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Coupling is considered between fluid flow and a freely moving body shorter than the
development length in an oncoming boundary layer or channel flow but longer than the
flow thickness. The body lies within the core of the flow. The coupling occurs between
the inviscid-dominated displacement and the viscous-inviscid pressure, the lat ter act ing
to move the body. This interact ion can be unstable. It is found however that three
factors serve to stabilise the interact ion as each one alters the decisive balance of angular
momentum. One is a 10% shift forward in theposit ion of thecent reof mass. Thesecond is
a degree of flexibility in the body shape by means of its response to the induced pressure
force. Third is a slight st reamwise movement of the body which is sufficient to modify
the viscous-inviscid pressure response and again produce stabilisat ion. The effects are
largely independent of the lateral posit ion of the body.

K ey wor d s:

1. In t r od u ct ion

This work is on the free mot ion of a finite sized body in a wall-bounded shear flow. It
is mot ivated by applicat ions in external and internal flows.

If the body is an ice shard in a boundary layer of air flow on a wing the shard may
impact locally upon the wing surface and freeze or cause damage or it may depart from
the boundary layer and cause freezing or damage elsewhere on the vehicle, such as in an
engine intake. This is important for heat t ransfer, for the aerodynamics of the wing and
for safety reasons as well as flow transit ion (Gent et al. 2000; Schmidt et al. 2010; Purvis
& Smith 2016). In the case of other small bodies close to an airfoil or fuselage, such as
debris or a parcel drop, the body may move towards the airfoil and even impact upon
the airfoil surface. The occurrence again poses a potent ial hazard for both the surface
and the body, in addit ion to the flow response. This form of fluid-body interact ion raises
quest ions of whether a detailed fluid-dynamical account can be given of the phenomenon
and if so whether safety measures to avoid the phenomenon can be predicted. Similar
quest ionsarise in other external-flow interact ionswith bodiesor part iclessuch asdust and
ice-shard mot ion (Wang & Levy 2006; Einav & Lee 1973) and internal-flow interact ions
such as those involved in plumbing problems, grain and rubble t ransport , dust movement
in hoovers and t ransport of drugs or thrombi in blood vessel networks or lung airways
(Portela et al. 2002; Muller et al. 2014; Semwogerere & Weeks 2008; Sinclair et al. 2015).

The underlying flow throughout is one with zero slip at the wall(s). A point of issue is
whether there is a preferred lateral direct ion for the body movement , in the sense that
the body tends to migrate towards a nearby solid wall or away from it . Our part icular
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2 Frank T. Smith

interest lies in the mechanisms at increasing flow rates, especially concerned with the
influences of different body shapes and paramet ric effects. When the fluid flow is at low
Reynolds number a spherical body, circular cylinder in two dimensions, or a similarly
shaped body, may be drawn gradually towards or away from a nearby wall: see Gavze
& Shapiro (1997); Kishori & Gu (2010); Frank et al. (2003). With regard to the t rend
as inert ia increases, various numerical simulat ions, experiments and empirical analyses
have been performed at low or intermediate Reynolds numbers (Loth & Dorgan 2009;
Poesio et al. 2006; Kishori & Gu 2010) typically for spheres, circles or similar shapes. At
medium-to-high Reynolds numbers slip-st reaming would suggest that in the presence of
shear the lower velocity side of the body induces less pressure effect and so the overall
pressure force should push the body into the lower velocity area of mot ion, thereby
causing migrat ion towards the wall. The present analyt ical approach suggests, in line
with other approaches, that the above idea is incomplete and often incorrect because of
significant unsteady responses in a full fluid-body interact ion incorporat ing dependence
on init ial condit ions and because of body-shape effects. Recent analyt ical studies by
Smith & Ellis (2010); Wilson & Smith (2013); Smith & Johnson (2016) for set t ings quite
different from the present one likewise suggest shape dependence. They also indicate
considerable init ial value dependence.

Major examples where the fluid and body mot ions affect each other substant ially in
near-wall shear flow are the boundary layer (Wang & Levy 2006; Einav & Lee 1973;
Schmidt et al. 2010; Pet rie et al. 1993; Hall 1964; Schmidt & Young 2009) and chan-
nel flow (Portela et al. 2002; Smith & Ellis 2010; Loisel et al. 2013; Smith & Johnson
2016), whether for a single body or many bodies. Increased physical understanding of
the detailed interact ion between fluid flow and a single finite body contained within it
may lead to improved models for many-part icle interact ions involving part icles of finite
sizes (Schmidt et al. 2010; Smith & Johnson 2016). This is supplementary to bulk mod-
elling of mult i part icle phenomena. The body of interest here is short compared with the
boundary-layer development length, which is typically an airfoil chord, and the body is
located laterally in the middle of the oncoming boundary layer under a given free st ream
velocity. The body is relat ively thin but of length largecompared with theboundary-layer
thickness (or large compared with the vessel width in the case of channel flow).

The work is part ially complementary to the recent study of Smith and Johnson on
shorter bodies in channel flow. Their study indicates various t ime scales of concern and
ident ifies an unusual instability. We take this up by addressing steady flow first in a
boundary layer and unsteadiness later, followed by considerat ion of possible stabilising
effects. The present work also differs from the study above because the present focus is on
rather longer length scales and the work covers boundary layers as well as channels. The
emphasis is on high Reynolds numbers and analyt ical features to be complementary to
numerical simulat ions and experiments. Viscous-inviscid interplay involving significant
contribut ions from an inviscid core response and viscous sublayers has a decisive role in
the fluid-body interact ions of interest here.

The fluid is incompressible and its mot ion is assumed to be two-dimensional and lam-
inar. §2 considers the behaviour induced within a boundary layer (see figure 1a) by the
presence of a finite rigid body fixed in the midst of the layer, allowing for mult i-scale
st ructure as well as dist inct leading edge and trailing edge condit ions. Solut ion proper-
t ies presented in §3 include the wall pressure and skin frict ion or wall shear stress. §4
then describes the analogous problem in a channel (see figure 1b) and shows the same
reduced problem and detailed solut ion propert ies apply there. Unsteady behaviour is
accommodated in §5 with the body moving freely in response to the flow pressure forces
according to Newtons second law and thus changing the flow field and vice-versa. This
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Free motion of a body in a boundary layer or channel flow 3

full fluid-body interact ion can result in instability. Stabilisat ion is achievable however as
described in §6, while final comments are given in §7. Three specific stabilising factors
are explored in detail.

2. F low r esp on se in t h e b ou n d a r y layer

The length scales involved are considerably less than the development length of the
boundary layer and so the surrounding boundary layer flow is almost uni-direct ional.
A nondimensionalisat ion is made in which fluid-flow velocit ies are measured relat ive to
the free-st ream velocity u∗ at the edge of the boundary layer, lengths are measured with
respect to thedevelopment length a∗, which is typically the airfoil chord in aerodynamics,
and the Reynolds number Re (≫ 1) is u∗a∗ ν∗ where ν∗ is the kinemat ic viscosity of the
fluid. A single asterisk denotes a dimensional quant ity. The pressure is based on ρ∗u∗2,
with ρ∗ being the fluid density. In nondimensional terms the boundary layer occupies
y > 0 and has width O(Re− 1 2) and length O(1) whereas the body length L ≪ 1; the
planar Cartesian coordinates are x, y, respect ively horizontal and vert ical as in figure
1(a), thecorresponding flow velocity componentsare u, v, and the pressure is p relat ive to
the free-st ream value which is taken as zero. The characterist ic streamwise flow velocity
is of order unity.

