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Abstract
DNA double-strand breaks are lesions that form during metabolism, DNA replication and

exposure to mutagens. When a double-strand break occurs one of a number of repair

mechanisms is recruited, all of which have differing propensities for mutational events.

Despite DNA repair being of crucial importance, the relative contribution of these mecha-

nisms and their regulatory interactions remain to be fully elucidated. Understanding these

mutational processes will have a profound impact on our knowledge of genomic instability,

with implications across health, disease and evolution. Here we present a new method to

model the combined activation of non-homologous end joining, single strand annealing and

alternative end joining, following exposure to ionising radiation. We use Bayesian statistics

to integrate eight biological data sets of double-strand break repair curves under varying

genetic knockouts and confirm that our model is predictive by re-simulating and comparing

to additional data. Analysis of the model suggests that there are at least three disjoint

modes of repair, which we assign as fast, slow and intermediate. Our results show that

when multiple data sets are combined, the rate for intermediate repair is variable amongst

genetic knockouts. Further analysis suggests that the ratio between slow and intermediate

repair depends on the presence or absence of DNA-PKcs and Ku70, which implies that

non-homologous end joining and alternative end joining are not independent. Finally, we

consider the proportion of double-strand breaks within each mechanism as a time series

and predict activity as a function of repair rate. We outline how our insights can be directly

tested using imaging and sequencing techniques and conclude that there is evidence of

variable dynamics in alternative repair pathways. Our approach is an important step

towards providing a unifying theoretical framework for the dynamics of DNA repair

processes.

Author Summary

DNA double-strand breaks occur duringmetabolism, DNA replication and by exposure to
exogenous sources such as ionising radiation.When the genome is inflictedwith this type
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of damage, DNA repair machinery is promoted to restore genome structure. The efficient
interplay betweenDNA damage and repair is crucial to genome stability because the
choice of repair mechanism directly affects the probability of mutation. Multiple mecha-
nisms of DNA repair are known to exist, however, the subtleties of how they are activated
and their interactions are yet to be fully determined.We hypothesise that a combination
of Bayesian statistics and mathematical modeling is essential to elucidate the network
dynamics. Studies in the literature have presented time series data of double-strand break
repair in wild type and mutant cells. By combining existing time series data, our modeling
approach can quantify the differences in activation amongst mutants and in addition iden-
tify a number of novel insights into the dynamics of the competing mechanisms.We con-
clude that alternative mechanisms of repair exhibit variable dynamics dependent on the
levels of individual recruitment proteins of the predominant repair pathways.

Introduction

Double-strand breaks (DSBs) are lesions in DNA that occur naturally by oxidative stress, DNA
replication and exogenous sources [1, 2]. When left unprocessed or during erroneous repair,
they cause changes to DNA structure creating mutations and potential genomic instability [3–
8]. To repair DSBs, multiple mechanisms have evolved and are known to include non homolo-
gous end joining (NHEJ) [7, 9–17], homologous recombination [18] including single strand
annealing (SSA) [19, 20], microhomologymediated end joining (MMEJ) [21, 22] and alterna-
tive or back-up end joining (A-EJ) [23, 24]. The choice of mechanism depends on the structure
of the break point, where simple breaks caused by restriction enzymes are different in structure
from those caused by ionising radiation (IR) (reviewed in [25, 26]). This affects the probability
of error prone repair becausemutations are mechanism specific and depending on which
mechanism is activated a cell might exhibit chromosome translocations [4, 5], small deletions
or insertions [6, 7] or recombination leading to loss of heterozygosity [8]. For example, in
mouse, error by SSA causes chromosome translocations [4] and in Saccharomyces cerevisiae,
NHEJ of simple DSBs is associated with small deletions or insertions [7]. In vivo studies of
DSBs have suggested that in addition to structural activation arising from the break point, cell-
cycle dynamics can also play a role in repair mechanism activation (reviewed in [27]). In par-
ticular the choice of mechanism is not fixed at the time of damage and cells exhibit a pulse like
repair in human U-2 OS cells [28], a behaviour supported by a molecular basis for cell cycle
dependence in NHEJ, mediated by Xlf1 phosphorylation [29].
To understand how mutations are distributed in the genome, it is important to uncover the

