Pach's selection theorem does not admit a topological extension

Imre Bárány Roy Meshulam Eran Nevo Martin Tancer

October 9, 2016

Abstract

Let U_1, \ldots, U_{d+1} be *n*-element sets in \mathbb{R}^d and let $\langle u_1, \ldots, u_{d+1} \rangle$ denote the convex hull of points $u_i \in U_i$ (for all *i*) which is a simplex. Pach's selection theorem is about such simplices. It says that there are sets $Z_1 \subset U_1, \ldots, Z_{d+1} \subset U_{d+1}$ and a point $u \in \mathbb{R}^d$ such that each $|Z_i| \geq c_1(d)n$ and $u \in \langle z_1, \ldots, z_{d+1} \rangle$ for every choice of $z_1 \in Z_1, \ldots, z_{d+1} \in Z_{d+1}$. Here we show that this theorem does not admit a topological extension with linear size sets Z_i . Further we prove a topological extension where each $|Z_i|$ is of order $(\log n)^{1/d}$.

1 Introduction

Let U_1, \ldots, U_{d+1} be *n*-element sets in \mathbb{R}^d , and let $\langle u_1, \ldots, u_{d+1} \rangle$ denote the convex hull of points $u_i \in U_i$, $i = 1, \ldots, d+1$. Pach's selection theorem, that we like to call a homogeneous selection theorem is about convex hulls of this type. It says the following.

Theorem 1.1 (Pach [9]). Under the above conditions there are sets $Z_1 \subset U_1, \ldots, Z_{d+1} \subset U_{d+1}$ and a point $u \in \mathbb{R}^d$ such that each $|Z_i| \ge c_1(d)n$ and $u \in \langle z_1, \ldots, z_{d+1} \rangle$ for every choice of $z_1 \in Z_1, \ldots, z_{d+1} \in Z_{d+1}$ where $c_1(d) > 0$ is a constant depending on d only.

This result was proved by Bárány, Füredi and Lovász [2] for d = 2 and by Pach [9] for general d. Here we show that this theorem does not admit a topological extension when the size of the Z_i is linear in n but does admit one when the sizes are of order $(\log n)^{1/d}$. The formulation of this topological extension is the following.

Set N = (d+1)n and consider the (N-1)-dimensional simplex Δ_{N-1} and a partition of its vertex set of d+1 sets V_1, \ldots, V_{d+1} each of size n. Trivially, there is an affine map $f : \Delta_{N-1} \to \mathbb{R}^d$ that is a bijection between V_i and U_i for each i. In this setting the homogeneous selection theorem says that there are subsets $Z_i \subset V_i$ such that $|Z_i| \ge c_1(d)n$ and

$$\bigcap_{\substack{\in Z_1,\ldots,z_{d+1}\in Z_{d+1}}} f(\langle z_1,\ldots,z_{d+1}\rangle) \neq \emptyset.$$

Assume now that f is not affine but only continuous. Viewing each V_i as a 0-dimensional complex, consider the join

 z_1

$$(\Delta_{n-1}^{(0)})^{*(d+1)} = V_1 * \dots * V_{d+1} = \{ \sigma \subset \bigcup_{i=1}^{d+1} V_i : |\sigma \cap V_i| \le 1 \text{ for all } 1 \le i \le d+1 \},\$$

which is a subcomplex of the *d*-skeleton of Δ_{N-1} . For a mapping $f : (\Delta_{n-1}^{(0)})^{*(d+1)} \to \mathbb{R}^d$, let $\tau(f)$ denote the maximal *m* such that there exist *m*-element subsets $Z_1 \subset V_1, \ldots, Z_{d+1} \subset V_{d+1}$ that satisfy

$$\bigcap_{1 \in Z_1, \dots, z_{d+1} \in Z_{d+1}} f(\langle z_1, \dots, z_{d+1} \rangle) \neq \emptyset.$$

Define the topological Pach number $\tau(d, n)$ to be the minimum of $\tau(f)$ as f ranges over all continuous maps from $(\Delta_{n-1}^{(0)})^{*(d+1)}$ to \mathbb{R}^d . Our main result is the following:

Theorem 1.2. For $d \ge 1$ there exists a constant $c_2(d)$ such that $\tau(d, n) \le c_2(d)n^{1/d}$ for all n. Further, $c_2(d) = O(d)$ for all large enough n.

For a lower bound on $\tau(d, n)$ we only have the following:

z

Theorem 1.3. For $d \ge 1$ there exists a constant $c_3(d) > 0$ such that $\tau(d, n) \ge c_3(d)(\log n)^{1/d}$ for all n.