The body which is current ly considered as fixed, or moving with negligible velocity, is
closed, is of uniform density and may be of thickness comparable with the boundary-layer
thickness whereas its underside is approximately parallel with the wall on the boundary
layer scale. Far upstream of the thin body the incident flow is almost unidirect ional with
profiles u0(ȳ), Re− 1 2ψ0(ȳ) for the velocity u and stream funct ion ψ where u0(ȳ) = ψ′

0(ȳ)
and y = Re− 1 2ȳ. The prime denotes a ȳ derivat ive. The profiles are of general O(1)
form with a posit ive velocity except at the wall ȳ = 0, with a normalised skin frict ion
u′

0(0) = Re1 2λ at that wall and with uniform flow say u0 = 1 at large ȳ. Orders
of magnitude as in Stewartson (1970); Sychev (1972); Smith (1973); Smith & Daniels
(1981); Smith & Ellis (2010) then indicate that the flow st ructure comprises a core of
two quasi-inviscid parts, one above and the other below the body, a viscous wall layer
near ȳ = 0 and two viscous layers on the body itself, in addit ion to which at least one
adjustment zone is induced near the leading edge of the body.

The underside of the body, nearly aligned with the wall as in figure 1(a), lies at a
scaled height ȳ = ȳ0 (= O(1)) inside the boundary layer. The st reamwise length scale
L of the body is such that within the majority of the surrounding fluid mot ion there is
insignificant normal variat ion in the pressure except across the body itself and theviscous
wall layer remains thin compared with the boundary layer width. The insignificance of
the normal pressure gradient implies that L is greater than O(Re− 3 8) and no significant
upst ream influence occurs over the scale of L (Smith 1973; White & Smith 2012), while
the wall layer property agrees with L being less than O(1). Next we present details in
§2.1 for readers more interested in the detailed scales, fluid-dynamical st ructure and
interact ions, as well as the applicat ion to channel flow in a later sect ion, followed in §2.2
by the summarised problem which leads on to solut ion propert ies in other subsequent
sect ions.

2.1. Details of the fluid-body interplay

The wall layer has thickness O(L 1 3Re− 1 2) from an inert ial-viscous balance of momen-
tum and so the major part (the core) of the flow where ȳ is O(1) is expected to be
inviscid. This indicates the orders of magnitude of the disturbance in the core if signifi-
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F ig ur e 1. The body of length L in (a) a laminar boundary layer of width O(Re− 1
2 ) with dashed

l ines indicat ing the induced viscous wall layer and the effect ive edge of the boundary layer, (b)
a channel flow of width unity where dashes indicate the two viscous wall layers. Sketch not to
scale.

cant interact ion is to take place. Thus

x = LX with Re− 3
8 ≪ L ≪ 1 (2.1)

and the flow solut ion is expanded in the following form, where ǫ denotes an arbit rary
small amplitude parameter represent ing the relat ive displacement due to the underside
of the body,

h
u ψ p

i
=

h
u0 Re− 1

2 ψ0 0
i

+ ǫ
h
L

1
3 u1 L

1
3 Re− 1

2 ψ1 L
2
3 p1

i
+ (2.2)

This is for ȳ of O(1) in both parts of the core below and above the thin body in the
figure. The unknown perturbat ions u1, ψ1, p1 are funct ions of X , ȳ to be found, subject
to the perturbat ions having to tend to zero upst ream to match with the incident flow
propert ies. Subst itut ion into the Navier-Stokes equat ions then yields to leading order
u1 = ∂ψ1 ∂ȳ, v1 = − ∂ψ1 ∂X , u0∂u1 ∂X + v1u′

0 = 0 and ∂p1 ∂ȳ = 0 in the cont inuity
and x-, y-momentum equat ions. Hence a simple displacement effect holds in each part of
the core,

u1 = A± (X )u′
0(ȳ) ψ1 = A± (X )u0(ȳ) p1 = P± (X ) (2.3)

with the pressures P± and effect ive negat ive displacements A± being unknown and the
superscripts ± referring to the core flows above and below the body respect ively.

The underside thickness of the body occupying 0 6 X 6 1 is assumed slight ly less
than that of the viscous wall layer, on account of the small factor ǫ, and for clarity the
same size is taken for the topside (although this will be extended below). The nonzero
velocity u0 at height Re− 1 2ȳ0 implies that the zero-normal-flow condit ion must apply
on the body surfaces

y = Re− 1
2 ȳ0 + ǫL

1
3 Re− 1

2 f ± (X ) for 0 < X < 1 (2.4)

say. The fluid flow is separat ion-free and the Blasius-like viscous layers on the upper and
lower body surfaces remain negligibly thin as in Smith & Jones (2000). The kinemat ic
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Free motion of a body in a boundary layer or channel flow 5

boundary condit ion becomes

A± = − f ± + K ± for 0 < X < 1 (2.5)

whereK ± are unknown constants. This is because the condit ion requiresψ to be constant
on the surfaces (2.4) and so by expansion ψ0(ȳ±

0 )+ ǫL1 3f ± ψ′
0(ȳ±

0 )+ + ǫL1 3ψ′
1(ȳ±

0 )+
is constant . Hence at order ǫL 1 3 we have f ± u0(ȳ±

0 ) + A± u0(ȳ±
0 ) being constant , from

which (2.5) is obtained.
The flow field on top of the body extends to the outer parts of the boundary layer

where free-st ream propert ies hold. Hence in part icular

P + = 0 for 0 < X < 1 (2.6)

The condit ion (2.6) applies over the present length scales even when the topside of
the body is more extensive, for example of thickness comparable with the boundary-
layer thickness. By cont rast the flow underneath induces a nonzero pressure response
P− by means of viscous effects. The viscous wall layer near y = 0 is described by
y = L 1 3Re− 1 2Y and the expansion (Smith & Jones 2000)

h
u ψ p

i
=

h
L

1
3 λY

1

2
L

2
3 Re− 1

2 λY 2 0
i

+ ǫ
h
L

1
3 U L

2
3 Re− 1

2 Ψ L
2
3 P

i
+ (2.7)

where P = P− by virtue of the normal momentum equat ion. Hence the governing equa-
t ions are those of a viscous-inviscid wall layer,

U = ΨY (2.8)

V = − ΨX (2.9)

λ YUX + Vλ = − P −
X + UY Y (2.10)

subject to the requirements

U = 0 at Y = 0 (2.11)

V = 0 at Y = 0 (2.12)

U → λA− (X ) as Y → ∞ (2.13)

These are for no slip at the wall and for matching with the core solut ion respect ively. The
unknown pressure and displacement here yield viscous-inviscid interact ion. The overall
system is of ellipt ic type due to the requirements on the P− , A− solut ion and specifically
the property that

P + = P − = 0 for 0 < X X > 1 and A− = 0 for X < 0 (2.14)

This arises because of the classical boundary layer in X < 0, X > 1, the body being
absent there. No pressure response occurs at such X values and there is a displacement
effect only: A+ = A− is generally nonzero in the wake X > 1 and this scaled wake
displacement is to be determined (in cont rast with the result A+ = A− = 0 upstream).
In addit ion as stated earlier no significant normal pressure gradient acts over the current
st reamwise scale.

