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Abstract—This paper considers a hybrid heterogeneous net-
work (HetNet), where macro cells adopt massive multiple-input
multiple-output (MIMO), and small cells adopt millimeter wave
(mmWave) transmissions. We assume that all base stations (BSs)
are solely powered by the renewable energy. The implementation
of these emerging techniques has a substantial effect on the user
association (UA). Motivated by this, we formulate a user associ-
ation problem to maximize the network utility while the power
cost of each BS does not exceed the harvested energy. To solve
it, a low complexity distributed UA algorithm is proposed. The
results demonstrate that the proposed algorithm achieves higher
throughput than the max reference signal received power (RSRP)
and max signal-to-interference-plus-noise ratio (SINR) UAs. It
also shows that increasing the number of antennas at the macro
cell BS with more power consumption, the throughput continues
to increase by using the proposed algorithm, compared to the
decrease in throughput by using the existing ones. Increasing the
number of mmWave BSs, mmWave BS antennas or mmWave
bandwidths can significantly improve the throughput. Compared
with massive MIMO macro cells, mmWave small cells play a
dominant role in enhancing the throughput of the networks due
to the larger bandwidths.

I. INTRODUCTION

The fifth generation (5G) cellular networks will be designed
for the provision of the anticipated 1000x data increase [1].
To achieve this target, several emerging techniques such as
dense heterogeneous networks (HetNets), massive multi-input
multi-output (MIMO), millimeter wave (mmWave), etc. are
developed [2, 3]. However, none of these techniques can solely
accomplish 5G requirements, and the integration of them is
identified as a promising solution [2, 3].

Massive MIMO and mmWave are presumably two essential
enabling 5G technologies for improving capacity [2]. The
rationale behind massive MIMO is that each base station (BS)
is equipped with large number of antennas and communicates
with multiple terminals over the same time and frequency
band [4]. In this way, energy and spectral efficiency can
be enhanced with orders of magnitude compared to single-
antenna systems [4]. Due to the shortage of low cellular
frequency band, mmWave spectrum becomes a promising
mobile broadband [5]. In fact, mmWave spectrum has been
adopted in the standards such as IEEE 802.11ad [6] for
supporting gigabit per second (Gbps) transmission.

A combination of massive MIMO and mmWave is po-
tentially applied in the hybrid HetNets [5], where massive

MIMO transmissions operate in macrocells with low cellular
frequencies [7], and mmWave transmissions operate in small
cells with high frequencies. In such HetNets, user association
(UA) that determines whether a user is associated with a BS
will be more complicated [2, 8], and current UA designs may
not be capable of full exploiting the benefits provided by
massive MIMO and mmWave. There are at least two-fold
issues to be addressed: 1) Compared to the current narrow
cellular bandwidths (BWs), users in the mmWave cells will
be allocated gigahertz (GHz) BWs. As such, new UA methods
have to account for the impact of diverse system BWs; and
2) the shorter wavelengths of mmWave frequencies enable
mmWave BSs to pack more antennas and hence provide larger
array gains. The simple UA metric based on the minimum-
distance rule [8] may become inefficient, particularly when
massive MIMO is applied in the macro cells [7]. The antenna
array gains in the mmWave cells will be different from the
cellular antenna array gains in the macrocells. As such, new
UA schemes should also address the impact of large array
gains.

Recent research efforts have been devoted to examine the
UA for load balancing in massive MIMO cellular networks [9]
and mmWave wireless networks [10]. In [9], small and large
massive MIMO BSs were deployed in the cellular networks
and max-rate based and load based associations were analyzed.
In [10], the problem of UA in a 60-GHz wireless network was
considered, and a resource allocation solution was proposed
to guarantee the balance and fairness of the system. However,
UA in massive MIMO and mmWave networks is still far
from being well understood, particularly in the hybrid HetNets
where massive MIMO and mmWave transmissions co-exist.

