Pach's selection theorem does not admit a topological extension

Imre Bárány Roy Meshulam Eran Nevo Martin Tancer

October 9, 2016

Abstract

Let U_{1}, \ldots, U_{d+1} be n-element sets in \mathbb{R}^{d} and let $\left\langle u_{1}, \ldots, u_{d+1}\right\rangle$ denote the convex hull of points $u_{i} \in U_{i}$ (for all i) which is a simplex. Pach's selection theorem is about such simplices. It says that there are sets $Z_{1} \subset U_{1}, \ldots, Z_{d+1} \subset U_{d+1}$ and a point $u \in \mathbb{R}^{d}$ such that each $\left|Z_{i}\right| \geq c_{1}(d) n$ and $u \in\left\langle z_{1}, \ldots, z_{d+1}\right\rangle$ for every choice of $z_{1} \in Z_{1}, \ldots, z_{d+1} \in$ Z_{d+1}. Here we show that this theorem does not admit a topological extension with linear size sets Z_{i}. Further we prove a topological extension where each $\left|Z_{i}\right|$ is of order $(\log n)^{1 / d}$.

1 Introduction

Let U_{1}, \ldots, U_{d+1} be n-element sets in \mathbb{R}^{d}, and let $\left\langle u_{1}, \ldots, u_{d+1}\right\rangle$ denote the convex hull of points $u_{i} \in U_{i}, i=1, \ldots, d+1$. Pach's selection theorem, that we like to call a homogeneous selection theorem is about convex hulls of this type. It says the following.

Theorem 1.1 (Pach [9]). Under the above conditions there are sets $Z_{1} \subset U_{1}, \ldots, Z_{d+1} \subset$ U_{d+1} and a point $u \in \mathbb{R}^{d}$ such that each $\left|Z_{i}\right| \geq c_{1}(d) n$ and $u \in\left\langle z_{1}, \ldots, z_{d+1}\right\rangle$ for every choice of $z_{1} \in Z_{1}, \ldots, z_{d+1} \in Z_{d+1}$ where $c_{1}(d)>0$ is a constant depending on d only.

This result was proved by Bárány, Füredi and Lovász [2] for $d=2$ and by Pach [9] for general d. Here we show that this theorem does not admit a topological extension when the size of the Z_{i} is linear in n but does admit one when the sizes are of order $(\log n)^{1 / d}$. The formulation of this topological extension is the following.

Set $N=(d+1) n$ and consider the $(N-1)$-dimensional simplex Δ_{N-1} and a partition of its vertex set of $d+1$ sets V_{1}, \ldots, V_{d+1} each of size n. Trivially, there is an affine map $f: \Delta_{N-1} \rightarrow \mathbb{R}^{d}$ that is a bijection between V_{i} and U_{i} for each i. In this setting the homogeneous selection theorem says that there are subsets $Z_{i} \subset V_{i}$ such that $\left|Z_{i}\right| \geq c_{1}(d) n$ and

$$
\bigcap_{z_{1} \in Z_{1}, \ldots, z_{d+1} \in Z_{d+1}} f\left(\left\langle z_{1}, \ldots, z_{d+1}\right\rangle\right) \neq \emptyset .
$$

Assume now that f is not affine but only continuous. Viewing each V_{i} as a 0 -dimensional complex, consider the join

$$
\left(\Delta_{n-1}^{(0)}\right)^{*(d+1)}=V_{1} * \cdots * V_{d+1}=\left\{\sigma \subset \bigcup_{i=1}^{d+1} V_{i}:\left|\sigma \cap V_{i}\right| \leq 1 \text { for all } 1 \leq i \leq d+1\right\},
$$

which is a subcomplex of the d-skeleton of Δ_{N-1}. For a mapping $f:\left(\Delta_{n-1}^{(0)}\right)^{*(d+1)} \rightarrow \mathbb{R}^{d}$, let $\tau(f)$ denote the maximal m such that there exist m-element subsets $Z_{1} \subset V_{1}, \ldots, Z_{d+1} \subset$ V_{d+1} that satisfy

$$
\bigcap_{z_{1} \in Z_{1}, \ldots, z_{d+1} \in Z_{d+1}} f\left(\left\langle z_{1}, \ldots, z_{d+1}\right\rangle\right) \neq \emptyset
$$

Define the topological Pach number $\tau(d, n)$ to be the minimum of $\tau(f)$ as f ranges over all continuous maps from $\left(\Delta_{n-1}^{(0)}\right)^{*(d+1)}$ to \mathbb{R}^{d}. Our main result is the following:

Theorem 1.2. For $d \geq 1$ there exists a constant $c_{2}(d)$ such that $\tau(d, n) \leq c_{2}(d) n^{1 / d}$ for all n. Further, $c_{2}(d)=O(d)$ for all large enough n.