An Euler-like zone and a viscous-inviscid zone are produced near the leading edge
(Smith & Ellis 2010; Smith & Johnson 2016). The zones which are shorter horizontally
than the long scale in (2.1) are necessary to account for the slight change across X = 0±
in streamline height due to the unknown values K ± on the body by virtue of (2.2)-(2.5)
as well as abrupt changes in derivat ives of velocity and pressure locally. The smooth
adjustment locally is achieved by a combinat ion of predominant ly inviscid behaviour
over an axial scale of order Re− 1 2 near the leading edge and viscous-inviscid interplay
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over the axial scale of order Re− 3 8 (compare with (2.1)), both of which admit upst ream
influence ahead of the body itself. The Re− 3 8 scale ensures cont inuity of displacement
by means of an Re3 8x funct ional dependence and the corresponding pressure variat ion
is small relat ive to that in (2.2) while the O(Re− 1 2) scale then allows for the slope of
the displacement to be made cont inuous. Further, the leading-edge behaviour here has
to accommodate the feature that the st ream funct ion ψ must be cont inuous on the body,
hence A± u0(ȳ) must be cont inuous everywhere on the body from (2.3), hence A± must
be cont inuous at X = 0+ , and hence K ± are equal from (2.5) since the upper and lower
body surface shapes f ± are ident ical at X = 0. This leads to the relat ion

K + = K − = K (2.15)

say. At the trailing edge X = 1 a Kutta-like condit ion applies in order to keep the flow
separat ion-free and cont inuity of pressure holds across the wake (Smith & Ellis 2010;
Smith & Johnson 2016), requiring

P− = 0 at X = 1 (2.16)

by virtue of (2.14). The quasi-height K in (2.15) based on the st ream funct ion acts as a
circulat ion constant and has to adjust or be adjusted to ensure that (2.16) is sat isfied, a
condit ion which highlights the spat ial ellipt icity.

2.2. Summarised problem

The task in summary is that of solving viscous equat ions and interact ive condit ions, in
the following neater form:

U = ΨY V = − ΨX (2.17)

λYUX + Vλ = − PX + UY Y (2.18)

U = V = 0 at Y = 0 (2.19)

U → λ
n

K − f u (X ) − h − (X − 1
2
)θ

o
as Y → ∞ (2.20)

P(0) = P(1) = 0 (2.21)

for U, V , P , K . This flow problem is almost one of the viscous-inviscid kind with fixed
displacement and unknown pressure as studied in previous works (Smith & Daniels 1981;
White & Smith 2012; Pruessner & Smith 2015) but here the circulat ion constant K is
also unknown and that t ies in with the presence of a downstream requirement at X = 1 in
(2.21). Here f u (X ) is the prescribed under-shape of the body. The cont ribut ions h, θ are
due to changes in the lateral locat ion and orientat ion of the body, scaled on ǫL 1 3Re− 1 2

and ǫL− 2 3Re− 1 2 respect ively, and these are also taken as prescribed at this stage.

3. Solu t ion p r op er t ies in t h e b ou n d a r y layer

The detailed solving and results for a general body shape are given in Appendix A.
For the specific example of a parabolic-shaped underbody, namely

f u (X ) = bX (1 − X ) for 0 < X < 1 (3.1)

with b being a posit ive or negat ive constant corresponding to the underbody curvature,
the above results give the explicit responses

P = γ
n

3X
1
3 (h − K ) + (

9

4
X

4
3 −

3

2
X

1
3 )θ +

9

28
b(7X

4
3 − 6X

7
3 )

o
(3.2)
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Free motion of a body in a boundary layer or channel flow 7

F ig ur e 2. (a) Scaled pressure P (thick curves) and skin-frict ion perturbat ion τ δ (dot ted curves)
at t he wall, vs scaled distance X , for parabolic undershape (3.5) when h = θ = 14. Values of
the thickness parameter b are indicated. (b) Lift CL and torque or moment CM versus b; both
change sign as b increases. (c) Wake displacement A vs X (> 1) for b values of − 10 0 10.

with

K = h +
θ

4
+

3b

28
(3.3)

while the perturbat ion in skin frict ion has the explicit form, with

δ = 3A i (0)λ
4
3

.
Γ(

2

3
) (3.4)

being a posit ive constant ,

τ (X 0) = δ
n

3X − 1
3 (K − h +

1

2
θ) −

3

2
(θ + b)X

2
3 +

9

5
bX

5
3

o
(3.5)

The solut ions for thescaled wall-pressure and theskin-frict ion perturbat ion are presented
in figure 2(a) for a range of values of the upwards curvature or thickness parameter b,
with h, θ taken as unity as a typical example. It is observed that only the combinat ion
hK = h − K affects the flow solut ions. Increasing the upwards curvature parameter b
raises the pressures near the rear of the body and lowers those near the front as may be
ant icipated physically. The skin-frict ion response near the leading edge is singular and
this is due overwhelmingly to the jump in the effect ive displacement A whereas near the
t railing edge the skin frict ion reacts to the favourable pressure gradient for b of 10 by
increasing and to the adverse value for b of − 10 by decreasing as expected.

Also shown in figure 2(b) is the scaled lift CL and torque or moment CM act ing on
the body. Since the pressure produced on the topside of the body is much less than that
beneath the body (in view of (2.6)) the lift and torque are dominated by the influence of
the underneath pressure solut ion: see Appendix A. The effects from viscous stresses are
substant ially smaller. Hence the scaled lift and torque are given by

CL =
R1

0
P(X )dX (3.6)

CM =
R1

0
(X − 1

2 )P(X )dX (3.7)

under the assumpt ion that the cent re of mass lies at the central posit ion X = 1 2 . In
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the case of the underbody shape (3.1) the lift and torque results are

CL = 9γ
n

hK

4
− θ

56
+ 3b

70

o
(3.8)

CM = 9γ
n

hK

56
+ θ

80
+ 3b

728

o
(3.9)

The dependence on the curvature parameter b in the figure is of interest . The changes
in sign for both CL , CM arise direct ly because of the pressure behaviour in figure 2(a).
Increasing b implies that the underbody shape becomes more concave downwards such
that lift and torque are enhanced.

Downstream of the body in X > 1 a wake occurs in which (2.14) applies to the
emergent displacements and pressures. Clearly the pressures are zero. Applicat ion of the
general results in Appendix A to the displacement problem then gives

A(X ) = δ2λ− 5
3

Z 1

0

P(S)(X − S)− 4
3 dS for X > 1 (3.10)

allowing A(= A± ) in the wake to be determined from the pressures act ing on the body.

