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Free motion of a body in a boundary layer or
channel flow

Frank T. Smith f
Department of Mathematics, University College London, London WC1E 6BT, UK

(Received )

Coupling is considered between fluid flow and a freely moving body shorter than the
development length in an oncoming boundary layer or channd flow but longer than the
flow thickness. The body lies within the core of the flow. The coupling occurs between
the inviscid-dominated displacement and the viscous-inviscid pressure, the latter acting
to move the body. This interaction can be unstable. It is found however that three
factors serve to stabilise the interaction as each one alters the decisive balance of angular
momentum. Oneisa 10% shift forward in the position of the centre of mass. The second is
a degree of flexibility in the body shape by means of its response to the induced pressure
force. Third is a slight streamwise movement of the body which is sufficient to modify
the viscous-inviscid pressure response and again produce stabilisation. The effects are
largely independent of the lateral position of the body.

Key words:

1. Introduction

This work is on the free motion of a finite sized body in a wall-bounded shear flow. It
is motivated by applications in external and internal flows.

If the body is an ice shard in a boundary layer of air flow on a wing the shard may
impact locally upon the wing surface and freeze or cause damage or it may depart from
the boundary layer and cause freezing or damage elsewhere on the vehicle, such asin an
engine intake. Thisisimportant for heat transfer, for the aerodynamics of the wing and
for safety reasons as well as flow transition (Gent et al. 2000; Schmidt et al. 2010; Purvis
& Smith 2016). In the case of other small bodies close to an airfoil or fuselage, such as
debris or a parcd drop, the body may move towards the airfoil and even impact upon
the airfoil surface. The occurrence again poses a potential hazard for both the surface
and the body, in addition to the flow response. This form of fluid-body interaction raises
questions of whether a detailed fluid-dynamical account can be given of the phenomenon
and if so whether safety measures to avoid the phenomenon can be predicted. Similar
questionsarisein other external-flow interactions with bodies or particles such asdust and
ice-shard motion (Wang & Levy 2006; Einav & Lee 1973) and internal-flow interactions
such asthose involved in plumbing problems, grain and rubble transport, dust movement
in hoovers and transport of drugs or thrombi in blood vessel networks or lung airways
(Portela et al. 2002; Muller et al. 2014; Semwogerere & Weeks 2008; Sinclair et al. 2015).

The underlying flow throughout is one with zero slip at the wall(s). A point of issueis
whether there is a preferred lateral direction for the body movement, in the sense that
the body tends to migrate towards a nearby solid wall or away from it. Our particular
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interest lies in the mechanisms at increasing flow rates, especially concerned with the
influences of different body shapes and parametric effects. When the fluid flow is at low
Reynolds number a spherical body, circular cylinder in two dimensions, or a similarly
shaped body, may be drawn gradually towards or away from a nearby wall: see Gavze
& Shapiro (1997); Kishori & Gu (2010); Frank et al. (2003). With regard to the trend
as inertia increases, various numerical simulations, experiments and empirical analyses
have been performed at low or intermediate Reynolds numbers (Loth & Dorgan 2009;
Poesio et al. 2006; Kishori & Gu 2010) typically for spheres, circles or similar shapes. At
medium-to-high Reynolds numbers dip-streaming would suggest that in the presence of
shear the lower velocity side of the body induces less pressure effect and so the overall
pressure force should push the body into the lower velocity area of motion, thereby
causing migration towards the wall. The present analytical approach suggests, in line
with other approaches, that the above idea is incomplete and often incorrect because of
significant unsteady responses in a full fluid-body interaction incorporating dependence
on initial conditions and because of body-shape effects. Recent analytical studies by
Smith & Ellis (2010); Wilson & Smith (2013); Smith & Johnson (2016) for settings quite
different from the present one likewise suggest shape dependence. They also indicate
considerable initial value dependence.

Major examples where the fluid and body motions affect each other substantially in
near-wall shear flow are the boundary layer (Wang & Levy 2006; Einav & Lee 1973;
Schmidt et al. 2010; Petrie et al. 1993; Hall 1964; Schmidt & Young 2009) and chan-
nel flow (Portela et al. 2002; Smith & Ellis 2010; Loisel et al. 2013; Smith & Johnson
2016), whether for a single body or many bodies. Increased physical understanding of
the detailed interaction between fluid flow and a single finite body contained within it
may lead to improved models for many-particle interactions involving particles of finite
sizes (Schmidt et al. 2010; Smith & Johnson 2016). T hisis supplementary to bulk mod-
elling of multi particle phenomena. The body of interest hereis short compared with the
boundary-layer development length, which is typically an airfoil chord, and the body is
located laterally in the middle of the oncoming boundary layer under a given free stream
velocity. The body isrelatively thin but of length large compared with the boundary-layer
thickness (or large compared with the vessel width in the case of channel flow).

The work is partially complementary to the recent study of Smith and Johnson on
shorter bodies in channel flow. Their study indicates various time scales of concern and
identifies an unusual instability. We take this up by addressing steady flow first in a
boundary layer and unsteadiness later, followed by consideration of possible stabilising
effects. The present work also differs from the study above because the present focusison
rather longer length scales and the work covers boundary layers as well as channels. The
emphasis is on high Reynolds numbers and analytical features to be complementary to
numerical simulations and experiments. Viscous-inviscid interplay involving significant
contributions from an inviscid core response and viscous sublayers has a decisive role in
the fluid-body interactions of interest here.

The fluid is incompressible and its motion is assumed to be two-dimensional and lam-
inar. §2 considers the behaviour induced within a boundary layer (see figure 1a) by the
presence of a finite rigid body fixed in the midst of the layer, allowing for multi-scale
structure as well as distinct leading edge and trailing edge conditions. Solution proper-
ties presented in 83 include the wall pressure and skin friction or wall shear stress. &
then describes the analogous problem in a channd (see figure 1b) and shows the same
reduced problem and detailed solution properties apply there. Unsteady behaviour is
accommodated in § with the body moving freely in response to the flow pressure forces
according to Newtons second law and thus changing the flow field and vice-versa. This
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full fluid-body interaction can result in instability. Stabilisation is achievable however as
described in §6, while final comments are given in §7. Three specific stabilising factors
are explored in detail.

2. Flow response in the boundary layer

The length scales involved are considerably less than the development length of the
boundary layer and so the surrounding boundary layer flow is almost uni-directional.
A nondimensionalisation is made in which fluid-flow velocities are measured relative to
the free-stream velocity u* at the edge of the boundary layer, lengths are measured with
respect tothedevelopment length a*, which istypically theairfoil chord in aerodynamics,
and the Reynolds number Re (> 1) isu*a*[%) wherev* isthe kinematic viscosity of the
fluid. A single asterisk denotes a dimensional quantity. The pressure is based on p*u*2,
with p* being the fluid density. In nondimensional terms the boundary layer occupies
y > 0 and has width O(Re™ ""2) and length O(1) whereas the body length L <« 1; the
planar Cartesian coordinates are x, y, respectively horizontal and vertical as in figure
1(a), the corresponding flow velocity componentsareu, v, and the pressureisp relativeto
the free-stream value which is taken as zero. The characteristic streamwise flow velocity
is of order unity.