dynamic activation and interplay between different DSB repair mechanisms. This mutual acti-
vation is not fully understood, however the individual repair mechanisms and recruitment pro-
teins of NHEJ, SSA and A-EJ have been documented.NHEJ requires little or no homology, is a
mechanism of DNA end joining in both unicellular and multicellular organisms [7] and can
exhibit fast repair by the binding of DNA dependent protein kinase (DNA-PK) [15]. In verte-
brates, NHEJ initiates the recruitment and binding of several proteins. These have been shown
to include Ku70, Ku80, DNA-PK catalytic subunit (DNA-PKcs), Artemis and Ligase IV in a
cell free system [9]. Ku70 and Ku80 are subunits of the protein DNA-PK. Biochemical and
genetic data suggest they bind to DNA ends and stimulate the assembly of NHEJ proteins by
DNA-PKcs [10, 12]. Repair proceeds by Artemis facilitated overhang processing and end liga-
tion via DNA Ligase IV [13, 14]. Although well studied, new regulating components of NHEJ
are still being discovered, for example the protein PAXX [17]. SSA is slower than NHEJ and in
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yeast works at almost 100% efficiency for homologous regions of at least 400bp [6]. First
described in mouse fibroblast cells [19, 20], during SSA two complementary sequences are
exposed through a 50 to 30 exonuclease end resection and aligned. Remaining overhangs are
then cut by an endonuclease and the DNA is reconstructed by DNA polymerase using the
homologous sequences as a template. Some of the components that contribute to SSA have
been identified in eukaryotes e.g. the complex MRN consisting of Mre11, Rad50 and Nibrin
which facilitates DNA end resection [30]. Following resection, replication protein A (RPA)
binds to the DNA and when phosphorylated, forms a complex with Rad52 to stimulate DNA
annealing [31, 32]. Similarly to NHEJ, following gap repair, SSA is terminated with end ligation
by Ligase III [33]. Data of repair kinetics for mutants defective in Rad52 show limited slow
repair in comparison to wild type repair curves in gamma irradiated cells in chicken B line cells
[34], suggesting that SSA may be active in the repair of DSBs caused by IR. In yeast, it has been
suggested that SSA constitutes a major role in the repair of DSBs accounting for three to four
times more repairs than gene conversion duringM phase [35].
One interesting finding in genetic studies is that when NHEJ is compromised, DSBs are

removed by alternative mechanisms, that have adopted various names in the literature, such as
MMEJ in yeast [36] and back-up NHEJ (B-NHEJ) in higher eukaryotes [37] that here, we col-
lectively refer to as A-EJ [23, 38], (reviewed in [37, 39, 40]). It is still unclear how A-EJ is regu-
lated or interacts with other processes but there is evidence it is active in the repair of breaks
with microhomology of 3–16 nucleotides, reviewed by Decottignies [40]. Thought to act on
break points with ends that are not complementary in the absence of NHEJ factors [38], an
assortment of PARP-1, 53BP1, Lig3 and 1, Mre11, CtIP and Polθ have been proposed as regula-
tors of A-EJ. PARP-1 is required and competes with Ku for binding to DNA ends through the
PARP-1 DNA binding domain [24]. Other proteins are involved in initial binding, where acti-
vation of 53BP1 in MMEJ is dependent on Ku70 and independent of DNA-PKcs [22] and CtIP
has been associated through the use of microhomology [41]. The proteins required for end
joining have been identified as Lig3 and Lig1 in the absence of XRCC1 [42–44]. This pathway
has never been observed in single cells and it is unclear how A-EJ is related to other mecha-
nisms. However, targeted RNAi screening for A-EJ has uncovered shared DNA damage
response factors with homologous recombination [45]. For an illustration of the three mecha-
nisms (see Fig 1a).
Mathematical models of DSB repair have used biphasic [46], biochemical kinetic [47–52],

multi-scale [53, 54], and stochastic methods [55]. In a study by Cucinotta et al. [48], a set of
coupled nonlinear ordinary differential equations were developed. The model was based on the
law of mass action and stepwise irreversible binding of repair proteins to describeNHEJ rejoin-
ing kinetics and the phosphorylation of H2AX by DNA-PKcs. Similar studies have modelled
repair kinetics and protein recruitment during SSA [49, 51], NHEJ [50] and other mechanisms
including NHEJ, HR, SSA and two alternative pathways under a wide range of linear energy
transfer (LET) values and heavy ions [52]. These studies have beenmet with some controversy,
for example with the argument that the biphasic model has never succeeded in providing defin-
itive values for the repair components [56]. Recently however, the models have been further
developed to model the complexity of a DSB by application to damage induced by ionising
radiation of different qualities [57, 58]. This can be achieved because the spectrumof
DSB-DNA damage can be computed by applying Monte Carlo track structure [59], which is a
method that can be used to simulate the passage of charged particles in water, for a review see
[60].
Previous biochemical kineticmodels have been used to reproduce the experimental data

observed.This approach often uses more parameters than are required to describe sequential
steps in the repair process. This can cause difficulty in identifying parameter values because
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multiple parameter value combinations may be able to describe the data well, an issue known
as non-identifiability. Consequently, predictions are not unique, which can be detrimental in
the design of a biological experiment. Therefore the creation of models that provide a unique
interpretation of repair dynamics is a challenge.
Here we develop a statistical model that can take DSB repair curve data, such as those gener-

ated from pulse field gel electrophoresis (PFGE) or comet assays, and infer repair mechanism
activation. The method relies on training a simple model against multiple data sets of DSB
repair under different genetic knockouts whenmultiple repair mechanisms are activated.
Using the most probable set of parameter values, we can then simulate the model and make
predictions on the activation of different rates of repair. Unlike previous modelling approaches,
we do not model individual recruitment proteins. Instead we assign parameter values to differ-
ent rates of repair. This has two benefits. Firstly it provides a method to uncover different rates

Fig 1. Modelling multiple repair mechanisms. a) Proteins and repair steps contributing to repair during SSA, NHEJ and A-EJ in mammalian

cells (illustration). b) The model. Filled circles represent species and arrows represent reactions.

doi:10.1371/journal.pcbi.1005131.g001

Modelling Double-Strand Break Repair

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005131 October 14, 2016 4 / 21



of repair arising from different repair mechanisms that are implicit in the data. Secondly, it
reduces the number of parameters required to describe the system, leading to a more identifi-
able model. Our approach strikes a balance between a detailedmechanistic description of the
biochemical components with a traditional statistical model. This enables insights into the
dynamical process underling repair pathways combined with novel and testable predictions.
We use this method to integrate the data from eight repair curve assays under genetic knock-
outs including combinations of Ku70, DNA-PKcs, Rad52 and Rad54.We first infer that there
are at least three disjoint dynamical repair mechanisms that explain the combined data and
that the dynamics depend on the regulating recruitment proteins. We propose that there are a
number of alternative end joining dynamical processes that may or may not share a common
genetic pathway. We also demonstrate that our model has predictive power on new data sets,
including PARP-1 knockouts, and show that the activation of different repair processes over
time depends on the speed of the underlying dynamics.