The constant δ2 = − 1 9A ′
i (0)Γ(2 3) (approximately equal to 0 31703) is posit ive. The

condit ion (2.16) ensures convergence of the integral in (3.10). Results are shown in figure
2(c) with h, θ again unity for the parabolic undershape and tend to confirm the algebraic
X − 4 3 decay at large posit ive X seen in (3.10) with the coefficient of proport ionality
being related to the scaled lift on the body. The displacement in the wake is cont inuous
with that from the given body shape at the trailing edge: for example a zero b value
in (3.10) gives an A value of − 0 25 immediately downst ream of the trailing edge which
agrees with the result − θ 4 from the underbody effect at the trailing edge.

4. Solu t ion p r op er t ies in ch annel flow

A similar physical reasoning is found to apply for a thin body in channel flow over
length scales suitably larger than the channel width a∗. With a Reynolds number R
based convent ionally on this a∗ (instead of the development length used in Re) and on
the typical axial incident velocity, the coordinates x, y are as in figure 1(b) and the
channel walls are at y = 0, 1. The incident profiles u0(y), Ψ0(y) yield posit ive velocity
except at y = 0, 1, with a normalised wall shear stress u′

0(0) = λ− of order unity at the
lower wall and similarly at the upper wall u′

0(1) = − λ+ say. Here R is large and the
orders of magnitude of the main propert ies then are as in Smith (1976, 1977).

The core flow has x = LX with R1 7 ≪ L ≪ R and a simple displacement takes place
in each part of the core,

h
u ψ p

i
=

h
u0 ψ0 0

i
+

ǫ
h
L

1
3 R− 1

3 A± (X T)u′
0(y) L

1
3 R− 1

3 A± (X T)u0(y) L
2
3 R− 2

3 P ± (X )
i

+ (4.1)

The body surfaces are prescribed as y = y0 + ǫL
1
3 R− 1

3 f ± (X ) for 0 < X < 1 and so the
upper and lower displacement effects are given by

A± = − f ± + K ± 0 < X < 1 (4.2)

respect ively. The lower viscous wall layer near y = 0 is described by y = L 1 3R− 1 3Y
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and the expansion (Smith 1976)
h
u ψ p

i
=

h
L

1
3 R− 1

3 λ− Y
1

2
L

2
3 R− 2

3 λ− Y 2 0
i
+ ǫ[L

1
3 R− 1

3 U− L
2
3 R− 2

3 Ψ− L
2
3 R− 2

3 P− ]+

(4.3)
with an analogous form holding in the upper viscous wall layer. Hence the governing
equat ions and boundary condit ions are

U± = Ψ±
Y V ± = − Ψ±

X (4.4)

λ± YU±
X + V ± λ± = − P±

X + U±
Y Y (4.5)

U± = V ± = 0 at Y = 0 (4.6)

U± → ∓λ± A± (X ) as Y → ∞ (4.7)

in the two wall layers. Also the arguments behind (2.15), (2.16) apply st ill, slight ly
modified and yielding K + = K − = K , P+ = P− at X = 1, while the upstream and
downst ream relat ions give

A+ = A− P+ = P− for X < 0 and X > 1 (4.8)

since the body is absent there and no significant normal pressure gradient acts there.
An axial length scale of order R1 7 (≪ L) acts to provide cont inuity of displacement
upst ream through an exp(κ̄R− 1 7x) process where κ̄ is a posit ive constant (Smith 1977).

The same final problem as in §2.2 is found to apply here but for reasons slight ly
different from those for the boundary layer. If the incident wall shears λ± in the channel
flow are equal then subt ract ion of the upper and lower wall-layer systems above leads to
(2.17)-(2.21) precisely but with
h
U+ − U− V + − V − P + − P − 1

2
(A+ + A− )

i
=

h
U V P K − f u − h − (X −

1

2
)θ

i
(4.9)

represent ing the differences between the upper and lower wall pressures and the means
of the displacements. The central problem (2.17)-(2.21) has the same form as those
studied by Smith & Jones (2000); White & Smith (2012) for symmetric channel flow over
shorter length scales, except that in their studies the K cont ribut ion is absent because
of symmetry across the channel and no downstream condit ion analogous to (2.21) is
involved. The pressure differences and mean displacements in the present set t ing are
seen to act similarly to the pressure and displacement effects in the boundary-layer case.
The flow propert ies in channel flow are thus exact ly as described in the previous sect ion.

5. U n st eady flow-b ody int er act ion

When the rigid body is free to move the scaled lift and torque in (3.6) and (3.7) act
along with gravity to drive the changes in linear and angular momentum of the body by
means of Newton’s second law. This is considered below mainly with the boundary-layer
case in mind but it applies equally well for the channel-flow case as well.

The scaled height h and angle θ thus become t ime-dependent . In dimensional orders
of magnitude the lateral linear-momentum terms are O(M ∗u∗Re− 1 2ǫL 1 3σ− 1) where
M ∗ is the body mass and the t ime scale is writ ten a∗u∗− 1σ. So the rate of change of
linear momentum is O(M ∗u∗2a∗− 1Re− 1 2ǫL 1 3σ− 2) in the lateral direct ion. The forces
to balance the rate of change are dominated by the CL influence in (3.6) which gives a
lift force of O(ρ∗u∗2a∗) accompanied by a gravity force which we take to be comparable.
Hence the t ime scale sat isfies σ2 ∼ M ∗a∗− 2ρ∗− 1Re− 1 2ǫL 1 3. Similar reasoning applies
to the angular momentum. On the other hand the st reamwise component of the linear
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10 Frank T. Smith

momentum balance for the body simply gives d2X c dX 2 as zero predominant ly where
X = X c is the st reamwise posit ion of the cent re of mass; the streamwise forces due to
the fluid mot ion (pressure and st ress forces) are too small to affect the main response
which is that X c may move with a constant velocity Vc. We take Vc to be negligible in
the present and the preceding set t ings but explore the influence of non-negligible Vc in
the next sect ion.

The height and the orientat ion angle vary in t ime according to the balances of lateral
momentum and angular momentum,

M̂
d2h

dT2
= CL − M̂ ĝ (5.1)

Î
d2θ

dT2
= CM (5.2)

which hold at leading order. Here M̂ , Î are defined by L− 4 3Re1 3M ∗
.

(a∗2ρ∗σ2) and

L − 7 3Re1 3I ∗
.

(a∗4ρ∗σ2) where the dimensional mass M ∗ and moment of inert ia I ∗ of

the body per unit distance perpendicular to the plane of the mot ion are themselves
comparable with or greater than L 1 3Re− 1 3a∗2ρ∗B , L 1 3Re− 1 3a∗4ρ∗B in turn and ρ∗B
is the body density. We suppose M̂ , Î are of the same order throughout. The body’s
orientat ion with θ being small implies that the pressures P are exerted vert ically to
leading order on either surface of the body. The balance (5.1) includes ĝ, the scaled
gravity effect , while T denotes t ime in units of a∗u∗− 1σ, with the a∗u∗− 1 part being a
convect ive scale.