The body which is currently considered as fixed, or moving with negligible velocity, is
closed, is of uniform density and may be of thickness comparable with the boundary-layer
thickness whereas its underside is approximately parallel with the wall on the boundary
layer scale. Far upstream of the thin body the incident flow is almost unidirectional with
profiles uo(y), Re™ "Pyq(y) for the velocity u and stream function y where ug(y) = Wy (Y)
and y = Re™ 1@37. The prime denotes a y derivative. The profiles are of general O(1)
form with a positive velocity except at the wall y = 0, with a normalised skin friction
ug(0) = Re!@\ at that wall and with uniform flow say Ug = 1 at large y. Orders
of magnitude as in Stewartson (1970); Sychev (1972); Smith (1973); Smith & Daniels
(1981); Smith & Ellis (2010) then indicate that the flow structure comprises a core of
two quasi-inviscid parts, one above and the other below the body, a viscous wall layer
near y = 0 and two viscous layers on the body itself, in addition to which at least one
adjustment zone is induced near the leading edge of the body.

The underside of the body, nearly aligned with the wall as in figure 1(a), lies at a
scaled height y = yo (= O(1)) inside the boundary layer. The streamwise length scale
L of the body is such that within the majority of the surrounding fluid motion there is
insignificant normal variation in the pressure except across the body itself and the viscous
wall layer remains thin compared with the boundary layer width. T he insignificance of
the normal pressure gradient impliesthat L isgreater than O(Re” 3@) and no significant
upstream influence occurs over the scale of L (Smith 1973; White & Smith 2012), while
the wall layer property agrees with L being less than O(1). Next we present details in
§2.1 for readers more interested in the detailed scales, fluid-dynamical structure and
interactions, as well as the application to channel flow in a later section, followed in §2.2
by the summarised problem which leads on to solution properties in other subsequent
sections.

2.1. Details of the fluid-body interplay

The wall layer has thickness O(LlERe‘ 1@) from an inertial-viscous balance of momen-
tum and so the major part (the core) of the flow where y is O(1) is expected to be
inviscid. This indicates the orders of magnitude of the disturbance in the core if signifi-
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(fa) (1h)

Width O(Re™"")
Width 1

Figur e 1. The body of length L in (a) alaminar boundary layer of width O(Re™ %) with dashed
lines indicating the induced viscous wall layer and the effective edge of the boundary layer, (b)
a channel flow of width unity where dashes indicate the two viscous wall layers. Sketch not to
scale.

cant interaction is to take place. Thus
x=LX with Re & « L « 1[2] (2.2)

and the flow solution is expanded in the following form, where @ denotes an arbitrary
small amplitude parameter representing the relative displacement due to the underside
of the body,

h i h i h i

ulgl@ = uo[Re 2yol@ + o Liu[EiRe 2y [Eip, + [HH (2.2)

This is for y of O(1) in both parts of the core below and above the thin body in the
figure. The unknown perturbations u;, y;, p; are functions of X, y to be found, subject
to the perturbations having to tend to zero upstream to match with the incident flow
properties. Substitution into the Navier-Stokes equations then yields to leading order
up = yldly, vi = - ayl@X, updui[@X + viuy = 0 and dpi[@ly = 0 in the continuity
and x-, y-momentum equations. Hence a simple displacement effect holds in each part of
the core,

up = A* (X)ugWME = A* (X)up(y)E py = P* (X)[E] (23

with the pressures P* and effective negative displacements A* being unknown and the
superscripts + referring to the core flows above and below the body respectively.

The underside thickness of the body occupying 0 6 X 6 1 is assumed dightly less
than that of the viscous wall layer, on account of the small factor @ and for clarity the
same size is taken for the topside (although this will be extended below). The nonzero
velocity up at height Re™ 15)70 implies that the zero-normal-flow condition must apply
on the body surfaces

y= Re zyp+ LiRe 2f¥(X) for 0< X < 1[E] (2.4)

say. The fluid flow is separation-free and the Blasius-like viscous layers on the upper and
lower body surfaces remain negligibly thin as in Smith & Jones (2000). The kinematic
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boundary condition becomes
A* = —-f* + K* for 0< X < 1[Z] (2.5)

whereK * are unknown constants. T hisis because the condition requires y to be constant
on the surfaces (2.4) and so by é)ansion Wo(ye )+ oL 153 = o (v ) + [l By, (v ) +
is constant. Hence at order gL we have f * ug(y5 ) + A* up(ys ) being constant, from
which (2.5) is obtained.

The flow field on top of the body extends to the outer parts of the boundary layer
where free-stream properties hold. Hence in particular

P*=0 for 0< X < 1[&] (2.6)

The condition (2.6) applies over the present length scales even when the topside of
the body is more extensive, for example of thickness comparable with the boundary-
layer thickness. By contrast the flow underneath induces a nonzero pressure response
P~ by means of viscous effects. The viscous wall layer near y = 0 is described by
y = LlERe 1EY and the expansion (Srnlth & Jones 2000)

u@@ L3)\Y|%L3Re 2AY2@+QL3U|E3Re zwlsP + B @27

where P = P~ by virtue of the normal momentum equation. Hence the governing equa-
tions are those of a viscous-inviscid wall layer,

U= Wy (2.8)
Vo= -y (2.9
AYUyx + VA= —Py + Uyy [ (2.10)
subject to the requirements
U=0 a Y-=0[l (2.12)
V=0 a Y-=o0[ (2.12)
Uo>A(X) as Y 5 (2.13)

These arefor no slip at thewall and for matching with the core solution respectively. The
unknown pressure and displacement here yield viscous-inviscid interaction. The overall
system is of dliptic type due to therequirementson the P~ , A~ solution and specifically
the property that

P*=P =0 for0O<X[X >1 and A~ =0 for X < O[E] (2.14)

This arises because of the classical boundary layer in X < 0, X > 1, the body being
absent there. No pressure response occurs at such X values and there is a displacement
effect only: A* = A~ is generally nonzero in the wake X > 1 and this scaled wake
displacement is to be determined (in contrast with the result A* = A~ = 0 upstream).
In addition as stated earlier no significant normal pressure gradient acts over the current
streamwise scale.

