Supplementary Information for:

Structure of a model TiO₂ photocatalytic interface

H. Hussain^{1,2}†, G. Tocci¹, T. Woolcot¹, X. Torrelles³, C. L. Pang¹, D. S. Humphrey¹,
C. M. Yim¹, D. C. Grinter¹§, G. Cabailh^{4,5}, O. Bikondoa⁶, R. Lindsay⁷, J.

Zegenhagen²‡, A. Michaelides¹, G. Thornton¹*

* To whom correspondence should be addressed. Email: g.thornton@ucl.ac.uk
Current Addresses:

† Corrosion and Protection Centre, School of Materials, The University of Manchester, Sackville Street, Manchester, M13 9PL, UK.

¹ London Centre for Nanotechnology and Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK.

² ESRF, 6 rue Jules Horowitz, F-38000 Grenoble cedex, France.

³ Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, 08193 Bellaterra, Spain.

⁴ Sorbonne Universités, UPMC Univ Paris 06, CNRS, 75005 Paris, France.

⁵ CNRS, UMR 7588, Institut des NanoSciences de Paris, 75005 Paris, France.

⁶ Department of Physics, University of Warwick, Gibbet Hill Road, Coventry C4 7AL, UK.

⁷ Corrosion and Protection Centre, School of Materials, The University of Manchester, Sackville Street, Manchester, M13 9PL, UK.

§ Chemistry Department, Building 555, Brookhaven National Laboratory, Upton, N	Y
11973, USA.	
‡ Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation	
Campus, Didcot, Oxfordshire, OX11 0DE, UK.	
*To whom correspondence should be addressed. Email <u>g.thornton@ucl.ac.uk</u>	
This pdf file contains:	
Figures S1-S11	
Tables S1, S2	
Movie S1	
References	

Fig. S1 | XPS spectra from $TiO_2(110)$ / H_2O_{dip} . Al $K\alpha$ (hv = 1486.6 eV) photoelectron spectra recorded at normal emission from as-prepared $TiO_2(110)$ and from the sample following immersion in liquid water. Analysis of the H_2O_{dip} spectrum using the methodology in Ref. 1 indicates a C coverage of 0.1 ML.

Fig. S2 | Photoemission spectra associated with the H_2O_{dip} sample. a, Al K α (hv = 1486.6 eV) photoelectron spectra taken at normal emission from the as-prepared $TiO_2(110)$ and b, the H_2O_{dip} sample after immersion in liquid water. The peaks were fitted using Gaussian-Lorentzian line shapes after removal of a Shirley background. Peaks are present at ~530 eV and 532 eV which arise from lattice oxygen and OH, respectively². Molecular water, if it were present would appear at ~534 eV (Ref. 2). We note that X-ray induced beam damage is not expected on the basis of earlier work

which reported a photoemission study of $TiO_2(110)$ - H_2O (Ref. 3). **c**, He II (hv = 40.82 eV) photoemission spectra taken from the as-prepared surface before (green) and after (red) immersion in liquid water to form the H_2O_{dip} surface. The spectra are offset for clarity and the spectrum from the H_2O_{dip} sample is corrected for band bending. The positions of the OH 3σ and 1π peaks, as well as the absent H_2O $1b_2$ peak position, are marked with dashed lines⁴. **d**, He I (hv = 21.22 eV) photoemission spectra taken from the as-prepared surface before (green) and after (red) immersion in liquid water to form the H_2O_{dip} surface. The H_2O_{dip} spectrum is corrected for band bending. The inset shows an expanded view of the band gap region and indicates that after immersion in water, the BGS is quenched.

Fig. S3 | Representative CTRs measured for the H_2O_{dip} experiment. Error bars are the experimental data and the solid lines are the corresponding best fits to the data. Notches on the x axes correspond to Bragg peaks.