The paper is organized as follows. In Section 2 we state Theorem 2.1 that describes a connection between $\tau(d, n)$ and the expansion of the bipartite graph of the atoms vs. coatoms in a graded lattice of rank d + 1. This result is then used to prove Theorem 1.2. The proof of Theorem 2.1 is given in Section 3. In Section 4 we prove Theorem 1.3 by using results of Gromov [6] and Erdős [5].

2 Finite Lattices and Topological Pach Numbers

Let L be a finite graded lattice with a rank function $rk(\cdot)$. Let $\hat{0}$ and $\hat{1}$ be the minimal and maximal elements of L. Assume that $rk(\hat{1}) = d + 1$ and let

$$A = \{x \in L : rk(x) = 1\} , C = \{x \in L : rk(x) = d\}$$

be respectively the sets of atoms and coatoms of L. For $x \in L$ let

$$A_x = \{ a \in A : a \le x \} , \quad C_x = \{ c \in C : x \le c \}.$$

For a set of atoms $Z \subset A$ let $\Gamma(Z) = \bigcup_{z \in Z} C_z$. Let G_L denote the bipartite graph on the vertex set $A \cup C$ with edges (a, c) iff $a \leq c$, for $a \in A$ and $c \in C$.

The main ingredient of the proof of Theorem 1.2 is the following connection between $\tau(d, n)$ and the expansion of G_L .

Theorem 2.1. Let L be a graded lattice of rank d + 1 such that $|A| \ge n(d + 1)$. Then $m = \tau(d, n)$ satisfies

$$\min_{Z \subset A, |Z|=m} |\Gamma(Z)| \le \frac{d}{d+1} \left(\max_{a \in A} |C_a| + |C| \right).$$

The proof of Theorem 2.1 is deferred to Section 3.

Proof of Theorem 1.2: Let $q \geq 2d$ be a prime power and let \mathbb{F}_q be the finite field of

order q. Let L = L(d + 1, q) denote the lattice of linear subspaces of \mathbb{F}_q^{d+1} , ordered by containment. The sets of atoms and coatoms of L satisfy $|A| = |C| = N_d = \frac{q^{d+1}-1}{q-1}$ and $|C_a| = N_{d-1} = \frac{q^d-1}{q-1}$ for all $a \in A$. Two distinct coatoms, that is, two distinct d-dimensional subspaces intersect in a (d-1)-dimensional subspace whose size is $N_{d-2} = \frac{q^{d-1}-1}{q-1}$. For a given $Z \subset A$ the sets C_z form an N_{d-1} -uniform hypergraph on vertex set $\Gamma(Z)$ with |Z|edges, and any two edges intersect in a set of size N_{d-2} . In this case a result of Corrádi [3] (see also exercise 13.13 in [7] and Theorem 2.3(ii) in [1]) implies that

$$|\Gamma(Z)| \ge \frac{|Z|N_{d-1}^2}{N_{d-1} + (|Z| - 1)N_{d-2}} = \frac{|Z|N_{d-1}^2}{q^{d-1} + |Z|N_{d-2}} \ge N_d - \frac{N_d^{1 + \frac{1}{d}}}{|Z|}.$$
 (1)

The last inequality here follows from a routine computation using the values of N_k . Let $n = \lfloor \frac{|A|}{d+1} \rfloor$. Applying Theorem 2.1 together with (1) it follows that $m = \tau(d, n)$ satisfies

$$N_{d} - \frac{N_{d}^{1+\frac{1}{d}}}{m} \leq \min_{Z \subset A, |Z|=m} |\Gamma(Z)|$$

$$\leq \frac{d}{d+1} (\max_{a \in A} |C_{a}| + |C|)$$

$$= \frac{d}{d+1} (N_{d-1} + N_{d}).$$
 (2)

Rearranging (2) and using $q \ge 2d$ and $n+1 \ge \frac{|A|}{d+1} = \frac{N_d}{d+1}$ we obtain

$$m \le \frac{(d+1)N_d^{1+\frac{1}{d}}}{N_d - dN_{d-1}} \le 2(d+1)N_d^{\frac{1}{d}}$$
$$\le 2(d+1)\left((d+1)(n+1)\right)^{\frac{1}{d}}.$$

By Bertrand's postulate, for any large enough integer n (specifically, for any $n \ge \frac{(2d)^{d+1}-1}{(2d-1)(d+1)}$) one can find $q \ge 2d$ for which $\lfloor \frac{N_d}{d+1} \rfloor \le 2^d n$. Plugging into the above upper bound on $m = \tau(d, n)$ for such n, the resulted constant $c_2(d)$ just multiplies by 2 so still $c_2(d) = O(d)$. For $n \le \frac{(2d)^{d+1}-1}{(2d-1)(d+1)} := c_2(d)$, trivially $m \le n \le c_2(d)$.