Materials and Methods

Experimental data

The experimental data used in this study are published repair curves generated frommethods
of pulse field gel electrophoresis, a technique that distributes the DNA according to the length
of the fragment.We model the dose equivalent number of DSBs that are obtained from the
fraction of DNA released into the gel [61]. Table 1 lists the experimental data that are used for
inference. Cells were exposed to X-rays [24] and the number of DSBs within the population
recorded over time. The eight data sets are labelledD1–D8. Data D1 is wild type and since the
cell cycle phase is unrestricted, we expect all three repair processes to be present. Data D2 and
D3 are DNA-PKcs knockouts in G1 and G2 phase, where we expect NHEJ to be compromised
but since Ku is present we still expect the recruitment process. Data D4 is a Rad52 knockout
where we expect only NHEJ and A-EJ to be present. Data D5 and D6 are Ku knockouts, where
we assume the whole of the NHEJ pathway to be compromised and only SSA and A-EJ remain
active. Data D7 and D8 are expected to have no repair by PARP-1 mediated A-EJ because both
sets were treated with PARP-1 inhibitors. Data D7 comes from Ku70−/− mouse fibroblasts,
where we expect to see no repair by NHEJ as well as a lack of A-EJ due to PARP-1 inhibition
[24].

Table 1. Table of data sets used for model fitting. The data contains DSB repair kinetics for cells that are irradiated at different doses or split into different

phases of the cell cycle, G1 and G2. Data was traced from current literature, or where indicated was provided by G. Iliakis (*). References to the data and

cell lines are provided. We chose a combination of mouse embryonic fibroblasts (MEFs) and DT40 cells because DT40 cells remove DSBs from their

genome similarly to mammalian cells [63].

Data Dose (Gy) Phase Mutant, Cell line Repair

D1 20 Asynchronous WT MEFs* [62] NHEJ, SSA, A-EJ

D2 20 G1 DNA-PKcs−/− MEFs* [62] SSA, A-EJ

D3 20 G2 DNA-PKcs−/− MEFs* [62] SSA, A-EJ

D4 80 Asynchronous Rad52−/− DT40* [63] NHEJ, A-EJ

D5 80 Asynchronous Ku70−/−/Rad54−/− DT40* [34] SSA, A-EJ

D6 54 Asynchronous Ku70−/− DT40* [34] SSA, A-EJ

D7 52 Asynchronous Ku70−/− + DPQ MEFs [24] SSA

D8 32 Asynchronous WT + 30−AB MEFs [24] NHEJ, SSA

doi:10.1371/journal.pcbi.1005131.t001
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Modelling double-strand break repair processes

We assume DSBs caused by ionising radiation (IR) can be repaired by multiple processes with
different rates corresponding to NHEJ, SSA and A-EJ (see Fig 1b). In principle, other mecha-
nisms could be included, such as Rad54 dependent homologous recombination (HR), but since
this mechanism is mostly active in S phase of the cell cycle, and thought to contribute little to
IR inducedDSBs [62], we chose not to model it explicitly. We model a DNA repair process by
a stochastic reaction system, represented by

x þ Ei!
Ki yi ð1Þ

yi!
K
0

i
; þ Ei; ð2Þ

where x is the DSB, Ei is the recruitment protein for process i (Ku, MRN and PARP-1), and Ki,
K 0i are the parameters for recruitment and subsequent ligation respectively. To model the lim-
ited resources available to the cell, we follow the approach of Cucinotta et al [48], and assume
that the total amount of protein is conserved for each repair mechanism

Ei þ yi ¼ Ci; ð3Þ

where Ci is the total amount of recruitment protein for each repair mechanism. This structure
also captures the experimentally observed fact that mRNA levels for repair processes depend
on the radiation dose [64]. The reactions result in a nonlinear coupled stochastic system which
is simulated using the Gillespie algorithm [65].
The proportions of DSBs repaired by each mechanism are estimated by calculating the

cumulative number of DSBs that enter each individual pathway with the integral

~Ni ¼

Z 1

0

KixEidt: ð4Þ

This integral can then be used to calculate the proportion of DSBs repaired by each mechanism.

Hierarchical modelling of repair across knockout strains

To build a model that can be used to obtain unique predictions, it is advantageous to minimise
the number of parameters that describe the system. To do this, we developed a hierarchical
model where the individual parameter values,K, K0, are lognormally distributed with a com-
mon mean, μ, across all the data sets in which they are included (see Fig 2a). For data sets in
which a repair protein is repressed downstream of the initial protein that binds, we impose an
additional hyperparameter. We include this additional hyperparameter because it is not clear if
a repair mechanism remains active when individual regulating proteins are repressed.
More formally, we wish to obtain Kd

i ;K
0d
i for i 2 {1,2,3,4} and eight data sets d 2 {1, . . ., 8}.