An Euler-like zone and a viscous-inviscid zone are produced near the leading edge
(Smith & Ellis 2010; Smith & Johnson 2016). T he zones which are shorter horizontally
than the long scalein (2.1) are necessary to account for the slight change across X = 0+
in streamline height due to the unknown values K * on the body by virtue of (2.2)-(2.5)
as well as abrupt changes in derivatives of velocity and pressure locally. The smooth
adjustment locally is achieved béa combination of predominantly inviscid behaviour
over an axial scale of order Re™ '™ near the leading edge and viscous-inviscid interplay
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over the axial scale of order Re™ 38 (compare with (2.1)), both of which admit upstream
influence ahead of the body itself. The Re” 3 gcale ensures continuity of displacement
by means of an ReEx functional dependence and the corresponding pressure variation
is small relative to that in (2.2) while the O(Re‘15) scale then allows for the slope of
the displacement to be made continuous. Further, the leading-edge behaviour here has
to accommodate the feature that the stream function y must be continuous on the body,
hence A* ug(y) must be continuous everywhere on the body from (2.3), hence A* must
be continuous at X = 0+, and hence K * are equal from (2.5) since the upper and lower
body surface shapesf * areidentical at X = 0. Thisleadsto the relation

K*=K~ =KI[H (2.15)

say. At the trailing edge X = 1 a Kutta-like condition applies in order to keep the flow
separation-free and continuity of pressure holds across the wake (Smith & Ellis 2010;
Smith & Johnson 2016), requiring

P =0 atX =1[Z] (2.16)

by virtue of (2.14). The quasi-height K in (2.15) based on the stream function acts as a
circulation constant and has to adjust or be adjusted to ensure that (2.16) is satisfied, a
condition which highlights the spatial dlipticity.

2.2. Summarised problem

The task in summary is that of solving viscous equations and interactive conditions, in
the following neater form:

U= wEvV= -y [E (2.17)

AYUx + VA= =Py + Uyy (2.18)

. U=Vv=0 atY:OO (2.19)
U—oA K=-fu(X)-h=-(X-1)8 asY - [ (2.20)
P(0) = P(1) = olZ] (2.21)

for U, V, P, K. This flow problem is almost one of the viscous-inviscid kind with fixed
displacement and unknown pressure as studied in previous works (Smith & Daniels 1981,
White & Smith 2012; Pruessner & Smith 2015) but here the circulation constant K is
also unknown and that tiesin with the presence of a downstream requirement at X = 1in
(2.21). Here f (X)) is the prescribed under-shape of the body. The contributions h, 6 are
dueto changesin thelateral location and orientation of the body, scaled on quERe‘ 12
and oL~ 2¥Re "2 respectively, and these are also taken as prescribed at this stage.

3. Solution properties in the boundary layer

The detailed solving and results for a general body shape are given in Appendix A.
For the specific example of a parabolic-shaped underbody, namely

fu(X)=bX(1-X) for0< X < 1[E] (3.2)
with b being a positive or negative constant corresponding to the underbody curvature,
the above results give the explicit responses

3

n (o]
P=y 3x%(h—K)+(§x%—éx%)e+2%b(7x%—6x%) (3.2)
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Figur e 2. (a) Scaled pressure P (thick curves) and skin-friction perturbation T[8(dotted curves)
at the wall, vs scaled distance X, for parabolic undershape (3.5) when h = 6 = 14. Values of
the thickness parameter b are indicated. (b) Lift C. and torque or moment Cy versus b; both
change sign as b increases. (c) Wake displacement A vs X (> 1) for b values of - 10[@[1D.

with
6 3b
= -+ — [ .
K=h+ 2" 28- (3.3)
while the perturbation in skin friction has the explicit form, with
5= 3A,(0)A} r(g) (3.4)
being a positive constant,
n . 1 3 2 9. 50
1(x[@ = 5 3x F(K=h+ 20)= S(8+B)X T+ bX: (35

The solutionsfor the scaled wall-pressure and the skin-friction perturbation are presented
in figure 2(a) for a range of values of the upwards curvature or thickness parameter b,
with h, 8 taken as unity as a typical example. It is observed that only the combination
hg = h - K affects the flow solutions. Increasing the upwards curvature parameter b
raises the pressures near the rear of the body and lowers those near the front as may be
anticipated physically. The skin-friction response near the leading edge is singular and
thisis due overwhelmingly to the jump in the effective displacement A whereas near the
trailing edge the skin friction reacts to the favourable pressure gradient for b of 10 by
increasing and to the adverse value for b of — 10 by decreasing as expected.

Also shown in figure 2(b) is the scaled lift C_ and torque or moment Cy acting on
the body. Since the pressure produced on the topside of the body is much less than that
beneath the body (in view of (2.6)) thelift and torque are dominated by the influence of
the underneath pressure solution: see Appendix A. The effects from viscous stresses are
substantially smaller. Hence the scaled lift and torque are given by

CL= Rol P (X )dX (3.6)
Cw = (X - HP(X)dX (3.7)

under the assumption that the centre of mass lies at the central position X = 12, In
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the case of the underbody shape (3.1) the lift and torque results are
n o}
CL=9y M- 843 (3.8)
n o}
Cv=9% &+ 8+ 3 [I] (3.9)

The dependence on the curvature parameter b in the figure is of interest. The changes
in sign for both C_, Cy arise directly because of the pressure behaviour in figure 2(a).
Increasing b implies that the underbody shape becomes more concave downwards such
that lift and torque are enhanced.

Downstream of the body in X > 1 a wake occurs in which (2.14) applies to the
emergent displacements and pressures. Clearly the pressures are zero. Application of the
general resultsin Appendix A to the displacement problem then gives

Z,
AX)= &N\ 3  P(S)(X - S)” 3ds[@for X > 1[E] (3.10)
0

allowing A(= At) in tiggwake to be ggtermined from the pressures acting on the body.
The constant &, = — 1[E10A; (0)(2(B) (approximately equal to 0[31703) is positive. The

condition (2.16) ensures convergence of the integral in (3.10). Results are shown in figure
2(c) with h, 6 again unity for the parabolic undershape and tend to confirm the algebraic
X ~4B decay at large positive X seen in (3.10) with the coefficient of proportionality
being related to the scaled lift on the body. The displacement in the wake is continuous
with that from the given body shape at the trailing edge: for example a zero b value
in (3.10) gives an A value of — 023 immediately downstream of the trailing edge which
agrees with the result — 84l from the underbody effect at the trailing edge.

4. Solution properties in channel flow

A similar physical reasoning is found to apply for a thin body in channel flow over
length scales suitably larger than the channel width a*. With a Reynolds number R
based conventionally on this a* (instead of the development length used in Re) and on
the typical axial incident velocity, the coordinates x, y are as in figure 1(b) and the
channel wallsareat y = 0, 1. The incident profiles up(y), Wo(y) yield positive velocity
except at y = 0, 1, with a normalised wall shear stress uy(0) = A~ of order unity at the
lower wall and similarly at the upper wall uy(1) = —A* say. Here R is large and the
orders of magnitude of the main properties then are as in Smith (1976, 1977).