Fig. S4 | Best-fit ball and stick models determined from the SXRD data viewed along [001] and [110]. Large blue spheres are oxygen atoms, small red spheres are titanium atoms. O nearer the surface are shaded lighter, H_2O atoms the lightest. Green arrows represent the direction and magnitude of atomic displacements away from the bulk structure. Hydrogen atoms are purposely left out due to their low X-ray scattering factor. The numerical labeling of atoms is employed in Supplementary Table S1 and S2 for identification purposes. Symmetry-paired atoms are denoted as 2^* , 5^* , 8^* , 11^* , 14^* and 17^* . a, The OH_t model for the H_2O_{dip} sample and b, the hydrated model for the H_2O_{drop} sample. Green line indicates the (2x1) unit cell. Atom $O1^{\#}$ represents the OH_t molecule.

Fig. S5 | Representative CTRs measured for the H_2O_{drop} experiment. Blue error bars are the experimental data and solid blue lines are the corresponding best fits to the data. Notches on the x axes correspond to Bragg peaks.

Fig. S6 Stability of overlayer as a function of Ti_{int} concentration. Adsorption energy of O_2 on a hydroxylated $TiO_2(110)$ surface at different Ti_{int} concentrations. Without interstitials the adsorption of O_2 or of a peroxy group (OOH) is more favorable than the dissociation to OH_t . At Ti_{int} concentrations of 1/8 ML or larger the OH_t overlayer is more stable. Specifically, between 1/8 and 1/4 ML of Ti_{int} the $OH_t(2 \times 1)$ overlayer is the most stable structure. At a concentration of 1/2 ML the $OH_t(1 \times 1)$ becomes instead the most stable structure. This concentration, however, is likely too large to be observed experimentally. The data at 1/2 ML is shown to compare to HSE^5 results (filled symbols). Empty symbols are results obtained using $PBE+U^{6,7}$, with a value of U s3= 4.2 eV. Snapshots at the bottom indicate the two adsorption structures for the $OH_t(2 \times 1)$ overlayer and the O_2 overlayer with the frames in the same colours used for the symbols in the graph.

Fig. S7 | Instability of $OH_t(2 \times 1)$ overlayer without interstitials. Time evolution of a contact layer of hydroxide OH^- on defect-free $TiO_2(110)$ under aqueous conditions obtained from AIMD. The snapshots show that the (2×1) symmetry of the OH_t overlayer is disrupted over the time of the simulation due to a sequence of proton transfer reactions involving the OH species and water. The (2×1) symmetry, apparent at the beginning of the AIMD trajectory (5 ps), is already broken after 25 ps, as an OH dimer is formed. Before 45 ps a proton hops from one of the two OH_t on to the other to form water, leaving an O-adatom adsorbed on a Ti_{5c} . Another OH_t dimer structure also forms, disrupting completely the initial symmetry. The green circles indicate single OH_t species, while red circles are drawn around adjacent OH_t species and black ones around the O-adatom. Water molecules above the contact layer are not shown.

Fig. S8 | Monitoring the stability of the $TiO_2(110)$ - H_2O_{drop} surface structure. Reference (1,3,0.5) reflections from $TiO_2(110)$ - H_2O_{drop} recorded as θ scans at an average 5 hour intervals in the sequence 1-7, starting from time zero. The complete CTR dataset for this surface was recorded in 25 hours.

Fig. S9 | Facile proton transfer reactions in the $2OH_t + O_{ad}$ overlayer. Time evolution of the distances between several O atoms and H atoms that are involved in different proton transfer reactions, as obtained from a 17.5 ps-long AIMD simulation of a $TiO_2(110)$ surface under aqueous conditions and with 1/4 ML Ti_{int} . Time evolution of the distances between O atoms and H atoms, in which the protons diffuse to/from the liquid (a), or hop between two neighbouring O atoms (b). The starting configuration of the contact layer consists of 1/8 ML O_{ad} and two adjacent OH_t at a coverage of 1/4ML shown in top view (c). In the figures (a) and (b), the protons are bonded to the corresponding O atom when the O-H distances are around 1.0 Å. The dotted lines and the atom labels in c are colour-coded according to the graphs of figures (a) and (b).

