 for the wave problem for disc-shaped wires arranged around the unit circle, for varying
wavenumber k. Corresponding field plots for particular wavenumbers are shown in figure 5. Parameters are M = 30, zp =2
and (a) § =0.01, (b) § = 0.1. Solid black lines show the numerical solution and dashed blue lines show the ‘thin-wire’
asymptotic result (in (a) this is indistinguishable from the numerical solution), dotted-dashed green lines show the ‘thick-wire’
asymptotic result (without correcting for resonance), and dotted black lines shows the unshielded (free-field) solution. Vertical
lines indicate the unperturbed resonances for the unit circle corresponding to axisymmetric modes (two asymmetric modes are
also excited in this wavenumber range, but have zero amplitude at the origin). Insets in the lower panel show enlargements
around the peaks. (Online version in colour.)

In the thick wire case, at first glance the analysis appears similar to the Laplace case, with
the O(1) outer solutions satisfying (4.10) and (4.5). But now we must take care over the correct
interpretation of (4.5). This is because there exist resonant wavenumbers, i.e. values of k for
which k2 is a Dirichlet eigenvalue of —V2 on £2_, at which one cannot infer from (4.5) that ¢, is
identically zero. We shall study such resonant cases in detail in the next sectio