These parameters are constrained by the repair dependent hyperparameters, γ = {μi, σ2}, where
μi represents the mean of a lognormal distribution, and σ2 the variance. The Kd

i ;K
0d
i are drawn

from the population level distributions, where the joint density can be written

pðD;K; gÞ ¼ pðDjKÞpðKjgÞpðgÞ; ð5Þ

and Bayes rule becomes

pðgjDÞ ¼
pðgÞ

R
f ðDjKÞpðKjgÞdK

pðDÞ
; ð6Þ
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which gives the posterior of the hyperparameters given the data,D. The integral indicates that
we sum over (marginalise) the K values.

Parameter estimation using approximate Bayesian computation

To perform the inference we use approximate Bayesian computation sequential Monte Carlo
(ABC SMC) [66–69]. This method that can be used to fit a model to multiple data sets when
the likelihood is unavailable. In the Bayesian framework, we are interested in the posterior dis-
tribution π�(θ, x|y), where θ is a vector of parameters and x|y is the simulated data conditioned
on the experimental data. To obtain samples from the posterior distribution we must condition
on the data y and this is done via an indicator function IAy;�

ðxÞ. We then have

p�ðy; xjyÞ ¼
pðyÞf ðxjyÞIAy;�

ðxÞ
R

Ay;��Y
pðyÞf ðxjyÞdxdy

;

whereAy;� ¼ fx 2 D : rðx; yÞ � �g, r : D�D! Rþ is a distance function comparing the
simulated data to the observeddata and π� is an approximation to the true posterior distribu-
tion. This approximation is obtained via a sequential importance sampling algorithm that
repetitively samples from the parameter space until � is small, such that the resulting approxi-
mate posterior, π�, is close to the true posterior.

Fig 2. a) Diagram showing the parameter sampling process. Hyperparameters μi are drawn from a uniform

distribution between αi and βi. Model parameters Ki are sampled from a lognormal distribution with mean μi

and variance σ2. b) Posterior distributions for the hyperparameters μ1−3 and μ4. c-e) Posterior analysis for

data set D1. Marginal distributions of the parameters K1D1, K2D1, K3D1 against the hyperparameters. f)

Posterior distributions of the parameters K1D1, K2D1, K3D1, showing some overlap. g) Time series plots of the

experimental data and model fit. Subfigures above each figure represent the active repair mechanisms. The

y axis represents the dose equivalent in units of Gray (Gy) (1 DSB = 0.0286 Gy). Red, blue and green

represent fast, slow and alternative repair, black solid lines are the median fit and the dashed black lines

represent the 0.95 credible regions.

doi:10.1371/journal.pcbi.1005131.g002
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The ABC SMC algorithm is used to calculate an approximation to the target posterior den-
sity π�(γ|D), whereD = {Di; i=1,2,..8}.We can include the hierarchical model by simulating
data, D�, using the following scheme:

g � Uða; bÞ

K � LNðm;s2Þ

D� � f ðDjKÞ;

ð7Þ

where f(D|K) is the data generating model (the solution to the reaction system represented by
Eqs 1–3). The α, β are the lower and upper limits of the uniform prior on the hyperparameters.
Note that in the sequential importance sampling step, we perturb only the hyperparameters.
For further details on the inference and all prior values see S1 Text.

Results

DSB repair requires fast, slow and alternative mechanisms

We fit three different models, comprising one, two and three repair processes respectively
(M1: {i = 1},M2: {i = 1, 2} andM3: {i = 1, 2, 3}), and found that a three process model describes
the best fit using an approximation to the Deviance Information Criterion (DIC) [70] and the
Akaike information criterion (AIC) [71], based on a surrogate likelihood approach [72] (Fig B,
C in S1 Text). The final model structure is presented in Table 2, (for prior distributions see S1
Text), and a summary of the fitted parameter values is given in Table 3.
The fit of the simulation to the data for all eight data sets is shown in Fig 2g. The fits capture

the essential aspects of the repair curves and most points are consistent with the posterior
median and credible regions.When we qualitatively compare this fit to that obtained by the
one and two process models,M1 andM2, we find a poor fit forM2 in data sets D2–4 and gener-
ally large credible regions forM1 (see Fig D, E, F in S1 Text). The posterior distributions of the
hyperparameters are shown in Fig 2b. Inspection of the interquartile range of the hyperpara-
meters confirms that a combination of fast, slow and intermediate repair is sufficient to
describe the wild type and mutant data, furthermore a two sided Kolmogorov Smirnov test
between the posterior distributions for the hyperparameters confirmed that the four distribu-
tions were significantly different to one another (μ1, μ2 D = 1, μ1, μ3 D = 1, μ2, μ3 D = 0.998,
μ2, μ4 D = 0.686, μ4, μ3 D = 0.752, μ4, μ1 D = 1, all tests p< 2.2e−16). For each data set (D1–D8)
the posterior interquartile ranges of the parameters K1, K2 and K3 were recorded (Fig G in S1
Text). Marginal distributions for the wild type K1, K2, K3 are shown in Fig 2c–2e). Analysis of

Table 2. Model parameters with their corresponding hyperparameters used in the hierarchical model. Their values are fitted using ABC SMC. For

prior distributions on the hyperparameters, see S1 Text.