The fluid flow itself remains quasi-steady during the free body mot ion provided that
in essence the ∂ ∂T operator implicit in the main st reamwise momentum equat ions
following (2.2), (2.7) remains small relat ive to the inert ial and viscous operators. Of the
lat ter operators the smallest in magnitude occurs in the viscous-inviscid wall layer and
is O(L − 2 3). So the quasi-steady flow assumpt ion is that σ ≫ L 2 3, on which basis the
flow st ructure and solut ions of §2-§4 cont inue to apply: this includes especially the Kut ta
condit ion in (2.16) or (2.21) at the t railing edge since close to that edge the small spat ial
scales emphasize the spat ial dependence over the relat ively slow temporal dependence.
Dependence on t ime T is now supposed for all the variables in those sect ions: A± (X T),
P± (X T), U(X Y T) and so on. The h(T), θ(T) values of §2-§4 now become coupled
with the evolut ion equat ions (5.1)-(5.2). In part icular the parabolic underbody shape of
(3.1) gives lift and torque as in (3.8)-(3.9) and in consequence the coupled system reduces
to

M̂
d2h

dT2
= 9γ

n hK

4
−

θ

56
+

3b

70

o
− M̂ ĝ (5.3)

Î
d2θ

dT2
= 9γ

n hK

56
+

θ

80
+

3b

728

o
(5.4)

together with the relat ionship, from (3.2),

hK = −
θ

4
−

3b

28
(5.5)

Here, to repeat , hK = h − K . This specific case highlights the general point that θ alone
is governed by the angular momentum balance, here (5.4), after which (5.5) (or (3.2))
determines the relat ive height factor hK and then the linear momentum balance, here
(5.3), serves to determine the height h. (The appearance of K only in the form h − K
makes physical sense through the completely vert ical displacements that are part of (2.3),

Page 10 of 21Page 11 of 22



Free motion of a body in a boundary layer or channel flow 11

12

-12

θ

Dotted curves: b = 0
Solid curves: b = 10

Tc

(3a)

−100

−50

0

50

100

0 1 2 3 4

(3b)

Tc

Dotted
curves: τ (1, 0, Tc)/δ 

Solid curves: h

−200

−150

−100

−50

0

50

100

0 1 2 3 4

F ig ur e 3. (a) Evolut ion of θ vs scaled t ime Tc for different θ(0) values (− 12 − 6 0 6 12) with
dθ
dt

(0) = 0, when b = 0 or 10. The horizontal dashed curve is for θ(0) = b = 0. (b) Scaled height
h (thick curves) and skin-frict ion perturbat ion τ / δ at the t railing edge (dot ted curves) vs Tc ,
for b zero, under the same condit ions as in (a). The dot ted curves are the thinner ones in (b);
θ(0) = − 12 gives the top curves in h, τ δ whereas 12 gives the bot tom ones.

(2.5), and this t ies in with the subst itut ion of h− K which yields the equat ion for θ alone
leading to (5.4).)

Solut ions of (5.3)-(5.5) are shown in figure 3(a,b) and cover a range of init ial condit ions
as well as parameter values with regard to the underbody thickness and their influences
on the long-term responses. Here M̂ = 1, Î = 0 2 throughout . Figure 3(a) includes plots
of θ versus scaled t ime and figure 3(b) shows the temporal variat ion of the corresponding
h and skin-frict ion values at the t railing edge. These solut ions are explicit ly

θ = D1 exp(Tc) + D2 exp(− Tc) − D3 (5.6)

h − h(0) − Tc
dh

dTc
(0) = D4 exp(Tc) − 1 + D5 exp(− Tc) − 1 + D6T2

c (5.7)

while hK follows direct ly from (5.5), (5.6). The constants D1, D2 depend on the init ial
condit ions, T = [Î γ− 1253− 4(35)]1 2Tc , b = [5− 2(91)]D3 , D4 = κs1D1, D5 = κs1D2,
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12 Frank T. Smith

D6 = κ(s2 − s1D3) 2 where s1 = − 9 112, s2 = 9b (560) − M̂ ĝ, κ = 25(35)3− 2 Î M̂ .
The results point to unbounded growth emerging. The long-term behaviour in every case
takes the form, with constants having subscript d,

h
h θ K

i
=

h
hd θd K d

i
eQT (5.8)

The constant growth rate Q is found to have four possible roots with the values of
the coefficients [hd θd K d] determined by the init ial condit ions on h, θ, dh dt, dθ dt.
These roots (characterist ic values) come from replacing d2 dT2 by Q2 of course in the
unforced problem, and at least oneroot hasposit ivereal part Qr which indicates temporal
unbounded growth or instability. In fact the roots are explicit ly

Q = ±
9

4

n γ

70Î

o 1
2

0(twice) (5.9)

The two zero roots correspond to θ ident ically zero with h being â + b̂T for constants
â, b̂, but at large T the Qr > 0 root dominates (5.8) in virtually every case. The roots
all together depend only on the parameters Î (moment of inert ia), γ (viscous response)
whereas the init ial condit ions and both M̂ and Î control hd, thereby bringing in the
influences of the body mass. The influence of gravity ĝ is negligible relat ive to (5.8).
Overall exponent ial growth (Qr > 0) accompanied by linear growth corresponding to
(5.8), (5.9) dominates at large t imes.

Physically the non-alignment due to the scaled angle θ varying plays the decisive role
in the exponent ial growth above as (5.3)-(5.5) show. The presence of fluid flow and hence
fluid-body interact ion accentuates this: a slight increase in θ induces pressure that is
negat ive underneath the body compared with on top and biased towards the front of the
body, when combined with the t railing edge const raint , which then yields posit ive torque
and hence forces θ to increase further and so on, leading to unbounded growth. There is
no so-called added mass effect ive here since the fluid flow remains quasi-steady. Moreover
the increasing θ causes the relat iveheight factor hK to decrease in view of the relat ionship
(5.5) which is associated with the t railing-edge constraint . So the combined influence on
thevert ical mot ion is to cause thebody to accelerate towards thewall, from (5.3), giving a
posit ive gravity effect . Thus with this init ial condit ion the body rotates ant iclockwise and
approaches the wall. (An init ially decreasing displacement in the lower part of the core
broadly gives rise to a decreasing pressure there due to the viscous wall-layer response
and it provokes no pressure on top. Hence the pressure difference rises, causing the body
to accelerate towards from the wall. This adds to the decreasing displacement of the wall
layer and core and so boosts the downward t rend.) A similar self-perpetuat ing growth
arises if the trend in θ starts downward, yielding a negat ive gravity effect ; the body then
rotates clockwise and departs from the wall. We remark that the basic height y0 has
no effect in any case in the current regime as inferred from the displacement propert ies
in (2.3)-(2.5) and similarly the body length L has no qualitat ive effect here. The main
feature in the present range is clearly the growth (5.8), which comes from the influence
of the torque on the scaled angle.