In addition, 5G networks are expected to be more energy ef-
ficient, and more base stations with the capability of harvesting
renewable energy will be deployed for being greener [1, 3]. As
a result, energy harvesting will play a crucial role in reducing
the power consumption and operational expenditure (OPEX)
of the networks. However, the amount of energy harvested
from the renewable energy sources such as solar panels or
wind turbines depends on many factors such as environment
and is random [11], which has an effect on the associations
between users and renewable energy-powered BSs.

Considering the aforementioned important aspects, this pa-
per studies UA in two-tier hybrid HetNets including massive
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Fig. 1. An example of a two-tier hybrid HetNets powered by the solar panels.

MIMO aided macrocells and mmWave small cells, where
all BSs are powered by the renewable energy sources. To
the best of our knowledge, this field is novel and has not
be investigated yet. Due to the high cost of mmWave RF
chains and power consumption, the low-cost low-complexity
analog beamforming is applied in the mmWave small cells.
We address the impacts of different array gains, BWs, and
harvested energies on the UA in such hybrid HetNets. In
doing so, a UA problem is established to maximize the sum
logarithmic throughput under energy constraint. We propose
a low-complexity distributed UA algorithm for solving this
problem. The results show that the proposed UA algorithm
can efficiently integrate the advantages of massive MIMO
with mmWave, and achieves higher throughput than the max
reference signal received power (RSRP) and max signal-to-
interference-plus-noise ratio (SINR) UA schemes.

This paper is organized as follows. Section II presents the
system model. Section III formulates the problem, gives the
Lagrangian analysis and introduces the distributed UA scheme
of our design. The last two sections shows the simulation
results and summarizes our conclusions respectively.

II. SYSTEM DESCRIPTIONS

We focus on a two-tier hybrid heterogeneous network
powered by the renewable energy sources such as solar panels
and wind turbines, in which the first tier consists of massive
multiple-input multiple-output (MIMO) macro cells in the low
cellular frequencies (sub-6 GHz), and the second tier consists
of the mmWave small cells in the mmWave frequencies, as
shown in Fig. 1. We denote by U the set of all users, Bc the set
of macro cell BSs, and BmmW the set of mmWave small cell
BSs. Each marco cell BS has Nc antennas and simultaneously
communicates with S single-antenna users over the same time
and cellular frequency band (Nc ≫ S ≥ 1), while each
mmWave small cell BS has NmmW antennas with a sectored
gain pattern and serves one single-antenna user over the same
time and mmWave frequency band1.

We define the UA indicator xij to represent if user j ∈ U

1Here, each user is assumed to be equipped with one single omnidirectional
antenna [12].

is associated with BS i ∈ {Bc,BmmW} as

xij =

{
1, if user j is associated with BS i
0, otherwise

. (1)

A. Energy Harvesting
Each BS harvests the energy from the environment. The

energy harvesting process at the BS i follows a station-
ary stochastic process with the probability density function
fi(zi) = 1/(bi − ai), ∀zi ∈ [ai, bi] where ai and bi are the
minimum and maximum harvested energy of BS i respec-
tively [11]. The energy harvesting rate is constant in each
time slot and may change from one time slot to another. In
practice, the energy harvesting rate may not change within
several seconds. We denote PG

i as the green power of the BS
i harvested from the renewable energy sources.

B. Downlink Throughput
1) Massive MIMO Macro Cell: The MBS uses linear zero-

forcing beamforming (ZFBF) to transmit S user-streams with
equal power assignment. We note that there is no inter-tier
interference between the macro cells and mmWave small
cells due to the different frequency bands. When a user j is
associated with the MBS i ∈ Bc, the downlink throughput of
user j is given by

τij(xij) =
(∑

j∈U
xij

)−1
SWi log (1 + γij) , (2)

where

γij = (Nc − S + 1)
Pigij∑

i′ ̸=i SPi′gi′j + ΩjWi
, (3)

where Pi is the transmit power per user-stream from BS i,
Wi is the bandwidth, Ωj is the power spectral density of the
noise at the user j, and gij is the large-scale fading channel
power gain between BS i and user j. In (3), (Nc − S + 1) is
the array gain achieved by massive MIMO with ZFBF [9].