Data Model Parameters Hyperparameters

Fast Slow A-EJ Fast Slow A-EJ

D1 K1D1;K
0

1D1
K2D1;K

0

2D1
K3D1;K

0

3D1
μ1, σ2 μ2, σ2 μ3, σ2

D2 K1D2 K2D2;K
0

2D2
K3D2;K

0

3D2
μ4, σ2 μ2, σ2 μ3, σ2

D3 K1D3 K2D3;K
0

2D3
K3D3;K

0

3D3
μ4, σ2 μ2, σ2 μ3, σ2

D4 K1D4;K
0

1D4
K2D4 K3D4;K

0

3D4
μ1, σ2 μ4, σ2 μ3, σ2

D5 - K2D5;K
0

2D5
K3D5;K

0

3D5
- μ2, σ2 μ3, σ2

D6 - K2D6;K
0

2D6
K3D6;K

0

3D6
- μ2, σ2 μ3, σ2

D7 - K2D7;K
0

2D7
- - μ2, σ2 -

D8 K1D8;K
0

1D8
K2D8;K

0

2D8
- μ1, σ2 μ2, σ2 -

doi:10.1371/journal.pcbi.1005131.t002
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the marginal distribution shows that the parameter distributions of K1, K2 and K3 deviate from
the hyperparameter distributions, suggesting that although the rates are defined as fast, slow
and intermediate, there is variation in activation of the mechanisms among different mutants
(Fig 2c–2e). There is some overlap in parameter values K1, K2 and K3 (Fig 2f) but the interquar-
tile ranges of the parameters K1, K2 and K3 are disjoint, this is also observed in all eight data
sets (Fig G in S1 Text). For all posterior distributions of the parameters and a plot of individual
DSBs and their repair in a wild type model, see Fig H-K in S1 Text. When individual DSBs
are tracked in the model, the DSBs are quickly distributed amongst the three pathways and
repaired according to the predicted rate. To check that our model parameters were robust to
adding additional data, we performedABC SMC again on nine data sets. This new data set
consisted of the eight data sets listed in Table 1 and an additional repair time series of xrs-6
cells deficient in Ku80 inhibited of PARP-1 by DPQ [24], in which cells were deficient in NHEJ
and A-EJ. The results of the total number of DSBs repaired and our predictions on the activa-
tion of A-EJ using this data set were the same and a comparison between the eight data and
nine data posterior showed a similar fit (Figs L and M in S1 Text). In summary, we conclude
that a three process model provides the best fit to the data observed (Fig B-C in S1 Text) and
that for equal prior ranges on the processes the biological data can be explained by one fast,
one slow and at least one intermediate rate of repair.

The number of DSBs repaired by each mechanism depends on

regulating recruitment proteins

By re-simulating from our fitted posterior distribution we were able to examine the dynamics
of DSB repair across mechanisms and data sets (see Fig 3). Data sets in which NHEJ is active
exhibited a faster repair with the cumulative number of DSBs reaching to within 80% of the

Table 3. Median posterior parameter values with 0.5 credible regions. Values can be compared to initial binding rate constants from two models in the

literature; k = 0.5 hrs−1 for NHEJ [50] and k = 0.057 hrs−1 for SSA [51]. Half times of DSBs can be calculated using t1/2 = loge/K. † Cases in which a protein

proceeding the first complex to bind is inhibited. In this model we assume there is initial binding but no repair.

Data Model Parameters Posterior median (q0.25, q0.75) (hrs−1)

Fast Slow A-EJ Fast Slow A-EJ

D1 K1D1 K2D1 K3D1 3.06 (1.9, 5.36) 0.04 (0.022, 0.078) 0.34 (0.19, 0.62)

D2 K1D2 K2D2 K3D2 0.05 (0.023, 0.094) † 0.037 (0.019, 0.067) 0.4 (0.26, 0.63)

D3 K1D3 K2D3 K3D3 0.04 (0.022, 0.081) † 0.038 (0.021, 0.08) 0.5 (0.31, 0.84)

D4 K1D4 K2D4 K3D4 2.24 (1.52, 3.56) 0.056 (0.027, 0.11) † 0.45 (0.26, 0.75)

D5 - K2D5 K3D5 - 0.066 (0.034, 0.13) 0.22 (0.13, 0.42)

D6 - K2D6 K3D6 - 0.057 (0.03, 0.102) 0.29 (0.16, 0.53)

D7 - K2D7 - - 0.042 (0.022, 0.077) -

D8 K1D8 K2D8 - 2.34 (1.75, 3.16) 0.048 (0.03, 0.092) -

D1 K 0
1D1

K 0
2D1

K 0
3D1

2.87 (2.03, 4.49) 0.04 (0.024, 0.08) 0.4 (0.22, 0.65)

D2 - K 0
2D2

K 0
3D2

- † 0.041 (0.021, 0.08) 0.62 (0.4, 0.97)

D3 - K 0
2D3

K 0
3D3

- † 0.041 (0.023, 0.08) 0.91 (0.58, 1.33)

D4 K 0
1D4

- K 0
3D4

4.35 (3.07, 6.57) - † 0.29 (0.19, 0.46)

D5 - K 0
2D5

K 0
3D5

- 0.025 (0.016, 0.046) 0.16 (0.12, 0.31)