6. St ab ilisin g fea t u r es

Given the instability that is seen to occur in a boundary layer or channel flow in
the configurat ion of the previous sect ion we now examine the possibility of there being
stabilising mechanisms. Three are found, as described in §6.1-§6.3 below.
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Free motion of a body in a boundary layer or channel flow 13

F ig ur e 4. Angle θ vs Tc for θ init ial values ( − 9 to 9 in steps of 2) as indicated when cent re-of–
mass posit ion ∆ is changed from 0 5 (solid curves) to 0 35 (dot ted curves). Here b = 8. On the
dot ted curves, which are the ones showing clear oscillat ion, the maximum amplitudes are those
for an init ial theta of − 0 9 whereas the minimum amplitudes are for the init ial value 9.

6.1. Front-heavy body

When the centre of mass of the thin rigid body is in a general posit ion X = ∆ rather
than just at the midway point as assumed in the previous sect ions then most of the
preceding analysis remains intact . Here 0 < ∆ < 1. In fact the working in §2-§3 is
unaltered except that (X − 1 2) is replaced by (X − ∆ ) in the scaled torque (3.7), (3.9)
and the changes in §5 are then associated with the influence of ∆ through the torque CM

in (5.4). Consequent ly, for the case of the parabolic underbody shape, (5.4) becomes

Î
d2θ

dT2
= 9γ

n
J1θ + J2b

o
(6.1)

where the constants J1, J2 are given by

J1 = 322− 57− 1
h1

5
+ 2(∆ −

1

2
)
i

J2 = 322− 47− 25− 1
h2− 152

13
− 7(∆ −

1

2
)
i

(6.2)

after useof (5.5). Thevalueof thecoefficient J1 is important since it cont rols thecharacter
of the solut ion θ of (6.1) with the variat ion of the angle θ itself dictat ing whether the
whole fluid-body system exhibits unbounded growth or not . Here the first equat ion in
(6.2) shows that there is a crit ical value ∆ 0 of the st reamwise posit ion ∆ of the cent re
of mass, namely

∆ 0 =
2

5
(6.3)

such that J1 isposit ive for ∆ above∆ 0 and negat ivebelow ∆ 0. Theformer rangeindicates
instability as before whereas the range ∆ < ∆ 0 suggests stability is possible.

The main results for the evolut ion of the angle θ are shown in figure 4, for a thickness
parameter b = 8. They are subject to the init ial condit ions of given θ(0) and zero dθ dT
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14 Frank T. Smith

at zero t ime and so, with Tc denot ing Q1T, they correspond to the solut ions

θ =
n

θ(0) + J2bJ − 1
1

o
cosh(Q1T) − J2bJ − 1

1 for ∆ > ∆ 0 (6.4)

θ =
9γJ2bT2

2Î
+ θ(0) for ∆ = ∆ 0 (6.5)

θ =
n

θ(0) + J2bJ − 1
1

o
cos(Q2T) − J2bJ − 1

1 for ∆ < ∆ 0 (6.6)

as ∆ , θ(0) are varied. Here Q1 = 3(γJ1 Î )1 2, Q2 = 3(− γJ1 Î )1 2. In essence the non-
t rivial eigenvalues Q in (5.9) are replaced by ± 3(γJ1 Î )1 2 but allowing for subcrit ical
values of J1 being negat ive. The change in character from exponent ial growth to bounded
oscillat ion as ∆ is reduced from above crit ical to below is highlighted by the figure (which
has ∆ equal to 0.5 and 0.35) and is as expected from (6.1). It is also sensible physically
because as far as the torque is concerned the front-loading of the body associated with
decreasing ∆ below 1 2 reduces the moment of the more rapidly varying pressure forces
near the leading edge (compared with those towards the rear of the body) and this hap-
pens to such an extent when ∆ is less than ∆ 0 that the effect suppresses any growth in
the angle θ. It is worth remarking that the alterat ion in the posit ion of the cent re of mass
required for stabilisat ion is predicted as 10% only, according to (6.3), compared with the
original central posit ion; this alterat ion in condit ions is notably small.

6.2. Flexible section in body

If the underbody is flexible then again significant changes in the fluid-body interact ive
behaviour may be produced. The possibility arises from the effects of varying b in §3 (see
figure 2(a,b)) and is examined in detail below. In this context for the boundary layer
the governing equat ions of §2, §3 most ly remain valid in their quasi-steady form but the
underbody shape becomes unknown; so (3.1) for instance applies no longer. Instead the
shape is related to the unknown underbody pressure P(X T) by means of a flexible-
surface equat ion (Cox & Mason 1971; Carpenter & Garrad 1985; Guneratne & Pedley
2006; Pruessner & Smith 2015). If e2 is the scaled longitudinal tension of the underbody
surface and P0 is the constant scaled base pressure inside thebody relat ive to the incident
pressure, then the equat ions and boundary condit ions are

e2
∂2f u

∂X 2
= P0 − P (6.7)

f u (0 T) = f u (1 T) = 0 (6.8)

See the Pruessner and Smith system for a different set t ing. Here the signs in (6.7) reflect
the property that a flow pressure higher than the base pressure provokes a negat ive
curvature and thus an overall rise in the underbody shape. The ensuing interact ion is
thus controlled by (3.6), (3.7), (5.1), (5.2) with (6.7) and (6.8), as well as the general
results (A 5), (A 6) in Appendix A, for the predict ion of (θ h hK P f u ) as t ime increases.

Solut ions of the flexible-body interact ion yield a supercrit ical or subcrit ical response
giving unbounded growth or bounded oscillat ion similar to that in the previous sub-
sect ion. For comparison purposes we show in figure 5(a) the results of the Q-approach in
which a behaviour (5.8) is supposed as in §5, such that Î Q2θd replaces the left -hand side
of (5.2). The value of d can be normalised to unity by working with (h hK P f u ) θd ,
the value of λ can likewise be taken as unity without loss of generality and the value of
P0 is negligible in the cases of exponent ial growth. The figure gives the predict ion for Q2

and the representat ive quant ity hK as e2 is varied. Although at larger e2 the response
Q2 is always posit ive, as e2 is decreased a form of resonance comes into act ion in which
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Free motion of a body in a boundary layer or channel flow 15

F ig ur e 5. (a) Eigenvalue Q2 (crosses) and relat ive height hK (dot s) vs flexibility parameter e2 .
Effect ively P0 is zero. The changes in sign of Q2 at (6.5) (approx. 0 062) and of hK at e2 approx
0 077 are noted. (b) θ, hK vs Tc for P0 of 1, 5 when e2 is 0 01.

the response is enhanced (Pruessner & Smith 2015) and this leads to successive changes
in the sign of Q2. The crit ical value of the scaled longitudinal tension e2 below which
bounded behaviour is first found is

e2 = e20 = approx. 0 062 (6.9)

Hence stabilisat ion is again apparent .