2) mmWave Small Cell: Each mmWave small cell BS
uses analog beamforming with phase shifters. We consider
the uniform planar square antenna, and the effective antenna
gain for a mmWave BS i (i ∈ BmmW) with the beamwidth
θ = 2π√

NmmW
is the relative power radiated by BS i in the

direction of the user, which is described as a random variable
following [13]

Gi =

{
NmmW, with probability θ

2π
1

sin2
(

3π
2
√

NmmW

) , with probability
(
1− θ

2π

)
.

(4)

We assume that the antenna gain between the user and its
associated BS is the main-lobe gain NmmW. When a user j
is associated with the mmWave small cell BS i ∈ BmmW, the
downlink throughput for user j is given by

τij(xij) =
(∑

j∈U
xij

)−1
Wi log (1 + γij) , (5)

with

γij =
PiNmmWLij (Rij)∑

i′ ̸=i Gi′Pi′Li′j (Ri′j) + ΩjWi
, (6)



where Lij (Rij) is the path loss between the user j and its
associated mmWave small cell BS i with a distance Rij . The
path loss laws are different in line-of-sight (LOS) and non-line-
of-sight (NLOS) conditions. In this paper, we use the mmWave
path loss model proposed in [14], where each mmWave link
can be in one of three conditions: LOS, NLOS or outage.

C. Power Consumption

The total power consumption for transmitting the user
stream to each user associated with the macro cell BS i ∈ Bc

is given by [15]

P stream
i = Pi/ηi + Ci, (7)

where Ci =
(∑3

m=0 Λm,0Sm +
∑2

m=0 Λm,1SmNc

)
/S, ηi

is the efficiency of power amplifier of BS i, Λm,0 and Λm,1

are the coefficients relying on the power consumption of
transceiver chains, coding and decoding, etc. [15], and are
detailed in Section IV.

Based on the power consumption models in [16, 17], the
total power consumption for transmitting the user stream to
each user associated with the mmWave small cell BS i ∈
BmmW is given by

P stream
i = Pi/ηi + Ci, (8)

where Ci = NmmWPps, Pps is the power consumption of the
phase shifter.

III. PROBLEM FORMULATION AND UA DESIGN

We adopt a proportionally fair network utility optimization
approach [18]. The UA problem is that of determining the xij

of each user and BS to maximize the overall network utility
while the power consumption of each BS does not exceed its
harvested energy, which is expressed as

max
X,K

∑
j∈U

∑
i∈{Bc,BmmW}

xij log (τij(xij)) (9a)

s.t.
∑

i∈{Bc,BmmW}
xij = 1, ∀j (9b)

∑
j∈U

xij = Ki, ∀i (9c)
∑

j∈U
xijP

stream
i ≤ PG

i , ∀i (9d)

xij ∈ {0, 1} , ∀j, ∀i, (9e)

where X = [xij ], K = [Ki]. Here, constraints (9b) and (9e)
ensure that one user can only be associated with one BS at
any time, constraint (9d) indicates that the number of users
associated with one BS is restricted by the amount of harvested
power. Ki in (9c) is the effective load of each BS.

The formulated problem (9) is a combinatorial NP-hard
problem due to the discrete nature of the problem. To solve
it, we first present the dual analysis.

A. Lagrangian Dual Analysis
In this subsection, we study the dual problem of (9). The

Lagrangian function can be written as

L (X,K,µ, v) =
∑

j∈U

∑

i∈B
xij log (εij)−

∑

i∈B
Ki log (Ki)

−
∑

i∈B
µi

⎛

⎝
∑

j∈U
xij −Ki

⎞

⎠−
∑

i∈B
vi
(
KiP

stream
i − PG

i

)
,

(10)

where B = {Bc,BmmW}, εij = SWi log (1 + γij) as i ∈
Bc, and εij = Wi log (1 + γij) as i ∈ BmmW, µi and vi are
Lagrange multipliers.