Fig. S10 | Facile proton transfer dynamics in the $2OH_t+O_{ad}$ overlayer compared to the $OH_t(2 \times 1)$ overlayer. Contour plots of the probability distribution for protons hopping between two oxygen atoms, as a function of the O-O distance R_{00} and of the proton displacement δ with respect to the two neighbouring oxygen atoms for (a) the $2OH_t+O_{ad}$ overlayer and (b) the $OH_t(2 \times 1)$ overlayer. δ is defined here as $R_{0aH} - R_{0bH}$, where O_a is the oxygen atom that in the initial configuration of the AIMD simulation belongs to an OH_t or an O_{ad} species and O_b is the oxygen of a specie that is nearest to O_a . (c) and (d): Probability distribution as a function of δ and of the number of hydrogen bonds associated with the oxygen O_a and computed according to the geometric criterion of Ref. 8 for the $2OH_t+O_{ad}$ and the OH_t (2 x 1) overlayer, respectively. It can be seen that proton transfer is more facile at the $2OH_t+O_{ad}$ overlayer (see Fig. S9(b)) compared to the OH_t (2 × 1) overlayer. The hopping (or

not) of the protons in the two configurations is correlated to the distribution of H-bonds that the OH_t and the O_{ad} species engage in with the surrounding molecules. The analysis has been carried out on a total of 4 AIMD trajectories that have been started from different initial conditions. The two trajectories for the $2OH_t+O_{ad}$ overlayer, each of which is about 20 ps-long, while the ones for the OH_t (2 x 1) overlayer are 50 ps-long and 20 ps-long.

Fig. S11 | Energy path for the hopping of a proton from an H_2O to an OH_t at the OH_t (2 x 1) + 2 H_2O overlayer. (a) Potential energy diagram computed with CP2K with the PBE0-TC-LR functional^{9,10,11}. The transition state has been computed using the climbing image nudged elastic band method. (b)-(d): Snapshots of the OH_t (2 x

1)+2 H_2O overlayer (i.e. energy zero reference state), of the TS, and of the disordered $4OH_t+2H_2O$ overlayer (i.e the final state), respectively. It can be seen that the $OH_t(2 \times 1) + 2H_2O$ overlayer is about 0.10 eV more stable than the $4OH_t + 2H_2O$ overlayer and that there is a barrier of about 0.43 eV for this transition.

Supplementary Table S1 SXRD-derived substrate atomic displacements (Å) away from the bulk-terminated structure for the H_2O_{dip} and H_2O_{drop} samples. Also listed are the displacements for the as-prepared UHV $TiO_2(110)$ surface prior to the H_2O_{drop} experiment (UHV_{as-prepared}), values for previous SXRD measurements of $TiO_2(110)$ in UHV¹³, as well as the bulk truncated coordinates for $TiO_2(110)(1\times1)$. It should be noted that the displacements given for the H_2O_{dip} and H_2O_{drop} samples are for the case where OH is adsorbed to surface Ti atoms. Unoccupied surface Ti atoms displace in quantitative agreement with the UHV_{as-prepared} sample (see Methods). Supplementary Fig. S4 provides a key to the identity of the atoms. A negative value indicates that the atom moves towards the bulk for a displacement perpendicular to the surface plane, that is in the [110] direction, and in the [1 $\overline{10}$] direction for a lateral displacement.