D6 - K 0
2D6

K 0
3D6

- 0.034 (0.02, 0.058) 0.19 (0.15, 0.28)

D7 - K 0
2D7

- - 0.022 (0.015, 0.032) -

D8 K 0
1D8

K 0
2D8

- 3.2 (2.6, 4.4) 0.041 (0.022, 0.085) -

doi:10.1371/journal.pcbi.1005131.t003
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total within a period of 2 hours post irradiation. Next, we plotted the number of DSBs entering
each repair mechanism as a time series (Fig 3b and 3d). The simulated data predicts that fast
repair consistently processes most of the DSBs within two hours after radiation (red curves in
Fig 3). Similarly, there were no clear differences amongst the data in the DSB processing by
slow repair. Intriguingly, intermediate repair was slower in cells compromised of Ku70 (D5,
D6) than those without DNA-PKcs (D2, D3) (green curves, Fig 3b and 3d). To calculate the
predicted number of DSBs repaired by fast, slow and alternative mechanisms, we computed
the integral ~Ni. The results are shown in Fig 4. Data sets for which cells were deficient in regu-
lating components of NHEJ confirmed variation in the numbers of DSBs repaired by interme-
diate rates. In agreement with the results obtained from the time series plots (Fig 3b and 3d)
there was a difference in the ratio of slow and intermediate rates between data sets D2, D3 and
D5, D6.We also observed an increase in the number of DSBs repaired by A-EJ betweenG1 and
G2 (Fig 4 D2, D3), agreeing with experimental results in the literature [62].

Fast and slow kinetics exhibit constrained rate parameters

To test the predictive capability of the model, we re-simulated repair curves using the posterior
parameters for data sets D1–D8 and compared the simulated curves to new data sets from the
literature (Fig 5). The model trajectories provide a good fit to wild type data at 40Gy (Fig 5a,
[62]). More impressively, the simulations of cells defective in PARP-1 by application of 3’-AB
and Ku80 deficient xrs-6 cells exposed to DPQ defective in PARP-1 and NHEJ show good
agreement with the experimental curves (Fig 5b and 5c, [24]). This analysis suggests that small
ranges of the rate parameters for the fast and slow repair processes, when assigned to NHEJ
and SSA, can predict multiple low LET data sets under different experimental conditions. This

Fig 3. Normalised repair, cumulative repair and the proportion of DSBs within each mechanism as a

percentage of the total DSBs for data D1–D8. Plots a) and c) show DSB repair curves simulated from the

posterior together with the cumulative number of DSBs repaired. Plots b) and d) show the DSBs entering

each repair mechanism. The errorbars represent the 0.5 credible regions (0.25, 0.75). Red, blue and green

represent fast, slow and alternative repair.

doi:10.1371/journal.pcbi.1005131.g003
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Fig 4.
~N i the total number of DSBs repaired by each mechanism for each data set (dose equivalent

(Gy)). The errorbars represent the 0.5 credible regions (0.25, 0.75). Red, blue and green represent fast, slow

and alternative repair.

doi:10.1371/journal.pcbi.1005131.g004
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suggests that they are constrained across experimental and biological conditions. Next we
investigated whether the intermediate rates from our model could potentially fit the experi-
mental data when activation of fast and slow rates are inhibited.We re-simulated the model
again but this time set the parameters for active NHEJ and SSA to zero across the models for
D1–D8. The results are shown in Fig 5d along with the corresponding experimental data. In
wild type data, we see that it is possible for all the DSBs to be removed with the predicted rates
of A-EJ, although repair is slower, suggesting that the ability for A-EJ to repair DSBs is not sat-
urated. When Rad52 is inhibited (data D4), because PARP-1 could still compete with MRNwe
see that it is not possible with the predicted rates for all the DSBs to be repaired in the absence
of NHEJ. There was no clear difference in the repair of DNA-PKcs mutants, however when
Ku70 is inhibited (data D5, D6) we see that when competition by slow repair is removed the
predicted rates of A-EJ, suggest that the activation of A-EJ is not saturated and is perhaps
inhibited by competition with MRN.

Fig 5. Model predictions. a) Parameters were drawn from the hyperparameter distribution and the code

was simulated again under different initial conditions (blue curve) and compared to different data sets (red

points). b) Model prediction (blue curve) of wild type repair (red points) from our initial parameter fit (Fig 2g).

c) PARP-1 inhibited repair predictions. The initial parameter fit (blue curves) provided a good fit to the

experimental data. d) By setting the parameters of NHEJ and SSA to zero in our predicted posterior, we were

able to simulate the expected contribution of A-EJ in our data sets where A-EJ is assumed to be active.

Number of DSBs remaining in each of the data sets are shown in the grey shaded region. b-d) Number of

DSBs are given in dose equivalent units (Gy). Blue solid lines are the median points, dashed blue lines are

the 0.95 credible regions.

doi:10.1371/journal.pcbi.1005131.g005
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Alternative end joining demonstrates variable dynamics

The time taken for over half the DSBs to be repaired by A-EJ is shown in Fig 6a. Some repair is
fast, occurringwithin two hours, however, for cells deficient in Ku70, A-EJ adopts a slower
repair with half maximum achieved at eight hours. The activation of A-EJ across the data sets
is represented by the interquartile ranges of the posterior distributions for K3 and K

0

3
(Fig 6b).

