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Contact	  sites	  are	  places	  where	  two	  organelles	  join	  together	  to	  carry	  out	  a	  shared	  activity	  requiring	  8	  

non-‐vesicular	  communication.	  A	  large	  number	  of	  contact	  sites	  have	  been	  discovered,	  and	  almost	  9	  

any	  two	  organelles	  can	  contact	  each	  other.	  General	  rules	  about	  contacts	  include	  constraints	  on	  10	  

bridging	  proteins,	  with	  only	  a	  minority	  of	  bridges	  physically	  creating	  contacts	  by	  acting	  as	  11	  

“tethers”.	  The	  downstream	  effects	  of	  contacts	  include	  changing	  the	  physical	  behaviour	  of	  12	  

organelles,	  and	  also	  forming	  biochemically	  heterogeneous	  sub-‐domains.	  However,	  some	  functions	  13	  

typically	  localised	  to	  contact	  sites,	  such	  as	  lipid	  transfer,	  have	  no	  absolute	  requirement	  to	  be	  14	  

situated	  there.	  Therefore,	  the	  key	  aspect	  of	  contacts	  is	  the	  directness	  of	  communication,	  which	  15	  

allows	  metabolic	  channelling	  and	  collective	  regulation.	  16	  

	  17	  

	  18	  

	  19	  

Key	  Words	  20	  

Non-‐vesicular	  traffic;	  biological	  transport;	  intracellular	  membranes/metabolism;	  membrane	  21	  

lipids/metabolism;	  vesicular	  transport.	   	  22	  



 2 

Miscellaneous membranes mix at contact sites  23 

Each intracellular organelle (see Glossary) carries out a limited set of reactions. When one 24 

biochemical pathway is distributed across multiple organelles there must be intracellular 25 

communication. While a subset of organelles can communicate by vesicular traffic, all organelles 26 

can communicate via non-vesicular traffic. This involves proteins or metabolites dissociating from 27 

one organelle, diffusing across intracellular gaps, and binding to receptors on another organelle. 28 

Special cases of intracellular communication occur where two distinct (not homotypic) organelles 29 

form a contact site. The contact site field began in 1956 with ultrastructural studies by Bernhard 30 

and Rouiller [1]. Afterwards contact sites were largely overlooked for 50 years [2], and are still 31 

missing from text books. The last decade has seen much progress, and there are many excellent 32 

reviews that describe these developments as a whole [3,4], or at a single contact site [5] or for one 33 

family of components [6]. This article has a dual focus: in this section we describe how almost 34 

every pair of organelles now appears to form contacts (Figure 1, Key Figure); later we make 35 

general inferences about contact site function. 36 

 37 

Contacts formed by mitochondria, a second intracellular network  38 

Early on the ER appeared as a common partner to most other organelles, including mitochondria, 39 

plasma membrane, endosomes/phagosomes/lysosomes, Golgi apparatus and lipid droplets. This 40 

led us to suggest a model that all organelles had constitutive contacts with the ER, which acts as a 41 

pan-cellular conduit for small metabolites such as Ca2+ and lipids [2]. However, the demonstration 42 

that many non-ER organelles directly contact each other has shown that our model was wrong. 43 

After the ER, a second intracellular reticulum is formed by mitochondria. Although mitochondria 44 

vary in size and inter-connectedness, when viewed as a whole they can form an intracellular 45 

network that is almost as extensive as the ER. Like the ER, the mitochondrial network contacts 46 

most other organelles. Here we review the evidence for the different contacts formed by 47 

mitochondria. 48 

Endosome/lysosome–mitochondrion 49 

contacts between endo-/lysosomes and mitochondria have been seen in several mammalian cell 50 

types, where they mediate direct traffic of material. In red blood cell precursors early endosomes 51 

contact mitochondria to transfer endocytosed iron for mitochondrial heme synthesis [7]. In 52 

hypoxic cancer cells similar contacts allow partial “kiss  and  run” fusion that transfers endocytic 53 
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proteolytic enzymes to mitochondria [8]. Contact sites have also been found in pigmenting cells 54 

joining melanosomes, which are lysosome-related organelles, to mitochondria, possibly for 55 

production of ATP close to sites of melanization [9].  56 

The best characterised contacts of this type are in budding yeast, where they are called vaCuoLe 57 

And Mitochondria Patches (vCLAMPs), vacuoles being the yeast degradative compartment 58 

equivalent to lysosomes [10,11]. The first vCLAMP component discovered was Vps39p (also called 59 

Vam6p), already known as a component of complexes that tether late endosomes to vacuoles. 60 

Additionally the cytoplasmic protein Vps13p targets vCLAMPs (and others including endosome-61 

mitochondrial contacts [12]), and it may be recruited by Vps39p [13]. vCLAMPs may provide a 62 

route for lipid traffic into mitochondria, however this becomes obvious only when mitochondria 63 

cannot acquire lipids directly from the ER. A minority of mitochondrial-ER contacts contain the ER-64 

mitochondrial encounter structure (ERMES) complex, three subunits of which are members of the 65 

tubular lipid transfer protein (TULIP) family (Figure 2A) [14-19]. When ERMES is destabilised, 66 

mitochondria swell into spheroids >1 µm in diameter to accommodate massively expanded 67 

vCLAMPs, and both Vps39p and Vps13p become essential for mitochondrial function. This 68 

suggests that when lipids cannot flow directly from ER to mitochondria, they take a circuitous 69 

route via vacuoles and vCLAMPs. Even though some TULIPs transfer lipids [18,19], generating 70 

proof that ERMES or any lipid transfer proteins transfer lipids across contact sites is not trivial [20]. 71 

Peroxisome–mitochondrion 72 

Vesicular traffic between peroxisome-mitochondria [21] is supplemented by contact sites that 73 

have been partially characterised in yeast. Mitochondria are affected by the presence of 74 

peroxisomes, since the mitochondrial matrix near to the peroxisomal contact site accumulates the 75 

pyruvate dehydrogenase enzyme complex [22]. Both this complex and peroxisomes produce 76 

acetyl CoA, indicating that there is integrative control of acetyl-CoA production across the contact 77 