The core flow hasx = LX with R1™@ « L « R and a simple displacement takes place
in each part of the core,

h i h i
uldilel = uoligb@l +
. .
0 L3R™ 5 A* (X [@yuy(y)[E3 R™ 5 A* (X [Dyup(y)[EER™ 5P* (X)I + [T (4.1)

The body surfaces are prescribed asy = yo + gL3R™ 3f* (X) for 0< X < 1 and so the
upper and lower displacement effects are given by
A* = —f* + K*[E] o0< X < 1[d] (4.2)

respectively. The lower viscous wall layer near y = 0 is described by y = L1ER- 1My
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and the expansion (Smith 1976)
h i h i
g = L3R A YELIR A Y@ +gL:R™ :U- R W [EEfR™ 3P~ |+ [HID
(4.3

with an analogous form holding in the upper viscous wall layer. Hence the governing
equations and boundary conditions are

Ut = WElve = -ys (4.4)
AEYUE + VEA: = -PE + U, [E] (4.5)
Ut =Vv*=0 aY=0[] (4.6)
Ut > FATAE(X) asY - (4.7)

in the two wall layers. Also the arguments behind (2.15), (2.16) apply still, dightly
modified and yielding K* = K~ = K, P* = P~ at X = 1, while the upstream and
downstream relations give

A* = A"[B* = P~ [Elfor X < 0and X > 1[%] (4.8)

since the body is absent there and no significant normal pressure gradient acts there.
An axial length scale of order R (« L) acts to provide continuity of displacement
upstream through an exp(kR~ @x) process where K is a positive constant (Smith 1977).
The same final problem as in §2.2 is found to apply here but for reasons slightly
different from those for the boundary layer. If the incident wall shears A* in the channel
flow are equal then subtraction of the upper and lower wall-layer systems above leads to
(2.17)-(2.21) precisely but with
h i h i
ut-u M -v B -P [EHA*+AT) = UMPIK-f,-h- (X - %)e (4.9

representing the differences between the upper and lower wall pressures and the means
of the displacements. The central problem (2.17)-(2.21) has the same form as those
studied by Smith & Jones (2000); White & Smith (2012) for symmetric channel flow over
shorter length scales, except that in their studies the K contribution is absent because
of symmetry across the channel and no downstream condition analogous to (2.21) is
involved. The pressure differences and mean displacements in the present setting are
seen to act similarly to the pressure and displacement effects in the boundary-layer case.
The flow propertiesin channel flow are thus exactly as described in the previous section.

5. Unsteady flow-body interaction

When the rigid body is free to move the scaled lift and torque in (3.6) and (3.7) act
along with gravity to drive the changesin linear and angular momentum of the body by
means of Newton’s second law. Thisis considered below mainly with the boundary-layer
case in mind but it applies equally well for the channel-flow case as well.

The scaled height h and angle 6 thus become time-dependent. In dimensional orders
of magnitude the lateral linear-momentum terms are O(M *u*Re” @Ql_ﬂc‘ " where
M * is the body mass and the time scale is written a*u*~ 'o. So the rate of change of
linear momentum is O(M *u*za*‘1Re‘1Ed_1Bo‘ 2) in the lateral direction. The forces
to balance the rate of change are dominated by the C_ influence in (3.6) which gives a
lift force of O(p*u*za*) accompanied by a gravity force which we take to be comparable.
Hence the time scale satisfies 02 ~ M *a*~ 2p*~ 'Re” "2q 1. Similar reasoning applies
to the angular momentum. On the other hand the streamwise component of the linear
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momentum balance for the body simply gives d2X J[€X 2 as zero predominantly where
X = X, is the streamwise position of the centre of mass; the streamwise forces due to
the fluid motion (pressure and stress forces) are too small to affect the main response
which is that X, may move with a constant velocity V.. We take V; to be negligible in
the present and the preceding settings but explore the influence of non-negligible V; in
the next section.

The height and the orientation angle vary in time according to the balances of lateral
momentum and angular momentum,

d?h

Mﬁ=CL—I\7Ig (5.1)
~d2
|$=cM (5.2)

which hold at leading order. Here M, | are defined by L™ 4ERelEM . (a*?p*0?) and

L~ 7ERelE + (a**p*0?) where the dimensional mass M * and moment of inertia | * of

the body per unit distance perpendicular to the plane of the motion are themselves
comparable with or greater than LlERe‘@a*ng , LlERe‘1@a*4pg in turn and pg
is the body density. We suppose M, | are of the same order throughout. The body’s
orientation with 8 being small implies that the pressures P are exerted vertically to
leading order on either surface of the body. The balance (5.1) includes g, the scaled
gravity effect, while T denotes time in units of a*u*”'o, with the au ! part being a
convective scale.

The fluid flow itself remains quasi-steady during the free body motion provided that
in essence the aLalT operator implicit in the main streamwise momentum equations
following (2.2), (2.7) remains small relative to the inertial and viscous operators. Of the
latter operators the smallest in magnitude occurs in the viscous-inviscid wall layer and
is O(L'Z). So the quasi-steady flow assumption is that o > L23, on which basis the
flow structure and solutions of §-& continue to apply: thisincludes especially the Kutta
condition in (2.16) or (2.21) at thetrailing edge since close to that edge the small spatial
scales emphasize the spatial dependence over the relatively slow temporal dependence.
Dependence on time T is now supposed for all the variables in those sections: A* (X [),
P+ (X[T), u(X[¥T) and so on. The h(T), 6(T) values of §-§ now become coupled
with the evolution equations (5.1)-(5.2). In particular the parabolic underbody shape of
(3.1) giveslift and torque asin (3.8)-(3.9) and in consequence the coupled system reduces
to

2 n o}

;”; yh:—5%+%)—|v|g (5.3)

- d?0 The 8 3°
= + + —

‘T =Y 5Tt 78 (54)
together with the relationship, from (3.2),
0 3b-
= —— - Z[E] .
i 4 28 (55)

Here, to repeat, hx = h— K. This specific case highlights the general point that 6 alone
is governed by the angular momentum balance, here (5.4), after which (5.5) (or (3.2))
determines the relative height factor hy and then the linear momentum balance, here
(5.3), serves to determine the height h. (The appearance of K only in the form h - K
makes physical sense through the completely vertical displacementsthat are part of (2.3),
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Figur e 3. (a) Evolution of 8 vs scaled time T. for different 6(0) values (- 12[(=6[@l®ldb) with
%(O) = 0, when b= 0 or 10. The horizontal dashed curve is for 8(0) = b= 0. (b) Scaled height
h (thick curves) and skin-friction perturbation 1 /3 at the trailing edge (dotted curves) vs T¢,
for b zero, under the same conditions as in (a). The dotted curves are the thinner ones in (b);
8(0) = - 12 gives the top curves in h, T[8whereas 12 gives the bottom ones.

(2.5), and thistiesin with the substitution of h— K which yields the equation for 6 alone
leading to (5.4).)