For a lower bound on $\tau(d, n)$ we only have the following:
Theorem 1.3. For $d \geq 1$ there exists a constant $c_{3}(d)>0$ such that $\tau(d, n) \geq c_{3}(d)(\log n)^{1 / d}$ for all n.

The paper is organized as follows. In Section 2 we state Theorem 2.1 that describes a connection between $\tau(d, n)$ and the expansion of the bipartite graph of the atoms vs. coatoms in a graded lattice of rank $d+1$. This result is then used to prove Theorem 1.2. The proof of Theorem 2.1 is given in Section 3. In Section 4 we prove Theorem 1.3 by using results of Gromov [6] and Erdős [5].

2 Finite Lattices and Topological Pach Numbers

Let L be a finite graded lattice with a rank function $\operatorname{rk}(\cdot)$. Let $\widehat{0}$ and $\widehat{1}$ be the minimal and maximal elements of L. Assume that $\operatorname{rk}(\widehat{1})=d+1$ and let

$$
A=\{x \in L: \operatorname{rk}(x)=1\} \quad, \quad C=\{x \in L: \operatorname{rk}(x)=d\}
$$

be respectively the sets of atoms and coatoms of L. For $x \in L$ let

$$
A_{x}=\{a \in A: a \leq x\} \quad, \quad C_{x}=\{c \in C: x \leq c\} .
$$

For a set of atoms $Z \subset A$ let $\Gamma(Z)=\cup_{z \in Z} C_{z}$. Let G_{L} denote the bipartite graph on the vertex set $A \cup C$ with edges (a, c) iff $a \leq c$, for $a \in A$ and $c \in C$.

The main ingredient of the proof of Theorem 1.2 is the following connection between $\tau(d, n)$ and the expansion of G_{L}.

Theorem 2.1. Let L be a graded lattice of rank $d+1$ such that $|A| \geq n(d+1)$. Then $m=\tau(d, n)$ satisfies

$$
\min _{Z \subset A,|Z|=m}|\Gamma(Z)| \leq \frac{d}{d+1}\left(\max _{a \in A}\left|C_{a}\right|+|C|\right)
$$

The proof of Theorem 2.1 is deferred to Section 3.
Proof of Theorem 1.2: Let $q \geq 2 d$ be a prime power and let \mathbb{F}_{q} be the finite field of
order q. Let $L=L(d+1, q)$ denote the lattice of linear subspaces of \mathbb{F}_{q}^{d+1}, ordered by containment. The sets of atoms and coatoms of L satisfy $|A|=|C|=N_{d}=\frac{q^{d+1}-1}{q-1}$ and $\left|C_{a}\right|=N_{d-1}=\frac{q^{d}-1}{q-1}$ for all $a \in A$. Two distinct coatoms, that is, two distinct d-dimensional subspaces intersect in a $(d-1)$-dimensional subspace whose size is $N_{d-2}=\frac{q^{d-1}-1}{q-1}$. For a given $Z \subset A$ the sets C_{z} form an N_{d-1}-uniform hypergraph on vertex set $\Gamma(Z)$ with $|Z|$ edges, and any two edges intersect in a set of size N_{d-2}. In this case a result of Corrádi [3] (see also exercise 13.13 in [7] and Theorem 2.3(ii) in [1]) implies that

$$
\begin{equation*}
|\Gamma(Z)| \geq \frac{|Z| N_{d-1}^{2}}{N_{d-1}+(|Z|-1) N_{d-2}}=\frac{|Z| N_{d-1}^{2}}{q^{d-1}+|Z| N_{d-2}} \geq N_{d}-\frac{N_{d}^{1+\frac{1}{d}}}{|Z|} \tag{1}
\end{equation*}
$$