Accordingly, the dual function g (·) is written as

g(µ,v) =

⎧
⎪⎪⎨

⎪⎪⎩

max
X,K

L(X,K,µ,v)

s.t.
∑

i∈B
xij = 1,

xij ∈ {0, 1}, ∀j, ∀i

(11)

and the dual problem of (9) is the minimum of g (·) with
respect to (w.r.t.) the dual variables, i.e.,

min
µ,v
v≥0

g (µ,v) . (12)

Given the fixed dual variables µi and vi, the analytical
solution for the maximization of the Lagrangian w.r.t. X can
be written as

x∗
ij=

{
1, if i=i∗

0, if i ̸= i∗
, (13)

where i∗ = argmax
i

(log (εij)− µi). Since the Lagrangian

function (10) is a differentiable concave function of K
with ∂2L/∂K2

i < 0, ∀i, the optimal primal variables w.r.t. K
for maximizing the Lagrangian can be obtained by letting
∂L/∂Ki = 0, which yields

K∗
i = eµi−viP

stream
i −1. (14)

From (14), we see that Ki is a decreasing function of P stream
i ,

which can be explained by the fact that given the harvested
power, increasing the transmit power per user stream will
decrease the amount of service BS can supply.

By substituting (13) and (14) into (11), a closed-form
expression for dual objective is given by

g (µ,v) =
∑

j∈U
max

i
(log (εij)− µi)

+
∑

i∈B
eµi−viP

stream
i −1 +

∑

i∈B
viP

G
i . (15)

Given the fixed µ, (15) is a differentiable convex function of
v with ∂2g/∂v2i> 0, ∀i, hence the optimal dual variables v
for minimizing the dual problem can be obtained by setting
∂g/∂vi = 0, which is

vi (t+ 1) =
µi (t)− log

(
P G

i

P stream
i

)
− 1

P stream
i

, (16)



where t is the iteration index, in order to show that vi
needs to be updated following µi. Since g (µ,v) in (15) is
not a differentiable function of µ, the subgradient method is
employed to update µi according to

µi (t+ 1) = µi (t)− δ (t)

⎛

⎝Ki (t)−
∑

j∈U
xij (t)

⎞

⎠ , (17)

where δ (t) is the step size2. By using the updated dual
variables µi (t) and vi (t) based on (17) and (16), the primal
variables xij (t) and Ki (t) can be updated based on (13) and
(14). Then, we have the following Proposition:

Proposition 1. The proposed subgradient method in (17)
converges to the optimal solution of the dual problem in (12).

Proof: Taking the derivative of dual function g (·) w.r.t.
µ yields

∂g (µ,v) /∂µi = Ki (µi, vi)−
∑

j∈U
xij (µi) . (18)

In our primal problem, Ki =
∑

j∈U xij ! P G
i

P stream
i

, hence
Ki (µi, vi) is bounded. As xij ∈ {0, 1},

∑
j∈U

xij (µi) is also

bounded. As such, the subgradient of dual objective is bounded
as

sup
t

{∥∂g (µ,v) /∂µi∥} ≤ ξ, (19)

where ξ is a scalar. Therefore, the necessary condition of the
convergence proof holds [19], which confirms Proposition 1.

Because the dual problem is convex, the globally optimal
solution for dual problem exists and can be obtained by
using the subgradient method. The primal variable X can be
recovered by substituting the optimal dual variables into (13).
We note that due to the discrete nature of the primal problem
in (9), solving dual problem may not be the same as solving
the primal problem. Nevertheless, the optimal solution of the
dual problem always leads to good primal solutions [20].