 -	-	

3 Continuous Maps of Finite Lattices

In this section we prove Theorem 2.1. We first recall some definitions. Let $\overline{L} = L - \{\widehat{0}, \widehat{1}\}$. The order complex $\Delta(\overline{L})$ is a simplicial complex on the vertex set \overline{L} whose *p*-dimensional simplices are increasing chains $x_0 < \cdots < x_p$ in \overline{L} . For a subset $\sigma \subset L$ let $\forall \sigma = \forall_{x \in \sigma} x$. Let $\mathcal{A}(L)$ be the simplicial complex on the vertex set A whose simplices are all $\sigma \subset A$ such that $\forall \sigma < \widehat{1}$. For $x \in \overline{L}$ let $\overline{L}_{\leq x} = \{y \in \overline{L} : y \leq x\}$. The main ingredient in the proof of Theorem 2.1 is the following result.

Proposition 3.1. There exists a continuous map $f : \mathcal{A}(L) \to \mathbb{R}^d$ such that for any $u \in \mathbb{R}^d$

$$|\{c \in C : u \in f(\langle A_c \rangle)\}| \le d \max_{a \in A} |C_a|.$$
(3)

We first note the following:

Claim 3.2. There exists a continuous map $g : \mathcal{A}(L) \to \Delta(\overline{L})$ such that for all $x \in \overline{L}$

$$g(\langle A_x \rangle) \subset \Delta(\overline{L}_{\leq x}).$$

Proof. We define g inductively on the k-skeleton $\mathcal{A}(L)^{(k)}$. On the vertices $a \in A$ of $\mathcal{A}(L)$ let g(a) = a. Let k > 0 and suppose g has been defined on $\mathcal{A}(L)^{(k-1)}$. Let $\sigma = \langle a_0, \ldots, a_k \rangle \in \mathcal{A}(L)^{(k)}$ and let $y = \forall \sigma < \hat{1}$. For $0 \leq i \leq k$ let $\sigma_i = \langle a_0, \ldots, a_{i-1}, \hat{a_i}, a_{i+1}, \ldots, a_k \rangle$ be the *i*-th face of σ . Let $y_i = \forall \sigma_i$. Then g is defined on σ_i and by induction hypothesis

$$g(\sigma_i) \subset \Delta(\overline{L}_{\leq y_i}) \subset \Delta(\overline{L}_{\leq y}).$$

Being a cone, $\Delta(\overline{L}_{\leq y})$ is contractible and hence g can be continuously extended from $\partial \sigma$ to the whole of σ so that $g(\sigma) \subset \Delta(\overline{L}_{\leq y})$.

Proof of Proposition 3.1: By a general position argument we choose a mapping $e: \overline{L} \to \mathbb{R}^d$ with the following property: For any pairwise disjoint $S_1, \ldots, S_{d+1} \subset \overline{L}$, if $|S_i| \leq d$ for all $1 \leq i \leq d+1$, then $\bigcap_{i=1}^{d+1} \operatorname{aff} (e(S_i)) = \emptyset$, which implies of course that

$$\bigcap_{i=1}^{d+1} \operatorname{relint} \operatorname{conv} \left(e(S_i) \right) = \emptyset.$$
(4)

Extend e by linearity to the whole of $\Delta(\overline{L})$ and let $f = e \circ g : \mathcal{A}(L) \to \mathbb{R}^d$. We claim that the map f satisfies (3). Let $u \in \mathbb{R}^d$ and let

$$T = \{\tau \in \Delta(\overline{L}) : u \in \operatorname{relint} e(\langle \tau \rangle)\}.$$

Choose a maximal pairwise disjoint subfamily $T' \subset T$. It follows by (4) that $|T'| \leq d$. For each $\tau' \in T'$ choose an atom $a(\tau') \in A$ such that

$$a(\tau') \le \min \tau'. \tag{5}$$

Now let $c \in C$ such that $u \in f(\langle A_c \rangle)$. Then there exists a $b \in g(\langle A_c \rangle) \subset \Delta(\overline{L}_{\leq c})$ such that u = e(b). Let $\tau \in T$ such that $b \in \operatorname{relint}\langle \tau \rangle$. Then

$$\tau \in \Delta(\overline{L}_{\le c}). \tag{6}$$

By maximality of T' there exists a simplex $\tau' \in T'$ and a vertex $x \in \tau' \cap \tau$. It follows by (5) and (6) that $a(\tau') \leq x \leq c$, i.e. $c \in C_{a(\tau')}$. Therefore

$$|\{c \in C : u \in f(\langle A_c \rangle)\}| \le \sum_{\tau' \in T'} |C_{a(\tau')}| \le d \max_{a \in A} |C_a|.$$