The last inequality here follows from a routine computation using the values of N_{k}. Let $n=\left\lfloor\frac{|A|}{d+1}\right\rfloor$. Applying Theorem 2.1 together with (1) it follows that $m=\tau(d, n)$ satisfies

$$
\begin{align*}
N_{d}-\frac{N_{d}^{1+\frac{1}{d}}}{m} & \leq \min _{Z \subset A,|Z|=m}|\Gamma(Z)| \\
& \leq \frac{d}{d+1}\left(\max _{a \in A}\left|C_{a}\right|+|C|\right) \tag{2}\\
& =\frac{d}{d+1}\left(N_{d-1}+N_{d}\right) .
\end{align*}
$$

Rearranging (2) and using $q \geq 2 d$ and $n+1 \geq \frac{|A|}{d+1}=\frac{N_{d}}{d+1}$ we obtain

$$
\begin{aligned}
m & \leq \frac{(d+1) N_{d}^{1+\frac{1}{d}}}{N_{d}-d N_{d-1}} \leq 2(d+1) N_{d}^{\frac{1}{d}} \\
& \leq 2(d+1)((d+1)(n+1))^{\frac{1}{d}}
\end{aligned}
$$

By Bertrand's postulate, for any large enough integer n (specifically, for any $\left.n \geq \frac{(2 d)^{d+1}-1}{(2 d-1)(d+1)}\right)$ one can find $q \geq 2 d$ for which $\left\lfloor\frac{N_{d}}{d+1}\right\rfloor \leq 2^{d} n$. Plugging into the above upper bound on $m=\tau(d, n)$ for such n, the resulted constant $c_{2}(d)$ just multiplies by 2 so still $c_{2}(d)=O(d)$. For $n \leq \frac{(2 d)^{d+1}-1}{(2 d-1)(d+1)}:=c_{2}(d)$, trivially $m \leq n \leq c_{2}(d)$.

3 Continuous Maps of Finite Lattices

In this section we prove Theorem 2.1. We first recall some definitions. Let $\bar{L}=L-\{\widehat{0}, \widehat{1}\}$. The order complex $\Delta(\bar{L})$ is a simplicial complex on the vertex set \bar{L} whose p-dimensional simplices are increasing chains $x_{0}<\cdots<x_{p}$ in \bar{L}. For a subset $\sigma \subset L$ let $\vee \sigma=\vee_{x \in \sigma} x$. Let $\mathcal{A}(L)$ be the simplicial complex on the vertex set A whose simplices are all $\sigma \subset A$ such that $\vee \sigma<\widehat{1}$. For $x \in \bar{L}$ let $\bar{L}_{\leq x}=\{y \in \bar{L}: y \leq x\}$. The main ingredient in the proof of Theorem 2.1 is the following result.

Proposition 3.1. There exists a continuous map $f: \mathcal{A}(L) \rightarrow \mathbb{R}^{d}$ such that for any $u \in \mathbb{R}^{d}$

$$
\begin{equation*}
\left|\left\{c \in C: u \in f\left(\left\langle A_{c}\right\rangle\right)\right\}\right| \leq d \max _{a \in A}\left|C_{a}\right| \tag{3}
\end{equation*}
$$

We first note the following:
Claim 3.2. There exists a continuous map $g: \mathcal{A}(L) \rightarrow \Delta(\bar{L})$ such that for all $x \in \bar{L}$

$$
g\left(\left\langle A_{x}\right\rangle\right) \subset \Delta\left(\bar{L}_{\leq x}\right) .
$$

Proof. We define g inductively on the k-skeleton $\mathcal{A}(L)^{(k)}$. On the vertices $a \in A$ of $\mathcal{A}(L)$ let $g(a)=a$. Let $k>0$ and suppose g has been defined on $\mathcal{A}(L)^{(k-1)}$. Let $\sigma=\left\langle a_{0}, \ldots, a_{k}\right\rangle \in$ $\mathcal{A}(L)^{(k)}$ and let $y=\vee \sigma<\widehat{1}$. For $0 \leq i \leq k$ let $\sigma_{i}=\left\langle a_{0}, \ldots, a_{i-1}, \widehat{a_{i}}, a_{i+1}, \ldots, a_{k}\right\rangle$ be the i-th face of σ. Let $y_{i}=\vee \sigma_{i}$. Then g is defined on σ_{i} and by induction hypothesis

$$
g\left(\sigma_{i}\right) \subset \Delta\left(\bar{L}_{\leq y_{i}}\right) \subset \Delta\left(\bar{L}_{\leq y}\right) .
$$