Solutions of (5.3)-(5.5) are shown in figure 3(a,b) and cover arange of initial conditions
as well as parameter values with regard to the underbody thickness and their influences
on the long-term responses. Here M = 1, I = 0O[Z}khroughout. Figure 3(a) includes plots
of @ versus scaled time and figure 3(b) shows the temporal variation of the corresponding
h and skin-friction values at the trailing edge. These solutions are explicitly

0= Dp(Tc) + Dﬁxp(-&f) - D3 [E] (5.6)

dn (0)= D4 exp(Te)- 1 + Ds exp(-T.) -1 + DgT2[E] (5.7)

dTe

while hy follows directly from (5.5), (5.6). The constants D, D, depend on the initial
conditions, T = [ly~ '253 4(35)]*"T, , b= [52(91)]D3 , D4 = ks$;D1, D5 = k$;D>,

h- h(0)- T,
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Dg = K(sp — s1D3)[2lwhere s, = -9[@l2, s, = 9{560) - Mg, k = 25(35)3 2[M .
The results point to unbounded growth emerging. Thelong-term behaviour in every case
takes the form, with constants having subscript d,

h i h i
hEel® = hyl@l[K, Q7 [E] (5.8)

The constant growth rate Q is found to have four possible roots with the values of
the coefficients [hq[B}[Kl4] determined by the initial conditions on h, 6, dn[dt, deldt.
These roots (characteristic values) come from replacing d2[&lir2 by Q2 of course in the
unforced problem, and at least oneroot haspositivereal part Q, which indicatestemporal
unbounded growth or instability. In fact the roots are explicitly

on y 0% o
Q=+ o [ (twice) [E] (5.9)

The two zero roots correspond to 6 identically zero with h being & + bT for constants
& b, but at large T the Qr > 0 root dominates (5.8) in virtually every case. The roots
all together depend only on the parameters | (moment of inertia), y (viscous response)
whereas the initial conditions and both M and | control hg, thereby bringing in the
influences of the body mass. The influence of gravity § is negligible relative to (5.8).
Overall exponential growth (Q; > 0) accompanied by linear growth corresponding to
(5.8), (5.9) dominates at large times.

Physically the non-alignment due to the scaled angle 6 varying plays the decisive role
in the exponential growth above as (5.3)-(5.5) show. T he presence of fluid flow and hence
fluid-body interaction accentuates this: a slight increase in 8 induces pressure that is
negative underneath the body compared with on top and biased towards the front of the
body, when combined with the trailing edge constraint, which then yields positive torque
and hence forces 6 to increase further and so on, leading to unbounded growth. Thereis
no so-called added mass effective here since the fluid flow remains quasi-steady. Moreover
theincreasing 6 causes therelative height factor hx to decreasein view of the relationship
(5.5) which is associated with the trailing-edge constraint. So the combined influence on
thevertical motion isto causethe body to acceleratetowardsthewall, from (5.3), givinga
positive gravity effect. Thuswith thisinitial condition the body rotates anticlockwise and
approaches the wall. (An initially decreasing displacement in the lower part of the core
broadly gives rise to a decreasing pressure there due to the viscous wall-layer response
and it provokes no pressure on top. Hence the pressure difference rises, causing the body
to accelerate towards from the wall. T his adds to the decreasing displacement of the wall
layer and core and so boosts the downward trend.) A similar self-perpetuating growth
arises if the trend in 0 starts downward, yielding a negative gravity effect; the body then
rotates clockwise and departs from the wall. We remark that the basic height yy has
no effect in any case in the current regime as inferred from the displacement properties
in (2.3)-(2.5) and similarly the body length L has no qualitative effect here. The main
feature in the present range is clearly the growth (5.8), which comes from the influence
of the torque on the scaled angle.

6. Stabilising features

Given the instability that is seen to occur in a boundary layer or channel flow in
the configuration of the previous section we now examine the possibility of there being
stabilising mechanisms. Three are found, as described in §6.1-86.3 below.
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Figur e 4. Angle 8 vs T for 8 initial values ( -9 to 9 in steps of 2) asindicated when centre-of—
mass position A is changed from O[E](solid curves) to 085 (dotted curves). Here b= 8. On the
dotted curves, which are the ones showing clear oscillation, the maximum amplitudes are those
for an initial theta of - O[@whereas the minimum amplitudes are for the initial value 9.

6.1. Front-heavy body
When the centre of mass of the thin rigid body is in a general position X = A rather
than just at the midway point as assumed in the previous sections then most of the
preceding analysis remains intact. Here 0 < A < 1. In fact the working in §2-83 is
unaltered except that (X — 1[2) is replaced by (X - A) in the scaled torque (3.7), (3.9)
and the changesin §5 are then associated with the influence of A through the torque Cy
in (5.4). Consequently, for the case of the parabolic underbody shape, (5.4) becomes

i
dTr2
where the constants J;, J, are given by

n (o]
=9y J.8+ Jyb (6.1)

No1s2
13
after useof (5.5). Thevalueof the coefficient J; isimportant sinceit controlsthe character
of the solution B of (6.1) with the variation of the angle 6 itself dictating whether the
whole fluid-body system exhibits unbounded growth or not. Here the first equation in

(6.2) shows that there is a critical value A of the streamwise position A of the centre
of mass, namely

h i i
J, = 3227571 ?13+ 2(A - %) (B3, = 22747 %5 7(A - %) (6.2)

Ao = é (63)

such that J; ispositivefor A above A o and negativebelow A o. The former rangeindicates
instability as before whereas the range A < Ao suggests stability is possible.

The main results for the evolution of the angle 8 are shown in figure 4, for a thickness
parameter b= 8. They are subject to the initial conditions of given 6(0) and zero deldll
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at zero time and so, with T, denoting Q; T, they correspond to the solutions
n o}
8= 6(0)+ Job0; ' cosh(QiT) - Jobd; ' for A > Ao [E] (6.4
2
0= Mww) for A = Ag[El  (6.5)
n 2 o}
8= 6(0)+ Jb0; ' cos(Q,T) - Jobi; ! for A < Aol (6.6)

as A, 6(0) are varied. Here Q; = 3(yJ:[1)2, Q, = 3 —glﬂ. In essence the non-
trivial eigenvalues Q in (5.9) are replaced by iS(lel but allowing for subcritical
values of J; being negative. The changein character from exponential growth to bounded
oscillation as A isreduced from above critical to below is highlighted by the figure (which
has A equal to 0.5 and 0.35) and is as expected from (6.1). It is also sensible physically
because as far as the torque is concerned the front-loading of the body associated with
decreasing A below 1(2Ireduces the moment of the more rapidly varying pressure forces
near the leading edge (compared with those towards the rear of the body) and this hap-
pens to such an extent when A islessthan A that the effect suppresses any growth in
theangle 6. It isworth remarking that the alteration in the position of the centre of mass
required for stabilisation is predicted as 10% only, according to (6.3), compared with the
original central position; this alteration in conditions is notably small.

6.2. Flexible section in body

If the underbody is flexible then again significant changes in the fluid-body interactive
behaviour may be produced. T he possibility arises from the effects of varying bin §3 (see
figure 2(a,b)) and is examined in detail below. In this context for the boundary layer
the governing equations of 82, 83 mostly remain valid in their quasi-steady form but the
underbody shape becomes unknown; so (3.1) for instance applies no longer. Instead the
shape is related to the unknown underbody pressure P (X E) by means of a flexible-
surface equation (Cox & Mason 1971; Carpenter & Garrad 1985; Guneratne & Pedley
2006; Pruessner & Smith 2015). If e, isthe scaled longitudinal tension of the underbody
surface and Py isthe constant scaled base pressureinsidethe body relativeto the incident
pressure, then the equations and boundary conditions are

%t
ez—axz = PQ_ P (67)

fy (o) = f,(alT) = o= (6.8)

See the Pruessner and Smith system for a different setting. Here the signsin (6.7) reflect
the property that a flow pressure higher than the base pressure provokes a negative
curvature and thus an overall rise in the underbody shape. The ensuing interaction is
thus controlled by (3.6), (3.7), (5.1), (5.2) with (6.7) and (6.8), as well as the general
results (A 5), (A 6) in Appendix A, for the prediction of (6[aLhk [®[%]) astimeincreases.