The rate for ligation, K 0
3
, is low in data setsD5 and D6, suggesting that intermediate mecha-

nisms are less active in the absence of Ku70. The rate is highest in G2 when DNA-PKcs is
inhibited. These data suggest that A-EJ adopts a slow or fast repair and that the speed of repair
depends on the presence or absence of DNA-PKcs and Ku70, because inhibition of Rad52 had
little effect on the time until half-maximum. There are two ways in which this difference
betweenKu70 and DNA-PKcs mutants can be interpreted. The first is that when Ku70 is inhib-
ited, two alternative mechanisms are activated, one that is fast and one that is slow. The other
interpretation is that A-EJ is one repair mechanism that repairs at a slower rate when Ku70 is
inhibited.We also modelled the complete inhibition of A-EJ by active NHEJ (A-EJ removed
from data sets D1 and D4) and found that the model still captures all the observeddynamics,
albeit with the rate of fast repair slightly increased in data set D4 where there is inhibition of
Rad52 (see Fig N in S1 Text).

Fig 6. a) The time in which a repair curve reaches below half maximal value for each data set in which A-EJ

is assumed to be active. The slowest mode of repair occurred in data sets 5 and 6, where Ku70 is inactive. b)

Rectangle plot of the interquartile ranges of K3 and K 0
3

for all data sets where A-EJ is assumed to be active. c)

Illustration, showing a typical distribution of the DSBs that remain to be repaired over time. For times < 1 hour

a large proportion of DSBs are being repaired by fast NHEJ and faster A-EJ mechanisms, whereas at later

times, the majority of DSBs reside in slower HR mechanisms. d) Time series showing the percentage of

remaining DSBs in each repair pathway for the wild type data D1. e) Plot showing the time at which each

repair mechanism is greater than 30% active for different parameter values. Grey indicates that the

mechanism is less than 30% active and red indicates the mechanism is greater than 30% active.

doi:10.1371/journal.pcbi.1005131.g006
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Total activation time of repair mechanisms depends on the rate of repair

Inspection of the time series data (Fig 3b and 3d) suggests that at time t = 0.5hrs, the majority
of DSBs that are being processed are within a fast mode of repair. Fig 6c illustrates a typical dis-
tribution of DSBs over each mechanism at different points in time. At time t = 0, the cells are
exposed to a single dose of ionising radiation. Quickly, for example at time t< 1hrs, fast and
possibly faster alternative repair mechanisms dominate the DSB processing. Later, after all
DSBs processed by the faster mechanisms have been repaired, the remaining DSBs fall within
the category of breaks that require processing by slower mechanisms. This change in the activ-
ity of repair mechanisms could potentially be investigated by recording changes in the level of
recruitment proteins or gene expression as time series. To quantify this change in our simu-
lated data, we plotted the percentage of DSBs that remain in active repair mechanisms over
time for the wild type data (see Fig 6d). By inspection, we can see that at 0.5 hours after irradia-
tion most DSBs reside in the fast mechanisms. At a time of t = 8hrs, the percentage approches
zero for fast repair and the majority of DSBs are found within the slow repair pathways. The
variation in Fig 6d is shown with the 25th and 75th percentiles and this is due to the variation
in repair rate Ki;K

0

i for each mechanism. Ultimately, it is the values of the parameters Ki;K
0

i

that determine the rate of repair, so to confirm if the dynamics presented in Fig 6c are repre-
sentative of the whole data set, we considered all time series for parameters Ki, a total of 9000
simulations. For each parameter at every time point, we assigned a value of 1 if the correspond-
ing mechanism for the parameter contained over 30% of the total DSBs being processed at that
time point and a value of 0 if it contained less than 30%. The results are shown in Fig 6e, where
for each parameter Ki, a red line indicates the times at which the mechanism with rate Ki is
greater than 30% active. There is a clear trend showing that the percentage of total activation
decreases in time with an increase in repair rate K. In other words, the model predicts the times
at which different repair processes are likely to express regulating components. When repair is
extremely slow the repair mechanism never reaches 30% of the current DSBs. In summary,
these results predict that if a cell experiences a sudden creation of DSBs, then gene expression
for slower repair mechanisms will be maintained for longer than those required for faster repair
mechanisms such as NHEJ, a result that has been implied for NHEJ and HR (Fig 3 in [28]).

Discussion

In this study, we presented a new hierarchical model of DSB repair and applied Bayesian infer-
ence to infer the number of active repair processes and their dynamical behaviour from experi-
mental PFGE data. Because the model assumptions are simple and exclude the full mechanistic
details of the biological processes, we are able to form an identifiablemodel and provide unique
insights on the difference in dynamics under multiple knock-out cell lines.
We have identified four major insights, each of which can be further tested experimentally.