(Figure 2A). Pex11p is required for their maximal formation, although it is not clear if Pex11p itself 78 

is the tether (Table 1) [23]. 79 

Chloroplast–mitochondrion 80 

Chloroplasts not only make contacts with ER [24], but also with mitochondria, creating a potential 81 

route for lipid traffic. During starvation of plants for phosphate, chloroplast enzymes convert 82 

mitochondrial phospholipids to galactolipids. The evidence for lipid traffic across chloroplast–83 

mitochondrial contacts is that they increase 3-fold in size during phosphate starvation [25]. 84 
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Plasma Membrane–mitochondrion 85 

Mitochondria are found close to the plasma membrane in many cell types. In yeast such 86 

attachment is proposed to organize inheritance of mitochondria, and there are two different 87 

attaching complexes, one for daughter buds, and another for mother cells, the latter tethered by 88 

Num1p (Table 1) [26]. Sub-plasma membrane mitochondria occur in mammalian cells too, where 89 

they preferentially take up Ca2+ entering the cell nearby. In both yeast and mammalian cells these 90 

contacts are typically accompanied by ER that contacts both plasma membrane and mitochondria, 91 

making a three-way contact called mitochondria–ER–cortex-anchor (MECA) [26].  92 

One unusually distant “contact” is found in presynaptic termini in neurons, where mitochondria 93 

are anchored ~200 nm from the plasma membrane by a filamentous structure of unknown 94 

composition, with many synaptic vesicles filling the gap [27]. Does this arrangement meet the 95 

definition of contact site? We suggest that the answer is yes. Local communication occurs, 96 

although the main relationship may be between mitochondria and the intervening vesicles to 97 

optimise ATP supply for neurotransmitter accumulation.  98 

Autophagosome–mitochondrion 99 

Compared to other cellular membranes, the isolation membrane surrounding autophagosomes is 100 

enriched in lipid over proteins. The source of the lipid is controversial, but non-vesicular delivery 101 

of mitochondrial lipids is one mechanism, though as in MECA the ER may intervene [28,29].  102 

Lipid droplet–mitochondrion 103 

ATP production by beta-oxidation of fatty acids occurs in mitochondria of animal cells, particularly 104 

in myocytes and brown adipocytes. The fatty acids are stored in lipid droplets as triacylglycerol, 105 

which is converted to fatty acids on the lipid droplet surface. Five related perilipins bind to lipid 106 

droplets, inhibiting lipolysis by displacing lipases. Uniquely, perilipin-5 mediates lipid droplet-107 

mitochondrion contacts via a hydrophilic motif that binds to an unknown mitochondrial binding 108 

partner [30]. Fatty acids traffic from perilipin-5-positive lipid droplets to nearby mitochondria, but 109 

whether fatty acid traffic occurs across contacts as proposed for bilayer lipids is unknown [31].  110 

Mitochondrial inner membrane–mitochondrial outer membrane 111 

It has long been known the two perimeter mitochondrial membranes form contacts without 112 

fusing. The molecular basis for this has now begun to be described. The mitochondrial contact site 113 

(MICOS) complex embedded in the mitochondrial inner membrane was discovered initially as a 114 
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regulator of crista junctions through its homotypic interactions. In addition, MICOS has 115 

heterotypic interactions with three outer membrane complexes (Figure 2A) [32-35]. It is not yet 116 

clear if MICOS acts primarily as a tether (Table 1). The largest MICOS subunit (Mic60p in yeast, 117 

mitofilin in mammals) contributes to cardiolipin transfer possibly by binding the lipid headgroup to 118 

reduce bilayer stability (Table 1) [33]. 119 

Contact sites locally modulate organelle networks  120 

The mitochondrial network is heterogeneous. One source of this heterogeneity are the different 121 

contacts that locally modulate aspects of mitochondrial function, including, metabolic activity 122 

[27,31], accumulation of pro-apoptotic signals [8], inheritance [36], and licensing mtDNA 123 

replication [37] prior to network fission [4]. Another feature that is coming to the fore is the 124 

formation of three-way contacts containing mitochondria, ER plus one other organelle all 125 

contributing to one pathway [23,26,28].  126 

 127 

Contacts between two multi-copy spheroidal organelles 128 

There are many organelles that exist as multiple copies of isolated spheroidal bodies: either 129 

membrane bound vesicles (peroxisomes, late endosomes, lysosomes, also including lipid droplet) 130 

or liquid drops (nucleoli, P-bodies, inclusion bodies etc.). The distribution and relationships of each 131 

of these organelles to each other has until recently appeared quite random. Now different types 132 

of organelle have been found to contact one another. Here we review the different contacts 133 

formed between lipid droplets, peroxisomes, endo-/lysosomes and others. 134 

Lipid droplet–peroxisome 135 

Lipid droplets not only contact the ER as they form [38], and also mitochondria (above), but also 136 

they contact peroxisomes both in many eukaryotic cell types [39]. Yeast growing on lipid as their 137 

sole energy source break down fatty acids stored in lipid droplets by beta-oxidation in 138 

peroxisomes (not in mitochondria as in metazoa). Here lipid droplet–peroxisome contacts 139 

enhance fatty acid traffic and eventually allow peroxisomal beta-oxidative enzymes to access the 140 

core of the lipid droplet, indicating a slow fusion process [40]. 141 

Lipid droplet-endosome and peroxisome-endosome 142 

In fungal hyphae these contacts mediate long-range co-transport of both lipid droplets and 143 

peroxisomes with endosomes. The latter have a microtubule motor, while the other organelles 144 
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attach to the endosomes (Figure 2B) [41,42]. Such indirect attachment for cytoskeletal-based 145 

transport may act in other elongated cell processes, for example in neurons. 146 

Lipid droplet–inclusion body 147 

Contacts form in yeast between lipid droplets and inclusion bodies, focal cytoplasmic 148 

accumulations of aggregated, misfolded proteins that have escaped degradation by proteasomes 149 

or autophagy, which might be considered to be organelles or compartments even though they are 150 

not membrane-bounded. The inclusion body protein Iml2p interacts with lipid droplet proteins, 151 

and recruits lipid droplets to inclusion bodies [43]. Intriguingly, normal clearance of inclusion 152 

bodies requires not only Iml2p but also lipid droplet proteins that produce or transfer ergosterol, 153 

the yeast equivalent of cholesterol. This suggests that a sterol-derived lipid acts as a natural 154 

detergent to unfold misfolded proteins.  155 

Lysosome-peroxisome contact sites  156 

LDL cholesterol is released from lysosomes and eventually reaches the plasma membrane or ER 157 