B. Distributed User Association
Compared to the centralized ones, the distributed UA algo-

rithm has low complexity without demanding the centralized
controller. As such, we propose a distributed UA algorithm
based on the previous analysis in Section III-A. In the pro-
posed algorithm, each user adopts Algorithm 1 to feedback
the UA request to the desired BS, and each BS adopts
Algorithm 2 to broadcast the dual variable µi. Compared to
the O

(
|B||U|) complexity of the conventional centralized brute

force algorithm, the complexity of the proposed algorithm is
O (|B||U|). In addition, the exchanged information between
users and BSs is (|B| + |U|), compared to the (|B| × |U|) in
the centralized algorithm.

2There are many step size selections such as constant step size and
diminishing step size. In this paper, we use the nonsummable diminishing
step length, as shown in [19].

Algorithm 1 at user side
1. Each user measures SINR via pilot signal from all BSs to evaluate εij ,
and receives the values of µi(t), ∀i via BS broadcast.
2. User j determines the serving BS i according to
i∗(t) = argmax

i
(log (εij)− µi (t)).

3. Each user feedbacks the UA request to the chosen BS.

Algorithm 2 at BS side
1. if t = 0, then
2. Initialize µi(t) = log(

PG
i

P stream
i

) + 1,∀i, and vi is set as

vi(t) =
µi(t)−log(

PG
i

P stream
i

)−1

P stream
i

according to (16)
3. else
4. Each BS calculates the value of Ki(t) according to

Ki (t) = eµi(t)−vi(t)P
stream
i −1.

5. Receives the updated UA matrix X from users.
6. Updates µi (t+ 1) and vi (t+ 1) according to (17) and (16).
8. end if
9. t← t+ 1.
10. Broadcasts the value of µi (t).

TABLE I
SIMULATION PARAMETERS

Parameter Value
Macro cell Bandwidth 20 MHz
Carrier frequency
of mmWave small cell 28 GHz

Inter site distance 500m
Thermal Noise power -174 dBm/Hz
Path loss of MBS 15.3 + 37.6log10d(m)

Path loss of mmWave BS

α+ 10βlog10d(m) + ξ
ξ ∼ N (0,σ2),

LOS :α = 61.4,β = 2,
σ = 5.8 dB;NLOS :α = 72.0,
β = 2.92,σ = 8.7 dB [14]

Probability of Outage(O)-LOS-NLOS
in mmWave small cell

O: Po(d) = max{0, 1− e−
d
30+5.2};

LOS: pL(d) = (1− Po(d))e
− d

67.1 ;
NLOS: 1− Po(d)− pL(d) [14]

Min harvested power of MBS 32 dBm
Max harvested power of MBS 58 dBm
Min harvested power of mmWave BS 22 dBm
Max harvested power of mmWave BS 48 dBm
Transmit power of MBS
per user stream 30 dBm

Transmit power of mmWave BS
per user stream 25 dBm

Power consumption of phase shifter 19.5 mW [17]
Efficiency of Power amplifier 0.3

IV. SIMULATION RESULTS

In this section, we present numerical results to evaluate the
performance of the proposed UA algorithm and the impacts
of massive MIMO and mmWave. We consider a downlink
HetNet composed of 19 macro cells. In each macro cell,
mmWave small cell BSs are randomly deployed and 30
users are uniformly distributed. The coefficients under ZF
precoding for power consumption are Λ0,0 = 4, Λ1,0 =
4.8,Λ2,0 = 0, Λ3,0 = 2.08 ∗ 10−8,Λ0,1 = 1, Λ1,1 =
9.5∗10−8, and Λ2,1 = 6.25∗10−8 [15]. The basic simulation
parameters are as defined in Table I. Then we compare the
performance of the proposed UA algorithm with the max
RSRP scheme and max SINR scheme.