Solutions of the flexible-body interaction yield a supercritical or subcritical response
giving unbounded growth or bounded oscillation similar to that in the previous sub-
section. For comparison purposes we show in figure 5(a) the results of the Q-approach in
which a behaviour (5.8) is supposed asin 85, such that | Q%64 replaces the left-hand side
of (5.2). The value of d can be normalised to unity by working with (h(Bl (PLE] )8 ,
the value of A can likewise be taken as unity without loss of generality and the value of
Py is negligible in the cases of exponential growth. The figure gives the prediction for Q2
and the representative quantity hx as e, is varied. Although at larger e, the response
Q2 is always positive, as e, is decreased a form of resonance comes into action in which
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Figure 5. (a) Eigenvalue Q? (crosses) and relative height hx (dots) vs flexibility parameter e;.
Effectively Po is zero. The changes in sign of Q? at (6.5) (approx. 0l362) and of hx at e, approx
0l@77 are noted. (b) B, hx vs T¢ for Po of 1, 5 when e, is OlGd.

the response is enhanced (Pruessner & Smith 2015) and this leads to successive changes
in the sign of Q2. The critical value of the scaled longitudinal tension e, below which
bounded behaviour is first found is

€ = ey = approx. 0[062[] (6.9)

Hence stabilisation is again apparent.

Figure 5(b) presents results for the temporal evolution of the angle and the relative
height factor hx at the subcritical value e, = O[H. For given flexible material properties
a decrease of e, to a subcritical value for exampleis caused by an increase in the incident
flow strength. The results agree with those in figure 5(a) in that continued oscillations
are found to occur with the amplitude and frequency depending on the parameter values,
namely Py of 1 and 5 in this case, for the subcritical range.

6.3. Streamwise movement of the body

Asthevelocity V; of the body isincreased in the streamwise direction it first affects the
fluid-body interaction significantly in the boundary layer case when V; is of order L1035
due to the background flow velocity in (2.7). Cf Smith & Johnson (2016). The influence
on the core flow is negligible at this stage.

Above that size, for the range of body velocities L8 « V. < 1, the scaled central
problem (2.17)-(2.21) is altered by havingaterm -C (= - VL~ @) due to advection in
the inertial contribution in place of the term AY due to shear in (2.18). T he influence of
VA is also suppressed then. In effect Y is scaled by a factor c 12 leadingto f*, f 7,
K, ﬁ, 8 all being of order P[@ with the size of P to be found. The time scale T must
decrease like C~ '™, The present assumption isthat M, I areof order unity, asareA, X.
The wall layer thereby becomes a classical layer subjected to an upstream moving wall
condition, with the influence of the underlying shear proportional to A being diminished.
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To leading order the fluid-flow equations are
Us=wy (6.10)
V= -Yy LG (6.12)
-CUy = =Py + Uyy (6.12)

confirming that the major advection is in the negative X -direction. This classical sub-

boundary layer acts as if with prescribed pressure except that the pressureisitsef evolv-
ing. The behaviour in the outer reaches of the layer implies
n o]

P=AC K—fu(X)—h—(X—%)e + E (6.13)

for the pressure where E is a constant, from (2.20) with (6.12). The response here is
predominantly inviscid.

In consequence the body-motion balances (5.1), (5.2) of the fluid-body interaction give
successively

M G5z = AC(K = h)+ E - M [Tl (6.14)
~d?0 _ _AC
—=- :
(2=~ 35° (6.15)

after integration. This is strictly for an underbody shape f, of zero. A nonzero shape
fu merely adds at most a constant to (6.14), (6.15) while if f, is symmetric about the
centre of mass, as in the parabolic case of (3.1), then (6.15) remains unchanged. The
decisive equation in any case is that for the angular momentum of the body in (6.15).
Results are presented in figure 6 for varying positive C values and compared with the
corresponding results for the previous C = 0 configuration, emphasising the stabilising
effect of the body movement.

Physically the fluid-motion part of the present interaction yieldsa pressure contribution
proportional to the flow width, aresult which is akin to that in Smith & Daniels (1981) in
adifferent context, and the coupling with the body-motion part then produces oscillations
in 8 for any positive body velocity C. Thusin (6.13) an increase in 6 induces a pressure
decrease downstream of the centre of mass of the body, which here is at the midway
location, whereas the pressure upstream is increased, and this acts to reduce the torque
on the body. In turn the angular acceleration istherefore reduced in (5.2) or explicitly as
in (6.15) which tends to decrease the angular velocity and so the movement is stabilised,
as in simple harmonic motion. The oscillation frequency increases with increasing C.
The reduced form in (6.13) and hence in (6.14)-(6.15) is related to the findings from
the response of the Tietjens function in Smith & Johnson (2016) and it is noted that a
response similar to that in (6.10)-(6.14) occurs for the channel flow case of & at increased
body velocity.

7. Further discussion

The results altogether have shown first that over the present scales the fluid/ body
interaction for a single finite body moving freely is the same in a boundary layer asin a
channel flow. Second, the interaction can be unstable. Third however there are at least
three factors that can stabilise the interplay by changing the decisive balance of angular
momentum of the body. These three are a shift forward in the location of the centre of
mass, a flexible underside in the body, and a slight streamwise movement of the body.
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Figure 6. Angle 0 vs scaled time for initial value 8(0) = 1 when body has scaled streamwise
velocity C = 0 (with b of — 8(EI4[BI4AIB] from the bottom to the top dashed curve respectively)
or C = OEMHIAIGIRI (for any b value).

Fourth, the overall effects produced are independent of the lateral position of the body
within the core over the current range of scales. The considerable implications from this
are as follows.

The waves (in stabilised cases) and the instabilities (otherwise) studied in this work
rely on two-way interplay between the body movements and the surrounding fluid mo-
tions in the boundary layer or channel flow. All of the stabilising measures considered
seem to make sense physically as well as indicating potential safety measures in certain
applications. Front-loading of a body in a relatively fast flow of fluid in order to mit-
igate against instability is intuitively sensible and also agrees with the reduced torque
from pressures near the leading edge. Using wall or body flexibility to absorb energy
and suppress instability is also intuitively reasonable as well as subject to delicate bal-
ances between shape, pressure and torque. Moving the body along with the fluid may
similarly appear sensible physically and is in keeping with the change induced in the
pressure-displacement interaction which forms part of the whole fluid-body interplay. In
detail however the shift in the location of the centre of mass needed for stabilisation due
to front-loading is surprisingly small, being only 10%, i.e. a shift from the 50% midway
location to the 40% location. Likewise the body velocity needed for stabilisation due to
streamwise movement isnotably small, being at any rate between the order of the viscous
wall-layer speed and order unity relative to theincident speed in the boundary layer and
similarly small in terms of the underlying velocity in a channel flow. Thisisfor rightwards
movement in figure 1(a,b). If the body is moved leftwards then the reversed convection
yields increased instability instead. Figure 6 for exampleillustrates the point about miti-
gation in terms of the rightwards body movement. The mitigations or stabilisations here
have varied relevance in the applications described in the introduction to the paper. We
remark also that in the stable cases the perturbation in body orientation (denoted 6)
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oscillates in time whereas that in distance from the wall (denoted h) increases linearly
with time but the direction remains dependent on the initial conditions.