Atom	(1×1) Bulk Terminated	Displacements (Å)				
	Coordinates (Å)	Ref. 13	UHV _{as-prepared}	$H_2O_{\text{(I)-dip}}$	H ₂ O _{(l)-drop}	
O(1)	18.77	0.10 ± 0.04	0.10 ± 0.04	0.03 ± 0.03	0.08 ± 0.04	
O(2) [110]	17.50	0.17 ± 0.03	0.13 ± 0.03	0.06 ± 0.03	0.08 ± 0.03	
O(2) [110]	5.23	0.01 ± 0.05	0.02 ± 0.04	0.01 ± 0.05	0.01 ± 0.05	
Ti(1)	17.50	0.25 ± 0.01	0.17 ± 0.01	0.07 ± 0.01	0.09 ± 0.01	
Ti(2)	17.50	-0.11 ± 0.01	-0.06 ± 0.01	0.03 ± 0.01	0.03 ± 0.01	
O(3)	16.24	0.07 ± 0.04	0.07 ± 0.04	0.04 ± 0.04	0.07 ± 0.03	
O(4)	15.52	0.00 ± 0.03	0.02 ± 0.03	0.05 ± 0.03	0.05 ± 0.05	
O(5) [110]	14.25	0.04 ± 0.03	0.03 ± 0.03	0.01 ± 0.03	0.06 ± 0.03	
O(5) [110]	4.37	0.05 ± 0.05	0.02 ± 0.03	0.03 ± 0.03	0.05 ± 0.05	
Ti(3)	14.25	-0.08 ± 0.01	-0.02 ± 0.01	0.07 ± 0.01	0.06 ± 0.01	
Ti(4)	14.25	0.19 ± 0.01	0.12 ± 0.01	0.01 ± 0.01	0.04 ± 0.01	
O(6)	12.99	0.01 ± 0.04	0.04 ± 0.04	0.04 ± 0.03	0.08 ± 0.05	

O(7)	12.27	0.00 ± 0.04	0.01 ± 0.04	0.02 ± 0.03	0.06 ± 0.05
O(8) [110]	11.01	0.01 ± 0.03	0.01 ± 0.05	-0.06 ± 0.03	0.05 ± 0.03
O(8) [110]	5.23	-0.03 ± 0.05	-0.02 ± 0.05	-0.01 ± 0.05	-0.03 ± 0.02
Ti(5)	11.01	0.08 ± 0.01	0.05 ± 0.01	0.01 ± 0.01	-0.04 ± 0.01
Ti(6)	11.01	-0.04 ± 0.01	-0.02 ± 0.01	0.05 ± 0.01	0.08 ± 0.01
O(9)	9.74	0.02 ± 0.04	0.03 ± 0.03	0.01 ± 0.03	0.04 ± 0.04
O(10)	9.02	-0.02 ± 0.04	-0.01 ± 0.03	0.03 ± 0.03	0.03 ± 0.03
O(11) [110]	7.76	0.01 ± 0.03	0.01 ± 0.02	0.01 ± 0.03	0.03 ± 0.03
O(11) [110]	4.37	0.01 ± 0.04	0.01 ± 0.03	0.01 ± 0.03	0.02 ± 0.04
Ti(7)	7.76	-0.02 ± 0.01	-0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01
Ti(8)	7.76	0.07 ± 0.01	0.04 ± 0.01	0.02 ± 0.01	0.02 ± 0.01
O(12)	6.50	0.02 ± 0.02	0.02 ± 0.03	0.01 ± 0.02	0.03 ± 0.04
O(13)	5.78	0.00 ± 0.02	0.01 ± 0.03	0.01 ± 0.02	0.04 ± 0.04
O(14) [110]	4.51	0.03 ± 0.03	0.03 ± 0.03	0.01 ± 0.04	0.03 ± 0.03
O(14) [1 1 0]	5.23	-0.02 ± 0.03	-0.01 ±0.02	-0.01 ± 0.03	-0.02 ± 0.04
Ti(9)	4.51	0.02 ± 0.01	0.01 ± 0.01	0.01 ± 0.01	0.03 ± 0.01
Ti(10)	4.51	-0.01 ± 0.01	-0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01
O(15)	3.25	0.00 ± 0.02	0.01 ± 0.03	0.00 ± 0.02	0.01 ± 0.02
O(16)	2.53	-0.02 ± 0.02	-0.02 ± 0.03	0.02 ± 0.03	0.02 ± 0.02
O(17) [110]	1.26	0.01 ± 0.02	0.02 ± 0.02	0.01 ± 0.03	-0.01 ± 0.03
O(17) [1 1 0]	4.37	0.02 ± 0.02	0.01 ± 0.02	0.01 ± 0.02	0.02 ± 0.02
Ti(11)	1.26	-0.01 ± 0.01	-0.01 ± 0.01	-0.01 ± 0.01	-0.02 ± 0.01
Ti(12)	1.26	0.03 ± 0.01	0.01 ± 0.01	0.00 ± 0.01	0.01 ± 0.01