[44]. Unexpectedly, lysosome-peroxisome contact sites are involved in this cholesterol traffic [45]. 158 

The peroxisome is tethered by the lysosomal transmembrane protein synaptotagmin-7, normally 159 

found at synapses but with a subpopulation on lysosomes (Table 1). How peroxisomes mediate 160 

sterol traffic is still unknown, and it could be that the peroxisomal contribution is to handle free 161 

fatty acid.  162 

Everywhere there is difference 163 

The list of organelles that contact each other is expanding rapidly. The multitude of contacts 164 

means that each peroxisome, lipid droplet and endosome (etc.) is heterogeneous purely on the 165 

basis of its contacts. The causes and effects of this are unknown. 166 

 167 

Contact sites as biochemical hubs 168 

Bridges at contact sites define and organize biochemically distinct sub-regions in two different 169 

ways. 170 

 171 

Organization across contacts: metabolic channeling between organelles 172 



 7 

Contact sites promote direct communication of material or signals between organelles. The 173 

communication can be focused 100% on the target, particularly if the protein that enacts the 174 

communication also forms a bridge. For Ca2+ traffic in muscle cells, voltage-dependent Ca2+ 175 

channels on the plasma membrane directly bind to Ca2+-induced Ca2+-release proteins in the 176 

sarcoplasmic reticulum, amplifying the initial depolarization signal to activate acto-myosin 177 

throughout the cell (Figure 3A). Other bridging proteins implicated in traffic include lipid transfer 178 

proteins, which can be recruited from the cytoplasm (Figure 3B), or may have a permanent 179 

membrane anchor (Figure 3C) [46,47]. Additional pathways localised to contacts include: cyclic 180 

AMP signalling [48,49], acetyl-CoA generation [22], lipid synthesis [50], and the acquisition of 181 

proteins for movement [51], fission [4], or both [52]. In addition, “transcatalysis”  takes place, 182 

where enzyme and substrate are separated [53].  183 

An increasingly prominent idea is that bi-specific lipid traffic proteins exchange one lipid down a 184 

steep gradient to force another lipid up a less steep gradient (Figure 3C) [6]. The identification of 185 

the second lipid may be quite complex. For example, the oxysterol binding protein (OSBP) 186 

homologue Osh4p in yeast can counter-transfer not only sterol and phopshoinositide 4-phosphate 187 

(PI4P) (Figure 3D), but also phosphatidylserine (PS) and PI(4,5)P2 [54]. Counter-current exchange 188 

has been associated with contact sites, but it has no absolute need for them. Even though contact 189 

sites create conditions for maximum and regulatable efficiency [55], counter-currents work for 190 

lipid transfer proteins that have no strong membrane targeting, such as Osh4p, although these 191 

tend to be expressed at >10-fold greater levels than other family members, possibly to 192 

compensate for the inefficiency of increased diffusion (Figure 3D).  193 

In summary, an absolutely key aspect of contact sites is the creation of a unique space that 194 

excludes other organelles. This is equivalent to metabolic channeling between enzymes, but on a 195 

larger scale [3,56]. Together, the combination of directness and the short distance between donor 196 

and acceptor may create sites where transfer is highly efficient and easily regulated en bloc. These 197 

advantages may have brought into existence the large number of contacts between so many 198 

organelle pairs.  199 

 200 

Lateral organisation: subdomains within organelles 201 

Bridging complexes can recruit other proteins to nearby portions of the organelle. Thus, contact 202 

sites organise functionally distinct sub-domains even within continuous organellar networks such 203 
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as the ER and mitochondria. For example, mitochondrial contacts with ER and peroxisomes 204 

colocalize with adaptive specializations in the contacting organelles (Figure 2A) [22,57]. To study 205 

such lateral organisation, membranes enriched for contact sites have been purified, in particular 206 

mitochondrial associated ER membranes (MAMs). Many proteins localised to MAMs are lipid 207 

biosynthetic enzymes [58-61], but ≥30 other proteins are enriched there, including gamma-208 

secretase and TORC2 (reviewed in [5]).  209 

Since contacts recruit lipid modifying enzymes, contact site-associated subdomains may have 210 

specific lipid compositions. The best known example is MAMs, which are enriched for sterol in 211 

metazoa [62], but not in yeast [63]. The adjacent region of mitochondria contains mtDNA, and is 212 

also rich in sterols [64]. MAMs are also enriched both in Acyl-CoA:cholesterol acyltransferase 213 

(ACAT), a key regulator of cellular free sterol [44], and in nascent lipoproteins that mediate 214 

cholesterol secretion [65]. This shows that cholesterol has a high concentration in and high flux 215 

through MAMs. However, claims that sterols drive protein partitioning in MAMs to form “lipid  216 

rafts”  are unvalidated [66]. As yet sterol based lipid-lipid interactions that partition membrane 217 

domains have only been found where there is no supporting actin and low membrane protein 218 

concentration [67]. 219 

 220 

The physicality of direct contact  221 

Among contact site functions, there are multiple aspects that simply describe the physicality of 222 

pairs of organelles being joined together. Here we identify some general principles of these 223 

physical relationships. 224 

 225 

Anchoring 226 

Contact allows organelles to exert force on each, for example so that one can pull another. 227 

Organelles known to interact physically and move together include endosomes plus ER [68] and 228 

endosomes plus peroxisomes or lipid droplets (Figure 2B) [41,42].  229 

 230 

Untangling tubular organelles by marking sites of fission 231 
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As organelles that form three-dimensional tubular networks, for example the ER and 232 

mitochondria, change shape and move they will cross each other and potentially form tangles. 233 

Like DNA, an extended biomolecule with specific untangling enzymes, there is untangling 234 

machinery for extended organelles. Sites of mitochondrial fission are found near a sub-set of ER-235 

mitochondrial contacts where ER tubules partly encircle the mitochondrial network. Fission 236 

requires sequential recruitment of two constriction machineries, one that reduces the diameter 237 

from 300-500 nm to less than 150 nm, and a second that induces severing (reviewed in [4]). 238 