Neither the lateral location nor the streamwise length of the body has any qualitative
effect at leading order within the present range of concern shown in figure 1(a,b). The
current work and that in Smith & Johnson (2016) imply that apart from the stabilis-
ing measures above most body lengths can lead to unstable fluid-body interaction with
viscous-inviscid shear flow, which appears to contrast significantly with properties at low
flow rates. On the other hand the question of what happens when the body is nearer
a wall, especially inside a viscous wall layer, remains to be studied. Interesting further
problems arise also if the body length isreduced to thetriple-deck size or enhanced to the
development length scale associated respectively with the lower and upper restrictions of
the theory (see (2.1)) in the context of a boundary layer and likewise for a channel flow
(seejust before (4.1)). Increased élipticity isbound to arise for shorter lengthsin view of
the length scales of upstream influence. Related to the upstream influence in channel flow
alow axial speed has a prime effect only in altering upstream effects ahead of the leading
edge and these alterations take place over a length scale of order R much less than
thebody length, see (4.1). Thelateral pressure gradient becomesimportant then yielding
an extension of the original exp(kR™ '"*?x) mechanism but an additional mechanism dis-
cussed in an appendix of Smith (1984) on upstream influence in separating flow is found
to enter the reckoning. These mechanisms are associated with zero-pressure-gradient and
zero-displacement viscous layers respectively when the velocity continues to increase. A
similar process arises for the boundary layer but is a little more complicated because of
algebraic upstream influence.

Restrictions on the theory due to lateral location and length scales have been men-
tioned, and other restrictions concern two-dimensionality, the Reynolds-number (Re)
range, the streamwise body velocity and the body thickness for example. The time-scale
assumption imposes the limitation that for the boundary-layer setting the density ratio
o »> ReL22g 2 which is large, and indeed time scales other than those examined
here are of additional concern. In the case of an ice shard in a boundary layer of air the
density ratio is of the order 10° typically which may exceed the expression above. T his
depends on local boundary layer properties: characteristic values are Re of 10° to 10°
say, length L of 10”2 at least, ¢ 2 of about 5, which give a similar or smaller order of
magnitude but the skin friction factor A can effectively reduce or increase the value of
Q by altering the viscous wall layer thickness. Further, the body Reynolds number Re,
based on body length may be as low as 10? to 10° for the above range and this covers
the range of experimental values of the critical Re, observed (Petrie et al. 1993; Schmidt
et al. 2010) for spherical particles in a laminar boundary layer. The work may seem
contentious in view of all the assumptions made but it does support the possibility of
extensive flow destabilisation due to interaction, as well as contrasting stabilisation mea-
sures which include front-loading, flexible bodies and favourable streamwise movement
in particular applications. These features might be helpful or of interest experimentally
and in terms of direct simulations and they also provide a set of analytical case studies
potentially useful for comparisons.

The effects of further increased body velocity in the streamwise direction examined in
86.3 and the last-but-one paragraph and of increased disturbance amplitude are now ad-
dressed. The former provides a springboard for considering body velocities of order unity,
a regime which is perhaps of most practical interest. Clearly a critical layer occurs then
asin Smith and Johnson and thisis without an inflection point in the cases considered so
far. We have focused on small disturbances and these produce linear interactions which
allow more progress analytically. Nonlinear cases occur if the amplitude parameter (9) is
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increased slightly, with the viscous wall layer of §2 first becoming nonlinear through an
inertial response of the form UUyx + VUy essentially: cf (2.18). A combination of both
effects produces in addition the boundary condition U ~ AY = C + AA at large values of
the wall-layer coordinate Y. As the scaled body velocity C increases the shear influence
AY diminishes, pointing to the relation P = = 1(C - AA)? to within an additive function
of time. Thisis coupled with therelation involving A, 8 in §3 (see also Appendix A) and
the body angular momentum equation in §5 involving P, 6. The nonlinear response then
is overwhelmingly inviscid but has the potential for viscous sublayer eruptions. That is
based initially on the issue of separation in the quasi-steady classical viscous layer close
to the wall when the amplitudeis sufficiently large. It might suggest a classical Goldstein
singularity but with account taken that the free movement of the body renders the pres-
sure unknown and there is interplay with the original viscous-inviscid-interactive wall
layer (cf Smith & Daniels 1981). Further study is again necessary here.
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Appendix A. Detailed solving and results for a general body shape.

The viscous parts in (2.17)-(2.21) can be treated as follows. Taking a Fourier trans-
form in X with transformed variable a converts (2.17)-(2.18) to Airy’s equation for the
transformed shear stress 7(F) asin Stewartson (1970); Smith (1973) with ((¥F) denoting
the Fourier transform and 1 denoting Uy . We then apply the boundary conditions on
1F) at Y = 0 and on the integral of T(F) with respect to Y from 0 to = to obtain the
transforms of the pressure and skin-friction solutions

PF)(a) = 3(ia)” $A3AF) (a)A;(0) [E] (A1)
1) (al@) = (ia)iA~ 3P F)(a)A; (0)[A (0) [Z] (A2)

Here A(X) = K = fy(X) - h— (X - 1(2)6 is known over the body length 0 < X < 1
although unknown in the wake X > 1. The form (A 1) allows the pressure response in
particular to be expressed explicitly in terms of the displacement response, or vice versa.
Also A = 0in X < 0 owingtothelack of upstream influence but A jumpsacross X = 0Ot
in general whereasP = 0in X < 0Oand P = O at X = O+. Inversion of (A 1) thus leads
to the direct relation (Pruessner & Smith 2015)

Zyn 0
P(X)=y  fu(S)+h+(S- %)e— K (X - S) 3dslibro< X < 1[T(A 3)
0

where the constant y = 0|@9838()\)5 is positive. The form (A 2) leads to the result
(3.5). The parabalic nature of (A 3) on its own in the positive X -direction is noted, i.e.
the integral runs forward from zero to X, although the entire system here, i.e. (2.17)-
(2.21), remains elliptic between X = 0, 1 because of K. The upstream match with zero
pressure is incorporated in (A 3), while the downstream effect or wake is discussed near
the end of the present section.
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Given (A 3) the pressure condition (2.21) requires
Zin 1 0 ,
3K = fu(S)+ h+ (S- é)6 (1- 8)” sds[l (A4
0

determining K whenever f, , h, @areknown. Wetherefore obtain the pressure underneath
the body as
n o
P=y (h=K)iy(X)+ 8ia(X) + i5(X) (A5)

Hereiy, ig and i depend only on X; thusiy(X) = 3X UE j,(X) = - 3x 1E[@l ox 4E[E]
i3(X) = o fu(S)(X - S)"23ds. AlsoK is given by

K:h+g+E1 (A6)

where E; = i3(1)|El this result for the quasi-height K stems from (A 4).