Supplementary Table S2 SXRD-derived optimised locations of atoms (Å) relative to the position of O(0) at (0,0,0) for the H_2O_{dip} and H_2O_{drop} samples (see Supplementary Fig. S4 for a key to the identity of the atoms). Also listed are the atomic positions for the as-prepared UHV $TiO_2(110)$ surface prior to the H_2O_{drop} experiment (UHV_{as-prepared}), values for previous SXRD measurements of $TiO_2(110)$ in UHV¹³, as well as the bulk truncated coordinates for $TiO_2(110)(1\times1)$. The O atoms in OH and H_2O are underlined in the table to highlight the fact that the positional parameters given are only for these atoms in the molecules.

Atom	(1×1) Bulk Terminated	Optimised Positions (Å)				
	Coordinates (Å)	Ref. 13	UHV _{as-prepared}	$H_2O_{(l)\text{-}dip}$	$\mathrm{H_2O}_{\mathrm{(l)\text{-}drop}}$	
H ₂ O(2) [110]	-	-	-	-	21.35	
$H_2\underline{O}(2)[1\overline{1}0]$	-	-	-	-	5.32	
H ₂ O(1)	-	_	-	-	21.34	
<u>O</u> H(1 [#])	-	-	-	19.52	19.54	
O(1)	18.77	18.87	18.87	18.80	18.85	
O(2) [110]	17.50	17.67	17.63	17.56	17.58	
O(2) [110]	5.23	5.24	5.25	5.24	5.24	
Ti(1)	17.50	17.75	17.67	17.57	17.59	
Ti(2)	17.50	17.39	17.44	17.53	17.53	
O(3)	16.24	16.31	16.31	16.28	16.31	
O(4)	15.52	15.52	15.54	15.57	15.57	
O(5) [110]	14.25	14.29	14.28	14.26	14.31	
O(5) [110]	4.37	4.42	4.39	4.40	4.42	
Ti(3)	14.25	14.17	14.23	14.32	14.31	
Ti(4)	14.25	14.44	14.37	14.26	14.29	
O(6)	12.99	13.00	13.03	13.03	13.07	
O(7)	12.27	12.27	12.28	12.29	12.33	

O(8) [110]	11.01	11.02	11.02	10.95	11.06
O(8) [110]	5.23	5.20	5.21	5.22	5.20
Ti(5)	11.01	11.09	11.06	11.02	10.97
Ti(6)	11.01	10.97	10.99	11.06	11.09
O(9)	9.74	9.76	9.77	9.75	9.78
O(10)	9.02	9.00	9.01	9.05	9.05
O(11) [110]	7.76	7.77	7.77	7.77	7.79
O(11) [110]	4.37	4.38	4.38	4.38	4.39
Ti(7)	7.76	7.74	7.75	7.77	7.77
Ti(8)	7.76	7.83	7.80	7.78	7.78
O(12)	6.50	6.52	6.52	6.51	6.53
O(13)	5.78	5.78	5.79	5.79	5.82
O(14) [110]	4.51	4.54	4.54	4.52	4.54
O(14) [110]	5.23	5.21	5.22	5.22	5.21
Ti(9)	4.51	4.53	4.52	4.52	4.54
Ti(10)	4.51	4.50	4.50	4.52	4.52
O(15)	3.25	3.25	3.26	3.25	3.26
O(16)	2.53	2.51	2.51	2.55	2.55
O(17) [110]	1.26	1.27	1.28	1.27	1.25
O(17) [110]	4.37	4.39	4.38	4.38	4.39
Ti(11)	1.26	1.25	1.25	1.25	1.24
Ti(12)	1.26	1.29	1.27	1.26	1.27