Endosomes also form extended tubules, which also undergo fission near ER contact sites that 239 

recruit specific fission machinery [4,52]. Contacts involved in organelle fission must have a limited 240 

life-time, so that they may turn over faster, and move more rapidly, than other contact sites.  241 

That the ER marks sites of fission on other tubular organelles, but it is not divided itself, can be 242 

linked to the evolution of contemporary ER from the ancestral plasma membrane, which would 243 

have strongly resisted fission. As envisaged by Baum and Baum,  early  eukaryotes  evolved  “inside-244 

out”, having an intermediate stage with ER-like functions residing in deep plasma membrane clefts 245 

linked to the nuclear envelope (Figure 2C) [69]. This plasma membrane would not have undergone 246 

fission, but would have marked other tubular organelles for fission in primordial cells. This may 247 

have evolved into the ER marking other tubular organelles for fission now. 248 

 249 

Tethering (and the making of a tether)  250 

Physical contact requires organelles to be tethered, but criteria for defining contact site “tethers”  251 

have not yet been decided by cell biologists. “Tethers”  in a vesicular pathway are proteins that 252 

capture vesicles prior to fusion, often ≥100 nm away from their target, and so these proteins 253 

inform our understanding of highly extended contact site proteins (see section on Long Linkers 254 

below). We propose that tethers at contacts are those proteins for which the main function is the 255 

creation of a significant proportion of the contact structure. Tethering might best be estimated 256 

from studying the loss of contact when a protein is missing. The early discovery of Nvj1p in yeast 257 

as a protein that is not only required for formation of the nucleus vacuole junction (NVJ) but also 258 

contains no other active domains suggested that tethers might be common [2]. However, this is 259 

not so: proteins that meet the criteria to be pure tethers are relatively rare (Table 1A). Many 260 

contact site components that have been called tethers only have this function partially or to a 261 

small degree (Table 1B/C). Instead they contain domains that strongly point to other functions. 262 

Clear examples of this can be found among six bridging proteins at ER-plasma membranes 263 
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contacts in yeast that have been deleted to reduce cortical ER by 90% [70]. Only the yeast VAP 264 

homologs Scs2/22p are clearly responsible for tethering, but there is no obvious effect on the 265 

extent of cortical ER with single deletions of the other bridging proteins: tricalbins and Ist2p (Table 266 

1). These proteins contribute significantly to ER-plasma membrane tethering only when VAP/Scs2p 267 

is missing, suggesting that they may not be primarily tethers. Our null hypothesis is that their 268 

easily identifiable other domains mediating lipid transfer (tricalbins) [18,19], or ion flux (Ist2p) [71] 269 

dominate their function. These proteins may adopt a tethering role only when other bridges are 270 

deleted. Such redundancy is found at other contacts [72], so the effect of protein loss on contact 271 

formation cannot be the sole determinant of whether a protein is a tether. Making things harder 272 

still, not all proteins that are required for contact act by tethering. Instead their specific functions 273 

may alter organelle properties (e.g. lipid composition) to affect contact site formation indirectly. 274 

An example is Ice2p in yeast, which affects ER-plasma membrane contact sites [73] and has 275 

pleiotropic interactions in the ER [74]. Although Ice2p may be able to bridge from the ER to other 276 

organelles, rather than functioning as a tether, Ice2p appears to have a primary function in 277 

channelling lipids [75], which is supported by its remote homology to Serinc proteins (TL, 278 

unpublished observation) which alter membrane properties widely [76]. Therefore, the term 279 

“tether”  should  be  reserved  for  cases  where  it  clearly  warranted,  with  care  to  avoid  over-280 

simplifications. 281 

 282 

Linkers constrain contact site proteins 283 

Many bridging proteins including lipid transfer proteins and enzymes that work in trans are 284 

embedded on one side of the contact site by transmembrane helices. They share a common form 285 

with their active domain separated from the transmembrane helix by a linker predicted to be 286 

unstructured (Figure 4A). If the active domains functions on the far side of the contact site, the 287 

linker must be able to stretch across the gap. How big are the gaps? And are the linker regions 288 

adapted for working in trans?  289 

To answer the first question, structural studies of contact sites are scarce. ER-PM contacts are 290 

among the best visualized by electron microscopy of well preserved cells; their median gap is 29 291 

nm in yeast (range 16-45 nm) [77], and 23-25 nm in mammalian cells (neurons and COS7) [78]. The 292 

yeast nucleus vacuole junction is narrower at 18 nm [79]. Some contacts contain electron dense 293 

material corresponding to bridging proteins [9,53], and some bridging proteins produce 294 

characteristic appearances [78].  295 
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Next, looking at linkers of contact site components, we identify two different categories:  296 

Long linkers   297 

Our definition of contact site merely stipulates the presence of molecular bridges, with gaps at 298 

most contact sites so far studied in the range 15-30 nm [77-79], although there are gaps that are 299 

much wider [27]. To span an inter-organellar  gap  ≥15  nm,  based  on  the C-C distance in 300 

unstructured polypeptide loops ≤0.38 nm [80], a linker must have at least 40 amino acids. As an 301 

example, the phosphatase domain of PTP1B has a predicted unstructured linker of 126 residues. 302 

With a maximum reach of 48 nm it clearly can dephosphorylate EGFR, its substrate on endosomes 303 

(Figure 4A) [53]. Other contact site components with long unstructured linkers include STIM1 and 304 