REFERENCES

CARPENTER, P. W. & GARRAD, A. D. 1985 The hydrodynamic stability of ow over
Kramer-type compliant surfaces. Part |, Tollmien-Schlichting instabilities. J. Fluid Mech.
165, 465-510.

COX, R. G. & MASON, S. G. 1971 Suspended particles in fluid flow through tubes. Ann.
Rev. Fluid Mech. 3, 291-316.

EINAV, S. & LEE, S. L. 1973 Particles migration in laminar boundary layer flow. Int. J.
Multiphase Flow 1, 73-88.

FRANK, M., ANDERSON, D., WEEKS, E. R. & MORRIS, J. F. 2003 Particle migration
in pressure-driven flow of a Brownian suspension. J. Fluid Mech. 493, 363-378.

GAVZE, E. & SHAPIRO, M. 1997 Particles in a shear flow near a solid wall: effect of non-
sphericity on forces and velocities. Int. J. Multiphase Flow 23, 155-182.

GENT, R. W., DART, N. P. & CANSDALE, J. T. 2000 Aircraft icing. Phil. Trans. Roy.
Soc. A 358, 2873-2911.

GUNERATNE, J. C. & PEDLEY, T. J. 2006 High-Reynolds-number steady ow in a collapsi-
ble channel. J. Fluid Mech. 569, 151-184.

HALL, G. R. 1964 On the mechanics of transition produced by particles passing through an
initially laminar boundary layer and estimated effect on the performance of X-21 aircraft.
Northrop Corp.: N79-70656.

KISHORI, N. & GU, S. 2010 Wall effects on flow and drag phenomena of spheroid particles
at moderate Reynolds numbers. Ind. Eng. Chem. Res. 49, 9486-9495.

LOISEL, V., ABBAS, M., MASBERNAT, O. & CLIMEN, E. 2013 The effect of neutrally
buoyant nite-size particles on channel owsin the laminar-turbulent transition regime. Phys.
Fluids 25(12). ISSN 1070-6631.

LOTH, E. & DORGAN, A. J. 2009 An equation of motion for particles of finite Reynolds
number and size. Environ. Fluid Mech. 9, 187-206.

MULLER, K., FEDOSOV, D. A. & GOMPPER, G. 2014 Margination of micro- and nano-
particles in blood flow and its effects on drug delivery. Sci. Rep. 4, 4871.

PETRIE, H. L., MORRIS, P. J., BAJWA, A. R. & VINCENT, D. C. 1993 Transition
Induced by Fixed and Freely Convecting Spherical Particles in Laminar Boundary Layers.
Tech. Rept. TR93-07, Penn. State Uni., USA.

POESIO, P.,, OOMS, G., CATE, A. T. & HUNT, J. C. R. 2006 Interaction and collisions
between particlesin a linear shear flow near a wall at low Reynolds number. J. Fluid Mech.
555, 113-130.

PORTELA,L.M.,COTA,P. & OLIEMANS, R. V. A. 2002 Numerical study of the near-wall
behaviour of particles in turbulent pipe flows. Powder Tech. 125, 149-157.

PRUESSNER, L. & SMITH, F. T. 2015 Enhanced effects from tiny flexible in-wall blips and
shear flow. J. Fluid Mech. 772, 16-41.

Page 20 of 21



Page 21 of 21

Free motion of a body in a boundary layer or channel flow 21

PURVIS, R. & SMITH, F. T. 2016 Improving aircraft safety in icing conditions. In UK Success
Stories in Industrial Mathematics 145-154, eds Aston, P A, Mulholland, A J and Tate, K
M M. Springer.

SCHMIDT, C. & YOUNG, T. M. 2009 The impact of freely suspended particles on laminar
boundary layers. AIAA Aerosp. Sci. Mtg. 5-8 Jan, Orlando, Florida, USA.

SCHMIDT, C., YOUNG, T.and BENARD, E. 2010 The€effect of a particletravelling through
a laminar boundary layer on transition. IUTAM 09, 18, 561-564.

SEMWOGERERE, D. & WEEKS, E. R. 2008 Shear-induced particle migration in binary
colloidal suspensions. Phys Fluids 20(4), 043306.

SINCLAIR, M., LEE, J., SCHUSTER, A., CHIRIBI, A., VAN DEN WIIJNGAARD, J.,
VAN HORSSEN, P., SIEBES, M., SPAAN, J. A. E., NAGEL, E. & SMITH, N. P.
2015 Microsphere skimming in the porcine coronary arteries: implications for flow quanti-
cation. Microvasc. Res. 100, 59-70.

SMITH, F. T. 1973 Laminar flow over a small hump on aflat plate. J. Fluid Mech. 57, 803-824.

SMITH, F. T. 1976 Flow through constricted or dilated pipes and channels: part 2. Quart. J.
Mech. Appl. Math. 29, 365-376.

SMITH, F. T. 1977 Upstream interactions in channel flows. J. Fluid Mech. 79, 631-655.

SMITH, F. T. 1984 Concerning upstream influence in separating boundary layers and down-
stream influence in channel flow. Quart. J. Mech. Appl. Math. 37, 389-399.

SMITH, F. T. & DANIELS, P. G. 1981 Removal of Goldstein’s singularity at separation in
flow past obstacles in wall layers. J. Fluid Mech. 110, 1-37.

SMITH, F. T. & JONES, M. A. 2000 One-to-few and one-to-many branching tube flows. J.
Fluid Mech. 423, 1-31.

SMITH, F. T. & ELLIS, A. S. 2010 On interaction between falling bodies and the surrounding
uid. Mathematika 56, 140-168.

SMITH, F. T. & JOHNSON, E. R. 2016 Movement of a finite body in channel flow. Proc.
Roy. Soc. A (Vol. 472, No. 2191, p. 20160164).

STEWARTSON, K. 1970 On laminar boundary layers near corners. Quart. J. Mech. Appl.
Math. 23, 137-152.

SYCHEV, V. V. 1972 Concerning laminar separation. lzv. Akad. Nauk. SSSR, Mekh. Zhidk
Gaza 3, 47-59.

WANG, J. & LEVY, E. K. 2006 Particle behavior in the turbulent boundary layer of a dilute
gas-particle flow past a flat plate. Exp. Therm. Fluid Sci. 30, 473-483.

WHITE, A. H. & SMITH, F. T. 2012. Wall shape effects on multiphase flow in channels.
Theor. Comp. Fluid Dyn. 26, 339-360.

WILSON, P. L. & SMITH, F. T. 2013 Body-rock or liftoff in flow. J. Fluid Mech. 735, 91-119.

Page 22 of 22