Movie S1 | *Ab initio* molecular dynamics simulation of rutile $TiO_2(110)$ in aqueous conditions. *Ab initio* molecular dynamics trajectory of liquid water on $TiO_2(110)$ showing that the OH_t groups, with H atoms depicted in yellow, are stable during the full length of the 50 ps-long AIMD trajectory. It can also be seen that the water molecule in black diffuses between the contact layer and the layer above. The system is composed of 4-trilayers of rutile $TiO_2(110)$, with a concentration of 1/4 ML of Ti-interstitials lying between the second and third trilayer. The green vertical lines indicate the unit cell used in the simulation, which corresponds to a (4×2) $TiO_2(110)$ unit cell. The water contact layer consists of a mixture of OHt arranged in a (2×1) symmetry and intact water molecules that diffuse in and out of the layer during the time of the simulation. The atoms are colour-coded according to the figures in the manuscript.

References

- 1. D. Briggs, M.P. Seah, Practical Surface Analysis, Auger and X-ray Photoelectron Spectroscopy, 2nd Ed, Wiley (1990).
- 2. L. E. Walle, A. Borg, P. Uvdal, A. Sandell, Experimental evidence for mixed dissociative and molecular adsorption of water on a rutile TiO₂(110) surface without oxygen vacancies. *Phys. Rev. B.* **80**, 235436 (2009)
- 3. Allegretti, F., O'Brien, S., Polcik, M., Sayago, D. I. & Woodruff, D. P. *Phys. Rev. Lett.* 95, 226104 (2005).
- 4. Kurtz, R. L., Stockbauer, R., Madey, T. E., Román, E. & De Segovia, J. Synchrotron radiation studies of H₂O adsorption on TiO₂(110). *Surf. Sci.* **218**, 178–200 (1989).
- 5. Heyd, J.; Scuseria, G. E.; Ernzerhof, M., Hybrid functionals based on a screened Coulomb potential. *J. Chem. Phys.* **118**, 8207 (2003).
- 6. Perdew, J. P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **77**, 3865 (1996).
- 7. Morgan, B. J., Watson, G. W. A DFT+U description of oxygen vacancies at the TiO₂ rutile(110) surface. *Surf. Sci.* **601**, 5034 (2007).
- 8. Luzar, A, Chandler, D. Hydrogen-bond kinetics in Liquid Water. *Nature*, **379**, 55 (1996).

- 9. Guidon, M., Hutter, J. and VandeVondele, J. Auxiliary density matrix methods for hartree–fock exchange calculations. *J. Chem. Theor. Comput.* **6**(8), 2348-2364 (2010).
- 10. Guidon, M. Hutter, J. and VandeVondele, J. Robust Periodic Hartree–Fock Exchange for Large-Scale Simulations Using Gaussian Basis Sets. *J. Chem. Theor. Comput.* **5**(11) 3010-3021 (2009).
- 11. Spreafico, C., and VandeVondele, J. Excess Electrons and Interstitial Li Atoms in TiO₂ Anatase: Properties of the (101) Interface. *J. Phys. Chem. C* **119**(27) 15009-15018 (2015).
- 12. Henkelman, G., Uberuaga, B. P., Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. *J. Chem. Phys.* **113**(22) 9901-9904 (2000).
- 13. Cabailh, G. *et al.* Geometric structure of TiO₂(110)(1×1): Achieving experimental consensus. *Phys. Rev. B* **75**, 241403 (2007).