Ist2p. Both are integral ER proteins with polybasic regions that bind anionic lipids in the plasma 305 

membrane [81]. The unstructured linker in STIM1 can stretch up to 80 nm (Figure 4A). This long 306 

reach may enhance the ability of STIM1 to attach ER tubules to the plasma membrane when it is 307 

activated by emptying ER Ca2+ stores [82].  308 

Short linkers   309 

Several contact site components have linkers that appear only just long enough for the protein to 310 

reach across the gap. Extended-synaptotagmin-2 (E-syt2) has 44 residues, Ysp2p has 59 residues, 311 

with maximum reach 17 and 23 nm respectively (Figure 4B) [16,47]. For Ysp2p, we showed that its 312 

linker needed at least 40 residues for activity, which was maximal with ≥70  residues  [47]. Ysp2p is 313 

one of those ER embedded proteins where the linker contains a polybasic region [83]. At contacts 314 

that are narrow enough, these regions may bind anionic lipids of the plasma membrane inner 315 

leaflet. This leaves fewer residues to form the unstructured linker: for Ysp2p the linker would be 316 

only 41 residues (≤  16  nm,  Figure 4B). One possibility that might still allow Ysp2p to function is if 317 

single contact site components are focally enriched to create a local region where the gap matches 318 

its linker. This is supported by experiments where over-expression of individual components alters 319 

the contact site width: narrowing has been seen with E-Syt1 using an extra C2 domain in the 320 

presence of Ca2+ [78]; widening has been seen by adding rigid helices to Sec22b in a trans-SNARE 321 

complex with syntaxin-1 [84]. The existence of contacts with different gaps is supported by 322 

experiments on the long linker of Ist2p, which can extend up to 130 nm (Figure 4A). Shortening 323 

from  340  to  58  residues  (≤22  nm)  redistributes  Ist2p  from  extended  ER-plasma membrane 324 

contacts to punctate contacts [71], suggesting that contact site components match the length of 325 

their linkers to specific zones of contact. 326 
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Can linkers be too short to reach across a contact site?  327 

It possible that a linker could be too short for the active domain to act in trans across a contact 328 

site, especially if that domain does not have a high affinity interaction with the opposing 329 

membrane that might trap a transient motion into close proximity. This question is most 330 

controversial for the PI4P-phospatase Sac1, which is embedded in the ER and is sometimes 331 

modelled as reaching out from there and hydrolyze PI4P in the plasma membrane [85] and NVJ 332 

[86]. Our own analysis of this region, based on two crystal structures [87,88] and sequence 333 

conservation with other 4-phosphatases, predicts that Sac1 has a linker up to 7 nm long, and so 334 

cannot work across ER-plasma membrane contacts or NVJ in vivo (Figure 5). Unless Sac1 creates 335 

narrower contacts than have yet been reported, this analysis strongly supports models where PI4P 336 

traffics to the ER to drive other lipids in the opposite direction (Figure 3C, reviewed in [6]).  337 

 338 

Concluding Remarks 339 

In the last decade we have moved from asking which organelles can form contact sites, to looking 340 

for explanations for the lack of contact formation by a few unusual organelles, including ER-Golgi 341 

intermediate compartment (ERGIC), cis and medial Golgi cisternae. An underlying reason for the 342 

large variety of contacts may be to create unique spaces for operating and regulating pathways. 343 

Having such a wide range of intracellular routes leads to circularity, which may explain how cells 344 

survive when one individual route is lost [10,11,13]. This circularity also means that intracellular 345 

traffic is not genetically straightforward [89]. In the next decade, after defining contact site 346 

components, we can move to describing their regulation. 347 

 348 
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Glossary  356 

Anchor: proteins on the outer face of membrane-bound organelles can be integral to the 357 

membrane, i.e. with one or more transmembrane helix which is an irreversible anchor. The 358 

alternative is peripheral attachment by binding a protein or lipid. 359 

Bridge: a protein that crosses from one organelle to another. The simplest bridge has one integral 360 

membrane protein that binds a membrane lipid in the other organelle. More complicated bridges 361 

could include additional protein(s) and lipid(s).  362 

Compartment: this term is exchangeable with organelle (see below).  363 

Contact site: any place where a physical bridge links two organelles with functional consequences. 364 

Strict definitions beyond this have not been formalised, so both contacts that lead to fusion in the 365 

exo-/endo-cytic pathways and homotypic contacts might be included in this category by other 366 

authors. We have excluded these categories and focussed on heterotypic, non-fusogenic contact 367 

sites. We have also included contacts with inclusion bodies, which are not membrane-bound, so 368 

we  have  avoided  the  term  “membrane  contact  site”.  Gaps between organelles at these contact 369 

sites are mostly in the range 10-30 nm, but this is not part of a definition. One feature that we 370 

suggest should be included in a definition is that the linkage across a contact site creates a 371 

biochemically unique zone, typically by excluding other organelles and even excluding large 372 

protein complexes such as ribosomes. In addition to such exclusions, contact sites often 373 

specifically include components involved in communication of material or signals between the two 374 

organelles. 375 

Diffusion: time t for diffusion in 3 dimensions across a distance x from a point source is described 376 

by the equation: t=x2/6D. For a small protein in cytoplasm the diffusion constant (D)≈10 µm2/sec, 377 

so diffusion across 1 µm of cytoplasm takes 16 msec (not 160 msec as we recently published in 378 

error [20,49]); by comparison diffusion across a contact site (≤30  nm)  takes  ≤0.02 msec. Such 379 

rapidity is important for Ca2+ signalling, which is affected by the precise contact site gap [55]. 380 

However, for lipids the data is not yet available to say how frequently they go through a lipid 381 

transfer cycle in vivo, or the extent to which this rate is limited by diffusion versus dwell time at 382 

donor/acceptor membranes. 383 

Homotypic contacts: contacts formed by two membranes of the same organelle, found for ER, 384 

mitochondria, Golgi apparatus, lipid droplets and peroxisomes. These mediate fusion, as well 385 



 14 

regulating other aspects of organellar structure and biochemistry, and presumably affect 386 

heterogeneity. They have not been considered here. 387 

Linker: the portion of a protein that links its active domain to its membrane anchor. While the 388 

linker may fold back on itself, i.e. zero extension, its maximal extension is 0.38 nm per residue 389 

[80]. This sets the range within which the domain can access binding partners.  390 

Organelle: a region of a cell boundaried in three dimensions within which multiple reactions co-391 

occur in loose but highly predictable ways. This includes nucleoli and other liquid drops that are 392 

phase separated but not membrane-bounded. Here we use interchangeably with compartment 393 