Being a cone, $\Delta\left(\bar{L}_{\leq y}\right)$ is contractible and hence g can be continuously extended from $\partial \sigma$ to the whole of σ so that $g(\sigma) \subset \Delta\left(\bar{L}_{\leq y}\right)$.
Proof of Proposition 3.1: By a general position argument we choose a mapping $e: \bar{L} \rightarrow$ \mathbb{R}^{d} with the following property: For any pairwise disjoint $S_{1}, \ldots, S_{d+1} \subset \bar{L}$, if $\left|S_{i}\right| \leq d$ for all $1 \leq i \leq d+1$, then $\bigcap_{i=1}^{d+1}$ aff $\left(e\left(S_{i}\right)\right)=\emptyset$, which implies of course that

$$
\begin{equation*}
\bigcap_{i=1}^{d+1} \text { relint conv }\left(e\left(S_{i}\right)\right)=\emptyset \tag{4}
\end{equation*}
$$

Extend e by linearity to the whole of $\Delta(\bar{L})$ and let $f=e \circ g: \mathcal{A}(L) \rightarrow \mathbb{R}^{d}$. We claim that the map f satisfies (3). Let $u \in \mathbb{R}^{d}$ and let

$$
T=\{\tau \in \Delta(\bar{L}): u \in \operatorname{relint} e(\langle\tau\rangle)\}
$$

Choose a maximal pairwise disjoint subfamily $T^{\prime} \subset T$. It follows by (4) that $\left|T^{\prime}\right| \leq d$. For each $\tau^{\prime} \in T^{\prime}$ choose an atom $a\left(\tau^{\prime}\right) \in A$ such that

$$
\begin{equation*}
a\left(\tau^{\prime}\right) \leq \min \tau^{\prime} \tag{5}
\end{equation*}
$$

Now let $c \in C$ such that $u \in f\left(\left\langle A_{c}\right\rangle\right)$. Then there exists a $b \in g\left(\left\langle A_{c}\right\rangle\right) \subset \Delta\left(\bar{L}_{\leq c}\right)$ such that $u=e(b)$. Let $\tau \in T$ such that $b \in \operatorname{relint}\langle\tau\rangle$. Then

$$
\begin{equation*}
\tau \in \Delta\left(\bar{L}_{\leq c}\right) \tag{6}
\end{equation*}
$$

By maximality of T^{\prime} there exists a simplex $\tau^{\prime} \in T^{\prime}$ and a vertex $x \in \tau^{\prime} \cap \tau$. It follows by (5) and (6) that $a\left(\tau^{\prime}\right) \leq x \leq c$, i.e. $c \in C_{a\left(\tau^{\prime}\right)}$. Therefore

$$
\left|\left\{c \in C: u \in f\left(\left\langle A_{c}\right\rangle\right)\right\}\right| \leq \sum_{\tau^{\prime} \in T^{\prime}}\left|C_{a\left(\tau^{\prime}\right)}\right| \leq d \max _{a \in A}\left|C_{a}\right| .
$$

Proof of Theorem 2.1: Let L be a lattice of rank $d+1$ whose set of atoms A satisfies $|A| \geq(d+1) n$. Let V_{1}, \ldots, V_{d+1} be disjoint n-subsets of A. By Proposition 3.1 there exists a continuous map $f: \mathcal{A}(L) \rightarrow \mathbb{R}^{d}$ such that for any $u \in \mathbb{R}^{d}$

$$
\left|\left\{c \in C: u \in f\left(\left\langle A_{c}\right\rangle\right)\right\}\right| \leq d \max _{a \in A}\left|C_{a}\right| .
$$

Let $m=\tau(d, n)$. Then there exist $Z_{1} \subset V_{1}, \ldots, Z_{d+1} \subset V_{d+1}$ and a $u \in \mathbb{R}^{d}$ such that $\left|Z_{i}\right| \geq m$ for all $1 \leq i \leq d+1$ and

$$
u \in \bigcap_{z_{1} \in Z_{1}, \ldots, z_{d+1} \in Z_{d+1}} f\left(\left\langle z_{1}, \ldots, z_{d+1}\right\rangle\right) .
$$