Figure 5(b) presents results for the temporal evolut ion of the angle and the relat ive
height factor hK at the subcrit ical value e2 = 0 01. For given flexible material propert ies
a decrease of e2 to a subcrit ical value for example is caused by an increase in the incident
flow strength. The results agree with those in figure 5(a) in that cont inued oscillat ions
are found to occur with the amplitude and frequency depending on the parameter values,
namely P0 of 1 and 5 in this case, for the subcrit ical range.

6.3. Streamwise movement of the body

As the velocity Vc of the body is increased in the st reamwise direct ion it first affects the
fluid-body interact ion significant ly in the boundary layer case when Vc is of order L 1 3,
due to the background flow velocity in (2.7). Cf Smith & Johnson (2016). The influence
on the core flow is negligible at this stage.

Above that size, for the range of body velocit ies L 1 3 ≪ Vc ≪ 1, the scaled cent ral
problem (2.17)-(2.21) is altered by having a term − C (= − VcL− 1 3) due to advect ion in
the inert ial contribut ion in place of the term λY due to shear in (2.18). The influence of
Vλ is also suppressed then. In effect Y is scaled by a factor C− 1 2, leading to f + , f − ,
K , ĥ, θ̂ all being of order P C with the size of P to be found. The t ime scale T must
decrease like C− 1 2. The present assumpt ion is that M̂ , Î are of order unity, as are λ, X .
The wall layer thereby becomes a classical layer subjected to an upst ream moving wall
condit ion, with the influence of the underlying shear proport ional to λ being diminished.
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To leading order the fluid-flow equat ions are

U = ΨY (6.10)

V = − ΨX (6.11)

− CUX = − PX + UY Y (6.12)

confirming that the major advect ion is in the negat ive X -direct ion. This classical sub-
boundary layer acts as if with prescribed pressure except that the pressure is itself evolv-
ing. The behaviour in the outer reaches of the layer implies

P = λC
n

K − f u (X ) − h − (X −
1

2
)θ

o
+ Ê (6.13)

for the pressure where Ê is a constant , from (2.20) with (6.12). The response here is
predominant ly inviscid.

In consequence the body-mot ion balances (5.1), (5.2) of the fluid-body interact ion give
successively

M̂
d2h

dT2
= λC(K − h)+ Ê − M̂ ĝ (6.14)

Î
d2θ

dT2
= −

λC

12
θ (6.15)

after integrat ion. This is strict ly for an underbody shape f u of zero. A nonzero shape
f u merely adds at most a constant to (6.14), (6.15) while if f u is symmetric about the
centre of mass, as in the parabolic case of (3.1), then (6.15) remains unchanged. The
decisive equat ion in any case is that for the angular momentum of the body in (6.15).
Results are presented in figure 6 for varying posit ive C values and compared with the
corresponding results for the previous C = 0 configurat ion, emphasising the stabilising
effect of the body movement .

Physically thefluid-mot ion part of thepresent interact ion yieldsa pressurecontribut ion
proport ional to the flow width, a result which is akin to that in Smith & Daniels (1981) in
a different context , and thecoupling with thebody-mot ion part then producesoscillat ions
in θ for any posit ive body velocity C. Thus in (6.13) an increase in θ induces a pressure
decrease downstream of the centre of mass of the body, which here is at the midway
locat ion, whereas the pressure upst ream is increased, and this acts to reduce the torque
on the body. In turn the angular accelerat ion is therefore reduced in (5.2) or explicit ly as
in (6.15) which tends to decrease the angular velocity and so the movement is stabilised,
as in simple harmonic mot ion. The oscillat ion frequency increases with increasing C.
The reduced form in (6.13) and hence in (6.14)-(6.15) is related to the findings from
the response of the Tiet jens funct ion in Smith & Johnson (2016) and it is noted that a
response similar to that in (6.10)-(6.14) occurs for the channel flow case of §4 at increased
body velocity.

7. Fu r t h er d iscu ssion

The results altogether have shown first that over the present scales the fluid/ body
interact ion for a single finite body moving freely is the same in a boundary layer as in a
channel flow. Second, the interact ion can be unstable. Third however there are at least
three factors that can stabilise the interplay by changing the decisive balance of angular
momentum of the body. These three are a shift forward in the locat ion of the cent re of
mass, a flexible underside in the body, and a slight st reamwise movement of the body.
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Free motion of a body in a boundary layer or channel flow 17

F ig ur e 6. Angle θ vs scaled t ime for init ial value θ(0) = 1 when body has scaled st reamwise
velocity C = 0 (with b of − 8 − 4 0 4 8, from the bot tom to the top dashed curve respect ively)
or C = 0 5 1 1 5 2 (for any b value).

Fourth, the overall effects produced are independent of the lateral posit ion of the body
within the core over the current range of scales. The considerable implicat ions from this
are as follows.

The waves (in stabilised cases) and the instabilit ies (otherwise) studied in this work
rely on two-way interplay between the body movements and the surrounding fluid mo-
t ions in the boundary layer or channel flow. All of the stabilising measures considered
seem to make sense physically as well as indicat ing potent ial safety measures in certain
applicat ions. Front-loading of a body in a relat ively fast flow of fluid in order to mit -
igate against instability is intuit ively sensible and also agrees with the reduced torque
from pressures near the leading edge. Using wall or body flexibility to absorb energy
and suppress instability is also intuit ively reasonable as well as subject to delicate bal-
ances between shape, pressure and torque. Moving the body along with the fluid may
similarly appear sensible physically and is in keeping with the change induced in the
pressure-displacement interact ion which forms part of the whole fluid-body interplay. In
detail however the shift in the locat ion of the centre of mass needed for stabilisat ion due
to front -loading is surprisingly small, being only 10%, i.e. a shift from the 50% midway
locat ion to the 40% locat ion. Likewise the body velocity needed for stabilisat ion due to
st reamwise movement is notably small, being at any rate between the order of the viscous
wall-layer speed and order unity relat ive to the incident speed in the boundary layer and
similarly small in terms of the underlying velocity in a channel flow. This is for rightwards
movement in figure 1(a,b). If the body is moved leftwards then the reversed convect ion
yields increased instability instead. Figure 6 for example illustrates the point about mit i-
gat ion in terms of the rightwards body movement . The mit igat ions or stabilisat ions here
have varied relevance in the applicat ions described in the introduct ion to the paper. We
remark also that in the stable cases the perturbat ion in body orientat ion (denoted θ)
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18 Frank T. Smith

oscillates in t ime whereas that in distance from the wall (denoted h) increases linearly
with t ime but the direct ion remains dependent on the init ial condit ions.