(above, but see [90]). We also apply the term to inclusion bodies 394 

Tether: not all bridges are tethers. We use the term for bridges that create a significant proportion 395 

of the structure of a contact site under physiological conditions. A priori we consider that proteins 396 

containing a domain that functions at contact sites, e.g. lipid transfer domains, are unlikely to be 397 

tethers. Instead, we assume they have a primary function linked to that domain until proven 398 

otherwise. 399 

  400 
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Legends 401 

Figure 1, Key Figure. The patchwork of contact sites 402 

Diagram of 19 different contact sites involving the plasma membrane and nine other organelles in 403 

yeast or mammalian cells (see key). Contact sites formed are ER (x8 = number of contact sites), 404 

mitochondria (x7), lipid droplets (x5), peroxisomes (x5), endosomes (x4), lysosome/vacuoles (x3), 405 

plasma membrane (x2), autophagosomes (x2), late Golgi (x1) and inclusion bodies (x1). The 406 

presence of contact sites is indicated by ring bindings. More than half of the pairwise 407 

combinations formed by these organelles have so far been demonstrated. We have excluded 408 

intra-Golgi contacts as being homotypic. Also not shown are chloroplasts, which may form many 409 

additional contact sites in plant cells; and contact sites between the ER and both secretory 410 

granules and phagosomes, which extend the STIM-Orai1 domain. This diagram resembles budding 411 

yeast, where contact sites are best known, although other cell types have provided major insights, 412 

and a similar large range of contacts is found in all eukaryotic cell types, even if the specific 413 

amounts vary between cells. In yeast the nuclear envelope is a specialised zone of ER that forms 414 

unique contacts with the degradative vacuole and lipid droplets.  415 

Figure 2. Illustrative examples of physical contact site functions 416 

(A) Lateral organisation of contact site allows long distance communication from the contact site 417 

to adjacent parts of each organelle, here showing two contact sites in yeast. TOP: Mitochondrial-418 

ER contact sites enriched with sterol (yellow dots) are spanned by multiple complexes including 419 

ERMES and EMC-TOM, and Lam6p-TOM. MICOS makes multiple interactions across the 420 

intermembrane space (black arrows). mtDNA (dark red circle) is anchored by an unknown protein 421 

(orange) in a sterol-rich domain. There appears to be long-range communication of sterol 422 

enrichment (dotted arrow). BOTTOM: Pyruvate dehydrogenase complex accumulates in the 423 

mitochondrial matrix near to mitochondrial-peroxisomal contact sites, possibly allowing 424 

communication of Ac-CoA status between the two organelles (dotted arrow). (B) Endosomes act 425 

as carriers for peroxisomes and lipid droplets for movement along microtubules in hyphae of 426 

fungal cells of Ustilago maydis, with no significant contribution by the ER (see key to Figure 1). (C) 427 

Model of how eukaryotic evolution has led to the ER marking fission sites. Ancestral pre-428 

eukaryotic cells are proposed to have had clefts lined by plasma membrane (an outgrowth of the 429 

nuclear envelope) and prototypic mitochondria. Plasma membrane would be expected to mark 430 

sites of fission of internal tubular organelles, including mitochondria. Functions that include 431 
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marking sites of fission were inherited by the ER of the last eukaryotic common ancestor (LECA). 432 

Figure 3. Vertical organisation of contact sites leads to metabolic channelling  433 

Examples of non-vesicular traffic both at contact sites (A-C), and not at contact sites (D). (A) T-434 

tubule DHPR channels (light blue) bind to Ca2+-responsive RyR channels (red) in the sarcoplasmic 435 

reticulum, an expansion of the ER (red). Ca2+ entry  (arrow  “1”)  is sensed rapidly, and amplified by 436 

secondary Ca2+ release (arrow  “2”). This arrangement creates excitation-contraction coupling in 437 

skeletal myocytes, where pan-cytoplasmic Ca2+ rises within 10-50 milliseconds of depolarization. 438 

(B) Lipid transfer proteins such as ceramide transferase (CERT) can bind both sides of a contact site 439 

simultaneously, forming bridges. Note that CERT might feasibly also use diacylglycerol as a second 440 

(counter-current) ligand. Such lipid transfer proteins bind VAP (red) in the ER (pink) and a lipid 441 

(blue) in a membrane of the late secretory pathway (light blue). Both VAP and the linkers for 442 

attached lipid transfer domains can span ≥20  nm. (C and D) Counter-current exchange of sterol 443 

and PI4P by OSBP related proteins (ORPs): ORP5 at ER-plasma membrane contact sites (C) or 444 

Osh4p at post-Golgi secretory vesicles (D). The lipid transfer domain binds one lipid at a time, 445 

either sterol, PI4P (blue) or others (not shown). PI4P synthesised in the Golgi is dephosphorylated 446 

by Sac1 in the ER (scissors). The PI4P gradient (blue–white arrows) can drive sterol up a gradient 447 

(light-dark yellow arrows). Sec14 homologues can exchange PI, PC and in some cases sterol (not 448 

shown). At contact sites (A, B and C) components of different organelles directly impinge on each 449 

other, and they can be regulated collectively. However, lipid transfer proteins that do not 450 

obviously target contact sites, such as yeast Osh4p and Sec14p (D) can carry out similar counter-451 

current transfer. The absence of a contact site prevents en bloc regulation of the pathway, and 452 

imposes additional diffusion steps that are likely to reduce efficiency. Possibly related to this, both 453 

Osh4p and Sec14p are present in much higher copy number (> 10x) than anchored transfer 454 

proteins such as Osh1-3p and Lam1-6p. 455 

Figure 4. Linkers across contact sites 456 

(A) contact site components with linkers easily long enough to cross contact sites. The topology of 457 

some of these (for example Ist2p and STIM1) is similar with long, mainly unstructured linkers and a 458 

terminal polybasic region (PBR, with net charge shown). (B) contact site components with short 459 

linkers. All are embedded in the ER, except StARD3 (late endosomes); except VAP and PTP1B, all 460 

are lipid transfer proteins: Ysp2p, Lam1p and GramD1b are in the LAM family, ORP8 (or its 461 

homologue ORP5) is an OSBP homologue, Mmm1p (in ERMES) and E-Syt2 are TULIPs. Details of 462 

the linker regions (right hand side) show polybasic regions as in A, and the maximum distance 463 
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spanned by the remaining unstructured linker. Note that although over-expression of E-Syt1 alters 464 

the recruitment and function of other contact site proteins, this effect might result from Ca2+-465 