Write

$$
C\left(Z_{1}, \ldots, Z_{d+1}\right)=\bigcap_{i=1}^{d+1}\left\{c \in C: A_{c} \cap Z_{i} \neq \emptyset\right\} .
$$

If $c \in C\left(Z_{1}, \ldots, Z_{d+1}\right)$ then there exist $z_{1} \in Z_{1}, \ldots, z_{d+1} \in Z_{d+1}$ such that $z_{i} \leq c$ for all i and hence $u \in f\left(\left\langle z_{1}, \ldots, z_{d+1}\right\rangle\right) \subset f\left(\left\langle A_{c}\right\rangle\right)$. Hence by Proposition 3.1

$$
\begin{equation*}
\left|C\left(Z_{1}, \ldots, Z_{d+1}\right)\right| \leq d \max _{a \in A}\left|C_{a}\right| . \tag{7}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
\left|C\left(Z_{1}, \ldots, Z_{d+1}\right)\right| & =\left|C-\bigcup_{i=1}^{d+1}\left(C-\Gamma\left(Z_{i}\right)\right)\right| \\
& \geq|C|-\sum_{i=1}^{d+1}\left(|C|-\left|\Gamma\left(Z_{i}\right)\right|\right)=\sum_{i=1}^{d+1}\left|\Gamma\left(Z_{i}\right)\right|-d|C| \tag{8}\\
& \geq(d+1) \min _{Z \subset A,|Z|=m}|\Gamma(Z)|-d|C| .
\end{align*}
$$

Theorem 2.1 now follows from (7) and (8).

4 The Lower Bound

Theorem 1.3 is a direct consequence of Gromov's topological overlap Theorem [6] combined with a result of Erdős on complete $(d+1)$-partite subhypergraphs in $(d+1)$-uniform dense hypergraphs [5]. We first recall these results. Let X be a finite d-dimensional pure simplicial complex. For $k \geq 0$, let $X^{(k)}$ denote the k-dimensional skeleton of X and let $X(k)$ be the family of k-dimensional faces of $X, f_{k}(X)=|X(k)|$. Define a positive weight function $w=w_{X}$ on the simplices of X as follows. For $\sigma \in X(k)$, let $c(\sigma)=|\{\eta \in X(d): \sigma \subset \eta\}|$ and let

$$
w(\sigma)=\frac{c(\sigma)}{\binom{d+1}{k+1} f_{d}(X)}
$$

Let $C^{k}(X)$ denote the space of \mathbb{F}_{2}-valued k-cochains of X with the coboundary map d_{k} : $C^{k}(X) \rightarrow C^{k+1}(X)$. As usual, the space of k-coboundaries is denoted by $d_{k-1}\left(C^{k-1}(X)\right)=$ $B^{k}(X)$. For $\phi \in C^{k}(X)$, let $[\phi]$ denote the image of ϕ in $C^{k}(X) / B^{k}(X)$. Let

$$
\|\phi\|=\sum_{\sigma \in X(k): \phi(\sigma) \neq 0} w(\sigma)
$$

and

$$
\|[\phi]\|=\min \left\{\left\|\phi+d_{k-1} \psi\right\|: \psi \in C^{k-1}(X)\right\} .
$$

The k-th coboundary expansion constant of X is

$$
h_{k}(X)=\min \left\{\frac{\left\|d_{k} \phi\right\|}{\|[\phi]\|}: \phi \in C^{k}(X)-B^{k}(X)\right\} .
$$

Note that $h_{k}(X)=0$ iff $\tilde{H}^{k}\left(X ; \mathbb{F}_{2}\right) \neq 0$. One may regard $h_{k}(X)$ as a sort of distance between X and the family of complexes Y that satisfy $\tilde{H}^{k}\left(Y ; \mathbb{F}_{2}\right) \neq 0$. Gromov's celebrated topological overlap result is the following:

Theorem 4.1 (Gromov [6]). For any integer $d \geq 0$ and any $\epsilon>0$ there exists a $\delta=\delta(d, \epsilon)>$ 0 such that if $h_{k}(X) \geq \epsilon$ for all $0 \leq k \leq d-1$, then for any continuous map $f: X \rightarrow \mathbb{R}^{d}$ there exists a point $u \in \mathbb{R}^{d}$ such that

$$
|\{\sigma \in X(d): u \in f(\sigma)\}| \geq \delta f_{d}(X) .
$$

We next describe a result of Erdős that generalizes the well known Erdős-Stone and Kővári-Sós-Turán theorems from graphs to hypergraphs.