Proof of Theorem 2.1: Let L be a lattice of rank d + 1 whose set of atoms A satisfies $|A| \ge (d+1)n$. Let V_1, \ldots, V_{d+1} be disjoint *n*-subsets of A. By Proposition 3.1 there exists a continuous map $f : \mathcal{A}(L) \to \mathbb{R}^d$ such that for any $u \in \mathbb{R}^d$

$$|\{c \in C : u \in f(\langle A_c \rangle)\}| \le d \max_{a \in A} |C_a|.$$

Let $m = \tau(d, n)$. Then there exist $Z_1 \subset V_1, \ldots, Z_{d+1} \subset V_{d+1}$ and a $u \in \mathbb{R}^d$ such that $|Z_i| \geq m$ for all $1 \leq i \leq d+1$ and

$$u \in \bigcap_{z_1 \in Z_1, \dots, z_{d+1} \in Z_{d+1}} f(\langle z_1, \dots, z_{d+1} \rangle).$$

Write

$$C(Z_1,\ldots,Z_{d+1}) = \bigcap_{i=1}^{d+1} \{c \in C : A_c \cap Z_i \neq \emptyset\}.$$

If $c \in C(Z_1, \ldots, Z_{d+1})$ then there exist $z_1 \in Z_1, \ldots, z_{d+1} \in Z_{d+1}$ such that $z_i \leq c$ for all iand hence $u \in f(\langle z_1, \ldots, z_{d+1} \rangle) \subset f(\langle A_c \rangle)$. Hence by Proposition 3.1

$$|C(Z_1, \dots, Z_{d+1})| \le d \max_{a \in A} |C_a|.$$
 (7)

On the other hand

$$|C(Z_{1},...,Z_{d+1})| = |C - \bigcup_{i=1}^{d+1} (C - \Gamma(Z_{i}))|$$

$$\geq |C| - \sum_{i=1}^{d+1} (|C| - |\Gamma(Z_{i})|) = \sum_{i=1}^{d+1} |\Gamma(Z_{i})| - d|C|$$

$$\geq (d+1) \min_{Z \subset A, |Z| = m} |\Gamma(Z)| - d|C|.$$
(8)

Theorem 2.1 now follows from (7) and (8).

4 The Lower Bound

Theorem 1.3 is a direct consequence of Gromov's topological overlap Theorem [6] combined with a result of Erdős on complete (d + 1)-partite subhypergraphs in (d + 1)-uniform dense hypergraphs [5]. We first recall these results. Let X be a finite d-dimensional pure simplicial complex. For $k \ge 0$, let $X^{(k)}$ denote the k-dimensional skeleton of X and let X(k) be the family of k-dimensional faces of X, $f_k(X) = |X(k)|$. Define a positive weight function $w = w_X$ on the simplices of X as follows. For $\sigma \in X(k)$, let $c(\sigma) = |\{\eta \in X(d) : \sigma \subset \eta\}|$ and let

$$w(\sigma) = \frac{c(\sigma)}{\binom{d+1}{k+1}f_d(X)}.$$

Let $C^k(X)$ denote the space of \mathbb{F}_2 -valued k-cochains of X with the coboundary map $d_k : C^k(X) \to C^{k+1}(X)$. As usual, the space of k-coboundaries is denoted by $d_{k-1}(C^{k-1}(X)) = B^k(X)$. For $\phi \in C^k(X)$, let $[\phi]$ denote the image of ϕ in $C^k(X)/B^k(X)$. Let

$$\|\phi\| = \sum_{\sigma \in X(k): \phi(\sigma) \neq 0} w(\sigma)$$

and

$$\|[\phi]\| = \min\{\|\phi + d_{k-1}\psi\| : \psi \in C^{k-1}(X)\}.$$

The k-th coboundary expansion constant of X is

$$h_k(X) = \min\left\{\frac{\|d_k\phi\|}{\|[\phi]\|} : \phi \in C^k(X) - B^k(X)\right\}.$$

Note that $h_k(X) = 0$ iff $\tilde{H}^k(X; \mathbb{F}_2) \neq 0$. One may regard $h_k(X)$ as a sort of distance between X and the family of complexes Y that satisfy $\tilde{H}^k(Y; \mathbb{F}_2) \neq 0$. Gromov's celebrated topological overlap result is the following:

Theorem 4.1 (Gromov [6]). For any integer $d \ge 0$ and any $\epsilon > 0$ there exists a $\delta = \delta(d, \epsilon) > 0$ such that if $h_k(X) \ge \epsilon$ for all $0 \le k \le d-1$, then for any continuous map $f: X \to \mathbb{R}^d$ there exists a point $u \in \mathbb{R}^d$ such that

$$|\{\sigma \in X(d) : u \in f(\sigma)\}| \ge \delta f_d(X)$$

We next describe a result of Erdős that generalizes the well known Erdős-Stone and Kővári-Sós-Turán theorems from graphs to hypergraphs.

Theorem 4.2 (Erdős [5]). For any d and c' > 0 there exists a constant c = c(d, c') > 0such that for any (d + 1)-uniform hypergraph \mathcal{F} on N-element set V with at least $c'N^{d+1}$ hyperedges, there exists an $m \ge c(\log N)^{1/d}$ and disjoint m-element sets $Z_1, \ldots, Z_{d+1} \subset V$ such that $\{z_1, \ldots, z_{d+1}\} \in \mathcal{F}$ for all $z_1 \in Z_1, \ldots, z_{d+1} \in Z_{d+1}$.

Proof of Theorem 1.3: Recall that V_1, \ldots, V_{d+1} are disjoint *n*-element sets and let $V = V_1 \cup \cdots \cup V_{d+1}$, |V| = N = (d+1)n. Let $X = V_1 * \ldots * V_{d+1}$ and let $f : X \to \mathbb{R}^d$ be a continuous map. It was shown by Gromov [6] (see also [4, 8]) that the expansion constants $h_i(X)$ are uniformly bounded away from zero. Concretely, it follows from Theorem 3.3 in [8] that $h_i(X) \ge \epsilon = 2^{-d}$ for $0 \le i \le d-1$. Let $\delta = \delta(d, 2^{-d})$. Then by Theorem 4.1 there exists a $u \in \mathbb{R}^d$ and a family $\mathcal{F} \subset X(d)$ of cardinality

$$|\mathcal{F}| \ge \delta f_d(X) = \delta n^{d+1} = \delta (d+1)^{-(d+1)} N^{d+1}$$

such that $u \in f(\sigma)$ for all $\sigma \in \mathcal{F}$. Writing $c' = \delta(d+1)^{-(d+1)}$ and $c_3(d) = c(d,c')$, it follows from Theorem 4.2 that there exists an $m \geq c_3(d)(\log N)^{1/d} \geq c_3(d)(\log n)^{1/d}$ and disjoint *m*-sets $Z_1, \dots, Z_{d+1} \subset V$ such that $u \in f(\langle z_1, \dots, z_{d+1} \rangle)$ for all $z_1 \in Z_1, \dots, z_{d+1} \in Z_{d+1}$. Clearly, there exist a permutation π on $\{1, \dots, d+1\}$ such that $Z_{\pi(i)} \subset V_i$ for all $1 \leq i \leq d+1$.

5 Acknowledgment

This research was supported by ERC Advanced Research Grant no 267165 (DISCONV). Imre Bárány is partially supported by Hungarian National Research Grant K 111827. Roy Meshulam is partially supported by ISF and GIF grants, Eran Nevo by ISF grant 1695/15 and Martin Tancer GAČR grant 16-01602Y.

References

- [1] N. Alon, Eigenvalues, geometric expanders, sorting in rounds, and Ramsey theory, *Combinatorica* 6(1986) 207-219.
- [2] I. Bárány, Z. Füredi and L. Lovász, On the number of halving planes, Combinatorica, 10(1990) 175–183.
- [3] K. Corrádi, Problem at the Schweitzer Competition, Mat. Lapok, 20(1969) 159–162.
- [4] D. Dotterrer and M. Kahle, Coboundary expanders, J. Topol. Anal. 4(2012) 499–514.
- [5] P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2(1964) 183–190.
- [6] M. Gromov, Singularities, expanders and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry, *Geom. Funct. Anal.* 20(2010) 416–526.
- [7] L Lovász, Combinatorial problems and exercises. Second edition. North-Holland Publishing Co., Amsterdam, 1993.
- [8] A. Lubotzky, R. Meshulam and S. Mozes, Expansion of building-like complexes, Groups Geom. Dyn. 10 (2016) 155–175.
- [9] J. Pach, A Tverberg-type result on multicolored simplices, Comput. Geom.: Theor. Appl., 10(1998) 71–76.