dependent lipid traffic, not from narrowing of the contact site. 466 

Figure 5. Does Sac1 function across contact sites? 467 

(A) Domain map of Sac1 (yeast), with detail of C-terminus. Residues 1-456 produced diffraction 468 

data in two crystal structures, with the C-terminus forming a phosphatase domain, and the N-469 

terminus forming a uniquely folded accessory domain. This suggested that the linker is ~70 470 

residues long. However, residues 457-502 are not only highly conserved in all PI4Pases, including 471 

those without transmembrane helices, but this region is required for catalysis. Also, these residues 472 

are predicted to form a sheet (arrow) and two helices (according to PSI-PRED) following helix-9 in 473 

the solved structure. The failure of residues 457-502 to diffract may be explained by them 474 

adopting multiple conformations, but forming an unstructured loop appears unlikely. The detail 475 

shows that after the catalytic domain ends at residue 502 the remaining C-terminus is predicted 476 

as: a linker of 19 residues (503-521, maximum reach 7.2 nm), two transmembrane helices 477 

(residues 522-544 and 556-573), and a cytoplasmic extreme C-terminal domain that is typically 478 

short (e.g. 19 residues in humans) but uniquely extended in yeast (31 extra residues, grey), 479 

containing 11 conserved residues (grey lines), and with multiple predicted -sheets (not shown). 480 

 (B) Scale diagram of Sac1 at a ER-plasma membrane contact site. Given the lack of evidence that 481 

residues 457-502 can unfold completely, we have assumed that they are positioned close to the 482 

catalytic site. Thus, the active site (orange circles) can only reach out slightly over 7 nm. This 483 

implies that transcatalysis cannot occur at ER-plasma membrane contact sites (gap ≥16  nm) or NVJ 484 

gap (18 nm).  485 

  486 
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Table 1: Proteins suggested as tethers at contact sites 487 

 488 

A. Strong validity as tether  489 

contact site 
protein 

contact site 
studied 

(organism) 
(i) Effect of loss on contact site  

(and over-expression‡) 
(ii) Interactions at contact site 

(binding domains). Other 
domains. 

Ref 

Junctophilin 
(JP)-1 to 4 

triad & dyad 
junctions in 
myocytes 

(vertebrates) 

Loss strongly affects extensive myocyte 
ER-plasma membrane (PM) contact site. 
Some overlap (e.g. JP3/JP4). Also in non-
excitable cells. 

Integral to ER envelope, binds PM lipids 
esp. PI4,5P2 (multiple MORN motifs). No 
other domains. 
 

[91] 
[92] 
[93] 

Num1p 
mito-PM ± ER 
 MECA 

(yeast) 

Deletion of Num1p regions involved in 
bridging reduces cortical tethering of 
mitochondria in yeast mother cells. 

Binds: PIP2 on PM (PH domain); Scs2p 
on ER (possible FFAT); Mdm36p and 
cardiolipin on mitochondria (N-terminal 
helical region N.B. not a BAR domain¶*) 

[26] 
[94] 
[95] 
*[96] 

Nvj1p NVJ 
(yeast) Deletion reduces NVJ almost to nothing. Integral to nuclear envelope, binds 

Vac8p on vacuole. No other domains 
[97] 
[98] 

Perilipin-5 
 

Lipid-droplet-
mitochondria 
(vertebrates) 

Loss of identified mitochondrial 
interaction domain reduces lipid droplet 
recruitment. 

Peripheral on lipid droplets (amphipathic 
helices) and binds mitochondria 
(hydrophilic motif). No other domains. 

[30] 

PTPIP51 (also 
called RMD3)  

ER-
mitochondria 
(vertebrates) 

Loss reduces contacts by 50%. 
Integral to outer mitochondrial 
membrane, binds VAP on ER (FFAT 
motif). No other domains 

[99] 
[100] 

Synapto-
tagmin-7 

Lysosome-
peroxisome 

(vertebrates) 

Over-expression of a dominant negative 
construct reduces contact site formation 
in vitro and in vivo.  

Integral to lysosome; binds PIP2 on 
peroxisome (C2 domains). No other 
domains. 

[45] 

VAP (Scs2p) 
ER + 7 other 
organelles 

(widely 
conserved) 

Deletion of Scs2p (yeast) reduces cortical 
ER by 50%; loss of VAP-B (human) 
reduces ER-mito contact site by 30%. 

Integral to ER +  binds  ≥100  partners,  
50% of which have FFAT motifs (MSP 
domain). Can extend ≤27  nm (Figure 4B). 
No other domains. 

[99] 
[100] 
[101] 
[102] 

 490 
B. Equivocal validity as tether  491 

E-Syt1–3 
 

ER-PM 
(mammals, but 
see Tcb1–3) 

Loss of all three E-Syts in humans reduces 
contact site by >50%. This differs from 
observed effect of deleting homologs in 
yeast. 

Integral to ER, bind anionic PM lipids (C2 
domains). Contain TULIP lipid transfer 
domains (Fig. 4B)§. 

[103]  

EMC 
(≤9 proteins) ER-

mitochondria 
(yeast) 

Deletions of five components reduces 
extent of contacts.  

Many subunits are integral to ER, several 
bind TOM. EMC1 has one or two 
predicted 6-bladed -propellers related 
to PQQ quinoproteins (Pfam 13360)¶. 

[104] 

ERMES 
(5 proteins) 

Single deletions reduce extent of 
contacts. 

Mmm1p and Mdm10p integral to ER and 
mitochondria respectively; other 
subunits bridge. Mmm1p, Mdm12p and 
Mdm34p contain TULIP domains§. 

[10] 
[14] 

Ist2p ER-PM 
(yeast) 

Deletion reduces closely adherent 
cortical ER (gap  ≤30  nm)  by  80%,  but  total 
cortical ER (gap  ≤200 nm) either by 30% 
or 0% (depending on study). ‡ 

Integral to ER, binds anionic PM lipids 
(polybasic region on extended linker, 
Figure 4A). Channel in TMEM16 family. 

[70] 
[105] 

MICOS 
Intra-mito 

(widely 
conserved) 

Deletions do not affect relationship 
between inner and outer membranes. 