The first insight is that the data is explained by at least three independent mechanisms. Our
results suggest that there are multiple dynamic regimes for the intermediate process. For exam-
ple a mechanism faster than Rad52 dependent HR is required to fit the experimental data to
the model in data sets D2 and D3 (knockout of DNA-PKcs). Another interesting finding is that
intermediate repair is increased in G2 phase of the cell cycle. If we assume that intermediate
repair corresponds to alternative end joining, then this is in agreement with experimental
results in the literature, supporting the existing biological evidence of the role of A-EJ in DSB
repair [62]. This agrees with genetic studies that suggest two forms of alternative end joining
depending on the presence of microhomology [40].
Our second insight is that the speed of A-EJ depends on the presence of regulating compo-

nents in NHEJ and SSA, and in particularwe observe a slower rate when Ku70 is inhibited and
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a faster rate when DNA-PKcs is inhibited (data sets D5–D6 and D2–D3 respectively, Fig 3). As
reported by experimental analysis, Ku deficient cells do not produce NHEJ products due to
excessive degradation or inhibition of end joining [11], and our model suggests that a slower
A-EJ is active in these cells (data sets D5–D6). In addition, inhibition of DNA-PKcs does not
activate repair by PARP-1 mediated A-EJ [24] and leads to elevated levels of resection and
more HR [73]. Together with our model, this suggests that an alternative mechanism that is
faster than PARP-1 mediated A-EJ could be activated when DNA-PKcs is inhibited (data sets
D2–D3). These results could be tested by examining DSB repair in single cells with and without
inhibitors using time-lapse microscopy and existing markers such as fluorescently tagged
53BP1, a protein that co-localiseswith DSBs, and fluorescent tagged PARP1, a candidate pro-
tein for A-EJ [28, 74].
The third insight that is generated from our analysis is the prediction of the total number of

DSBs repaired by each mechanism.We can use this to estimate the proportion of different
mutations following DSB repair in wildtype and mutant cells. Some cancers are deficient in at
least one repair mechanism and in these cases, alternative mechanisms of repair have been
observed to compensate [75]. One example is the increase in chromosomal aberrations
observed in cells compromised of NHEJ by loss of Ku80 [3]. Recently, mutations specific to
alternative mechanisms have been identified, where next generation sequencing has revealed
sequence specific chromosome translocations following A-EJ at dysfunctional telomeres [5]. In
addition, A-EJ is error prone, giving rise to chromosome translocations, of which there are
more when NHEJ is inactive, suggesting it’s role as a back up mechanism in eukaryotes [44]. If
we know how many DSBs are likely to be repaired by each mechanism, this information will be
important in predicting the numbers and types of mutations that we expect to observe. Poten-
tially, a better understanding of the interplay betweenDSB repair mechanisms could be applied
to design synthetic lethal therapeutics in cancer [76].
The fourth insight is that the gene expression profile of the proteins within different DSB

repair mechanisms should change over time, with slower repair mechanisms still remaining
active many hours after the initial dose of radiation. Pulse-like behaviour has been recorded in
the repair of DSBs in human cells [28] and we suggest that this prediction could be further
investigated using microarrays or sequencing. In fact, the expression of repair pathway genes
has recently been used to diagnose the prognosis of carcinomas [77]. Currently the genes
involved in the different repair pathways—and how much they are shared—remains to be fully
elucidated. Our model could be used to predict the times at which different repair pathways
dominate and provide a theoretical model for the interpretation of time-course gene expression
results.
The model will require further development before it can be applied to more general prob-

lems in the DNA damage response.With additional data it will be possible to extend the model
and include more terms such as explicit repressive cross-talk interactions. It may be possible
that inhibition of a certain protein may not completely ablate the function of a repair pathway.
While our two-step model somewhat accounts for this, the actual pathway contains many dif-
ferent proteins and more complex effects could arise. Additionally, the PFGE assay provides a
population average of the total repair; in order to obtain information on relatively small num-
bers of double strand breaks, together with estimates of cellular heterogeneity and stochasticity,
data obtained by methods such as live cell imaging are required. Another current limitation
arises from the heterogeneity of the DNA damage spectrum,where complex breaks can
account for 30–40% of the population [78]. Previous methods of Monte Carlo track structure
have been able to predict the number of single strand breaks, simple and complex DSBs that
are created [59]. By identifying proteins responsible for the processing of complex DSBs and
analysing knockout repair curves, it will be possible to gain understanding on the repair of
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heterogenous breaks, and incorporate these into our model. Despite our demonstration that
the model is predictive across multiple doses in the low LET regime, we modelled repair follow-
ing a variety of radiation doses, and we can’t rule out that complexity of DSBs further alters the
dynamics of repair. Previous studies have also modelled the formation of foci by summing the
DSB enzymes involved in the phosphorylation of H2AX [48, 52] and using this approach, our
model could be developed to take into account lower doses of radiation or the dynamics of γ-
H2AX foci formation. Related complicating factors are clustered DSBs [79] and DSBs residing
in heterochromatic regions, which have been shown to require Artemis for repair [80].
From our simple assumptions we have built a predictive model and generated in silico data

that was used to produce a number of unique insights that can be tested experimentally. Math-
ematical modelling not only facilitates the analysis of disparate data sets but also enforces the
explicit formalization of the underlying assumptions of our hypotheses. Our framework is
another step towards a theoretical understanding of the dynamics of DNA repair pathways.
The DNA damage response is comprised of a large number of extremely complex interacting
biological pathways. As the collection of larger and more heterogeneous data sets increases, we
anticipate that mathematical modelling approaches will be absolutely essential for the reverse
engineering and understanding of these complex biological processes.

Supporting Information

S1 Text. Additional details of theoretical and computational methods. S1 Text contains: a
full description of the dynamical model; a full description of the Bayesian hierarchical model;
details of the density-weighted integral approach and expressions for our approximate DIC
and BIC model comparison analysis.
(PDF)
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