Neither the lateral locat ion nor the streamwise length of the body has any qualitat ive
effect at leading order within the present range of concern shown in figure 1(a,b). The
current work and that in Smith & Johnson (2016) imply that apart from the stabilis-
ing measures above most body lengths can lead to unstable fluid-body interact ion with
viscous-inviscid shear flow, which appears to cont rast significant ly with propert ies at low
flow rates. On the other hand the quest ion of what happens when the body is nearer
a wall, especially inside a viscous wall layer, remains to be studied. Interest ing further
problems arise also if the body length is reduced to the t riple-deck size or enhanced to the
development length scale associated respect ively with the lower and upper restrict ions of
the theory (see (2.1)) in the context of a boundary layer and likewise for a channel flow
(see just before (4.1)). Increased ellipt icity is bound to arise for shorter lengths in view of
the length scales of upst ream influence. Related to the upstream influence in channel flow
a low axial speed has a prime effect only in altering upst ream effects ahead of the leading
edge and these alterat ions take place over a length scale of order R1 7, much less than
the body length, see (4.1). The lateral pressure gradient becomes important then yielding
an extension of the original exp(κ̄R− 1 7x) mechanism but an addit ional mechanism dis-
cussed in an appendix of Smith (1984) on upstream influence in separat ing flow is found
to enter the reckoning. These mechanisms are associated with zero-pressure-gradient and
zero-displacement viscous layers respect ively when the velocity cont inues to increase. A
similar process arises for the boundary layer but is a lit t le more complicated because of
algebraic upst ream influence.

Restrict ions on the theory due to lateral locat ion and length scales have been men-
t ioned, and other restrict ions concern two-dimensionality, the Reynolds-number (Re)
range, the streamwise body velocity and the body thickness for example. The t ime-scale
assumpt ion imposes the limitat ion that for the boundary-layer set t ing the density rat io
ρ∗B ρ∗ ≫ ReL 2 3ǫ− 2, which is large, and indeed t ime scales other than those examined
here are of addit ional concern. In the case of an ice shard in a boundary layer of air the
density rat io is of the order 103 typically which may exceed the expression above. This
depends on local boundary layer propert ies: characterist ic values are Re of 103 to 105

say, length L of 10− 2 at least , ǫ− 2 of about 5, which give a similar or smaller order of
magnitude but the skin frict ion factor λ can effect ively reduce or increase the value of
ǫ by altering the viscous wall layer thickness. Further, the body Reynolds number Rep

based on body length may be as low as 102 to 103 for the above range and this covers
the range of experimental values of the crit ical Rep observed (Petrie et al. 1993; Schmidt
et al. 2010) for spherical part icles in a laminar boundary layer. The work may seem
content ious in view of all the assumpt ions made but it does support the possibility of
extensive flow destabilisat ion due to interact ion, as well as cont rast ing stabilisat ion mea-
sures which include front -loading, flexible bodies and favourable streamwise movement
in part icular applicat ions. These features might be helpful or of interest experimentally
and in terms of direct simulat ions and they also provide a set of analyt ical case studies
potent ially useful for comparisons.

The effects of further increased body velocity in the st reamwise direct ion examined in
§6.3 and the last-but -one paragraph and of increased disturbance amplitude are now ad-
dressed. The former provides a springboard for considering body velocit ies of order unity,
a regime which is perhaps of most pract ical interest . Clearly a crit ical layer occurs then
as in Smith and Johnson and this is without an inflect ion point in the cases considered so
far. We have focused on small disturbances and these produce linear interact ions which
allow more progress analyt ically. Nonlinear cases occur if the amplitude parameter (ǫ) is
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Free motion of a body in a boundary layer or channel flow 19

increased slight ly, with the viscous wall layer of §2 first becoming nonlinear through an
inert ial response of the form UUX + VUY essent ially: cf (2.18). A combinat ion of both
effects produces in addit ion the boundary condit ion U ∼ λY − C + λA at large values of
the wall-layer coordinate Y . As the scaled body velocity C increases the shear influence
λY diminishes, point ing to the relat ion P = − 1

2 (C − λA)2 to within an addit ive funct ion
of t ime. This is coupled with the relat ion involving A, θ in §3 (see also Appendix A) and
the body angular momentum equat ion in §5 involving P, θ. The nonlinear response then
is overwhelmingly inviscid but has the potent ial for viscous sublayer erupt ions. That is
based init ially on the issue of separat ion in the quasi-steady classical viscous layer close
to the wall when the amplitude is sufficient ly large. It might suggest a classical Goldstein
singularity but with account taken that the free movement of the body renders the pres-
sure unknown and there is interplay with the original viscous-inviscid-interact ive wall
layer (cf Smith & Daniels 1981). Further study is again necessary here.
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A p p en d ix A . D et a iled solvin g an d r esu lt s for a gen er a l b od y sh ap e.

The viscous parts in (2.17)-(2.21) can be treated as follows. Taking a Fourier t rans-
form in X with transformed variable α converts (2.17)-(2.18) to Airy’s equat ion for the
t ransformed shear stress τ (F ) as in Stewartson (1970); Smith (1973) with ( )(F ) denot ing
the Fourier t ransform and τ denot ing UY . We then apply the boundary condit ions on

τ
(F )
Y at Y = 0 and on the integral of τ (F ) with respect to Y from 0 to ∞ to obtain the

t ransforms of the pressure and skin-frict ion solut ions

P (F ) (α) = 3(iα)− 1
3 λ

5
3 A (F ) (α)A ′

i (0) (A 1)

τ (F ) (α 0) = (iα)
2
3 λ− 1

3 P (F ) (α)A i (0) A ′
i (0) (A 2)

Here A(X ) = K − f u (X ) − h − (X − 1 2)θ is known over the body length 0 < X < 1
although unknown in the wake X > 1. The form (A 1) allows the pressure response in
part icular to be expressed explicit ly in terms of the displacement response, or vice versa.
Also A = 0 in X < 0 owing to the lack of upst ream influence but A jumps across X = 0±
in general whereas P = 0 in X < 0 and P = 0 at X = 0+ . Inversion of (A 1) thus leads
to the direct relat ion (Pruessner & Smith 2015)

P(X ) = γ

Z X

0

n
f u (S) + h + (S −

1

2
)θ − K

o
(X − S)− 2

3 dS for 0 < X < 1 (A 3)

where the constant γ = 0 289838(λ)5 3 is posit ive. The form (A 2) leads to the result
(3.5). The parabolic nature of (A 3) on its own in the posit ive X -direct ion is noted, i.e.
the integral runs forward from zero to X , although the ent ire system here, i.e. (2.17)-
(2.21), remains ellipt ic between X = 0, 1 because of K . The upst ream match with zero
pressure is incorporated in (A 3), while the downstream effect or wake is discussed near
the end of the present sect ion.
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Given (A 3) the pressure condit ion (2.21) requires

3K =

Z 1

0

n
f u (S) + h + (S −

1

2
)θ

o
(1 − S)− 2

3 dS (A 4)

determining K whenever f u , h, θ areknown. Wethereforeobtain thepressureunderneath
the body as

P = γ
n

(h − K )i 1(X ) + θi 2(X ) + i 3(X )
o

(A 5)

Here i 1, i 2 and i 3 depend only on X; thus i 1(X ) = 3X 1 3, i 2(X ) = − 3X 1 3 2+ 9X 4 3 4,

i 3(X ) =
RX

0
f u (S)(X − S)− 2 3dS. Also K is given by

K = h +
θ

4
+ E1 (A 6)

where E1 = i 3(1) 3; this result for the quasi-height K stems from (A 4).
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