Deletions affect crista morphology and 
mitochondrial function. Largest subunit, 
Mic60/mitofilin, has a C-terminal domain 
unrelated to any lipid transfer protein ¶. 

[35] 

Mitofusin-2 
ER-

mitochondria 
(vertebrates) 

Unclear; loss reduces or increases close 
contact (with differential effects on 
distant contacts) depending on study. 
Same variation in effect on Ca2+ traffic. 

Peripheral mitochondrial protein, 
possibly a small proportion on ER, forms 
homodimers. Contains dynamin-like 
GTPase.  

[106] 
[107] 
[108] 

Pex11p 
mito-

peroxisome 
(yeast) 

Deletion reduces contact by 50%. 
Peripheral on peroxisome, partner 
unknown; comes close to Mdm34p (but 
not to other ERMES components). No 
other domains. 

[23] 
[109] 

SNX2 ER-endosome 
(metazoa) 

Loss appears to prevent local PI4P traffic 
to ER, indicating possible loss of contact 
site, but structural effects not reported. 

Binds: PI3P on endosomes (BAR-PX); 
VAPA/B (FFAT-like motifs x2). No other 
domains. 

[52] 

Vps39 
mitochondria-

vacuole 
(yeast) 

Not known if deletion reduces contacts. 
 ‡ 

Peripheral vacuolar protein via binding 
Rab7, mitochondrial partner not known. 
No other domains. 

[10] 
[11] 

 492 
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C. Weak validity as tether 493 

Lam6p 
ER-mito and 
ER-vacuole 

(yeast) 
Deletion does not reduce either contact. 

‡ 
Integral to ER; binds Tom70/71p and 
Vac8p (PH domain). Contains StARkin 
lipid transfer domain. 

[20] 
[110] 
[111]  

Mdm1p NVJ 
(yeast) Deletion has no effect on NVJ. ‡ Integral to ER; binds PI3P (PX domain). 2 

other domains of unknown function. [86] 

OSBP and 
other ORPs 

ER-PM (ER-
TGN, 

endosome, 
NVJ, etc.) 

Deletion has no effect on contacts (e.g. 
∆∆∆osh123 in yeast. Partial constructs 
with mutated or missing OSBP-related 
lipid transfer domain expand contact 
sites, especially with co-overexpression 
of VAP. 

Mostly peripheral to ER (FFAT motif, 
except ORP5/8 integral); PI4P and ARF 
GTPase on other membranes (PH dom-
ain). Contain OSBP-related lipid transfer 
domains, which transfer PI4P away. 

[112] 

Tcb1–3p 
ER-PM 

(mammals, but 
see E-Syt1–3) 

No effect of deleting Tcb1–3p unless 
Scs2p absent. This differs from observed 
effect of deleting human homologs. 

Integral to ER, bind anionic PM lipids (C2 
domains). Contain TULIP lipid transfer 
domains§. 

[70] 

 494 

20 bridging proteins/complexes proposed to have tether properties, categorised by extent to 495 
which they meet two overall criteria: (i) their effect on contact structure, especially whether loss 496 
of protein diminishes contact; effect of overexpression is given where known‡, but this may simply 497 
indicate which proteins are contact site components; (ii) analysis of their domains, especially 498 
means of membrane attachment, and lack of a domain that suggests a primary function in traffic 499 
or signalling. (A) 7 bridges meet all criteria. Where reductions from deletion are partial (e.g. VAP) it 500 
is probable that other complexes bridge the same contact sites, possibly taking on the role of 501 
tether under experimental conditions. (B) 9 bridges meet some criteria and crucially do not fail 502 
through presence of a trafficking/signaling domain. (C) 4 bridges do not meet criteria, though 503 
there may be contact site expansion on over-expression. All contain additional relevant domains, 504 
typically capable of lipid transfer. Remote homologies for domains of unknown function were 505 
predicted using HHpred. They have either been verified§. or are our unpublished observations¶. 506 
For the proposed BAR domain at the N-terminus of Num1*, we supplemented HHpred with 507 
I-TASSER, which predicted helices, bundled possibly two or three together, but with no sequence 508 
or structural homology to BAR domains. 509 

  510 
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TRENDS BOX 

•  Many  membrane  contact  sites  have  been  discovered  in the past decade, 

particularly those not involving the ER. 

•  Diffusion  across  an MCS occurs in the order of microseconds, and this is an 

important aspect for the flow of ions such as Ca2+.  

•  The single most important general function common to all MCSs is metabolic 

channelling, enabling material and signals to be focussed directly from one organelle 

(or compartment) to another with nothing else getting in the way. 

•  MCS  components  with  short linkers may be sorted to, or even create, zones within 

an MCS that match the distance they can reach out.  

 

Trends Box



 

OUTSTANDING QUESTIONS BOX 

•  Which  proteins  function  in trans across MCSs? It is particularly important to 

establish this for Sac1 in relation to OSBP and its homologues which can transfer 

PI4P to the ER. 

•  How  do  linkers  work  at  MCSs?  For example, can a protein with a short linker like 

Sac1 create an MCS small enough to work in trans?  

•  Lipid transfer proteins might be true to their in vitro-derived name, picking up and 

dropping off the many thousands of lipid molecules each second. Alternately, they 

may act only as sensors. Can new technologies be developed that show the rate at 

which lipids are transferred by lipid transfer proteins in situ?  

•  Constitutive MCS that form between larger organelles such as the ER, 

mitochondria and plasma membrane tend to have multiple bridging complexes. Do 

MCSs between multi-copy spheroidal organelles (for example peroxisomes, lipid 

droplets, autophagosomes) have more simple structures (i.e. single protein bridges)? 

This would allow such contacts to respond more flexibly to specific metabolic states, 

a flexibility that could be determined by studies of the regulation and dynamics of 

MCSs.  

•  How do cells handle the heterogeneity within organelles imposed by MCSs? This is 

particularly obvious for MCSs between multi-copy organelles. Are some organelles 

biochemically distinct before they make contacts (i.e. contact formation is intrinsic)?  

•  When three (or more) organelles contribute to a single pathway (e.g. 

mitochondria, peroxisomes, lipid droplets and ER in fatty acid metabolism) are there 

specific mechanisms to bring multiple topologically different MCSs together to 

create three-way contacts? 

 

Outstanding Questions
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