Theorem 4.2 (Erdős [5]). For any d and $c^{\prime}>0$ there exists a constant $c=c\left(d, c^{\prime}\right)>0$ such that for any $(d+1)$-uniform hypergraph \mathcal{F} on N-element set V with at least $c^{\prime} N^{d+1}$ hyperedges, there exists an $m \geq c(\log N)^{1 / d}$ and disjoint m-element sets $Z_{1}, \ldots, Z_{d+1} \subset V$ such that $\left\{z_{1}, \ldots, z_{d+1}\right\} \in \mathcal{F}$ for all $z_{1} \in Z_{1}, \ldots, z_{d+1} \in Z_{d+1}$.

Proof of Theorem 1.3: Recall that V_{1}, \ldots, V_{d+1} are disjoint n-element sets and let $V=$ $V_{1} \cup \cdots \cup V_{d+1},|V|=N=(d+1) n$. Let $X=V_{1} * \ldots * V_{d+1}$ and let $f: X \rightarrow \mathbb{R}^{d}$ be a continuous map. It was shown by Gromov [6] (see also [4, 8]) that the expansion constants $h_{i}(X)$ are uniformly bounded away from zero. Concretely, it follows from Theorem 3.3 in [8] that $h_{i}(X) \geq \epsilon=2^{-d}$ for $0 \leq i \leq d-1$. Let $\delta=\delta\left(d, 2^{-d}\right)$. Then by Theorem 4.1 there exists a $u \in \mathbb{R}^{d}$ and a family $\mathcal{F} \subset X(d)$ of cardinality

$$
|\mathcal{F}| \geq \delta f_{d}(X)=\delta n^{d+1}=\delta(d+1)^{-(d+1)} N^{d+1}
$$

such that $u \in f(\sigma)$ for all $\sigma \in \mathcal{F}$. Writing $c^{\prime}=\delta(d+1)^{-(d+1)}$ and $c_{3}(d)=c\left(d, c^{\prime}\right)$, it follows from Theorem 4.2 that there exists an $m \geq c_{3}(d)(\log N)^{1 / d} \geq c_{3}(d)(\log n)^{1 / d}$ and disjoint m-sets $Z_{1}, \cdots, Z_{d+1} \subset V$ such that $u \in f\left(\left\langle z_{1}, \ldots, z_{d+1}\right\rangle\right)$ for all $z_{1} \in Z_{1}, \ldots, z_{d+1} \in Z_{d+1}$. Clearly, there exist a permutation π on $\{1, \ldots, d+1\}$ such that $Z_{\pi(i)} \subset V_{i}$ for all $1 \leq i \leq d+1$.

5 Acknowledgment

This research was supported by ERC Advanced Research Grant no 267165 (DISCONV). Imre Bárány is partially supported by Hungarian National Research Grant K 111827. Roy Meshulam is partially supported by ISF and GIF grants, Eran Nevo by ISF grant 1695/15 and Martin Tancer GA \check{C} R grant 16-01602Y.

References

[1] N. Alon, Eigenvalues, geometric expanders, sorting in rounds, and Ramsey theory, Combinatorica 6(1986) 207-219.
[2] I. Bárány, Z. Füredi and L. Lovász, On the number of halving planes, Combinatorica, 10(1990) 175-183.
[3] K. Corrádi, Problem at the Schweitzer Competition, Mat. Lapok, 20(1969) 159-162.
[4] D. Dotterrer and M. Kahle, Coboundary expanders, J. Topol. Anal. 4(2012) 499-514.
[5] P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2(1964) 183-190.
[6] M. Gromov, Singularities, expanders and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry, Geom. Funct. Anal. 20(2010) 416-526.
[7] L Lovász, Combinatorial problems and exercises. Second edition. North-Holland Publishing Co., Amsterdam, 1993.
[8] A. Lubotzky, R. Meshulam and S. Mozes, Expansion of building-like complexes, Groups Geom. Dyn. 10 (2016) 155-175.
[9] J. Pach, A Tverberg-type result on multicolored simplices, Comput. Geom.: Theor. Appl., 10(1998) 71-76.