First we set the number of mmWave BS antennas and
the number of mmWave BSs in each macro cell as 100



and 5, respectively. Fig. 2 demonstrates the throughput of
each user versus number of MBS antennas for different S.
The mmWave BW is 1 GHz. We can see that regardless of
the number of MBS antennas and the maximum number of
data stream S, the proposed UA algorithm achieves higher
throughput than the other two UA schemes. For the same S,
the throughput of the proposed UA algorithm increases with
the number of MBS antennas, while the throughput of the
other two schemes decrease. This can be explained by two-
fold: 1) For max RSRP UA and max SINR UA, the load of
mmWave small cells decreases by increasing the number of
MBS antennas, since users are more likely to be associated
with the MBSs that provide larger antenna gains; and 2) Given
the harvested power, adding more MBS antennas increases the
power consumption of the MBS, which decreases the amount
of users that MBS can supply. It also demonstrates that under
the same number of MBS antennas, the relatively larger S
achieves better throughput performance.
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Fig. 2. Throughput per user versus number of MBS antennas for different
S.

Then we set the number of MBS antennas as 100 and S as
10, respectively. Fig. 3 shows the throughput per user versus
number of mmWave BS antennas for different mmWave BWs.
It can be seen that under the same BW, the proposed algorithm
outperforms the other two schemes. When the antenna number
of mmWave small cells is larger, the throughput is higher for
all three UA schemes due to the fact that the mmWave antenna
gain increases and more users are offloaded to the mmWave
small cells. For the proposed UA and max RSRP UA, the
increase of mmWave BW brings about a significant increase
in the throughput, which indicates the advantage of mmWave
transmission. However, the use of max SINR UA does not
experience a large increase in throughput as mmWave BW
increases, since the load of the mmWave small cell is light
compared to the other two UA algorithms.

Fig. 4 shows the throughput per user versus number of
mmWave small cells in each macro cell. We set the number
of MBS antennas as 100 and S = 10. The mmWave BW is 1

100 150 200 250 300 350 400
0.5

1

1.5

2

2.5

3

3.5
x 109

Number of mmWave BS antennas

Th
ro

ug
hp

ut
 p

er
 u

se
r(b

its
/s

)

 

 
Proposed,mmWave BW=2GHz

Max RSRP,mmWave BW=2GHz

Max SINR,mmWave BW=2GHz
Proposed,mmWave BW=1GHz

Max RSRP,mmWave BW=1GHz

Max SINR,mmWave BW=1GHz

Fig. 3. Throughput per user versus number of mmWave BS antennas for
different mmWave BWs.

5 6 7 8 9 10 11 12 13 14 15
0.5

1

1.5

2

2.5

3

3.5
x 109

Number of small cells in each macro cell

Th
ro

ug
hp

ut
 p

er
 u

se
r(b

its
/s

)

 

 

Proposed UA
Max RSRP UA
Max SINR UA

Fig. 4. Throughput per user versus number of mmWave small cells in each
macro cell.

GHz. It is seen that the proposed UA scheme obtains higher
throughput than the max RSRP UA and max SINR UA. For the
proposed UA and max RSRP UA, deploying more mmWave
small cells can significantly increases the throughput, since the
distance between the user and mmWave BS becomes shorter
and more users are offloaded to the mmWave small cells with
larger BWs. An interesting phenomenon is seen that for max
SINR UA, as the number of mmWave BSs exceeds a critical
value (approximately 9 in this figure), the throughput slightly
increases. The reason is that the interference of mmWave tier
increases with the number of mmWave small cells, which
results in a slow increase in SINR and thus a slow increase in
the load of mmWave small cells.

Fig. 5 demonstrates the percentage of throughput con-
tributed by massive MIMO MBS and mmWave small cells.
We assume that the number of MBS antennas and mmWave
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BS antennas are the same as 100, S = 10, the mmWave BW is
1 GHz, and there are five mmWave small cells in each macro
cell. We see that among the three UA algorithms, mmWave
small cells perform the highest percentage of throughput by
using the proposed UA algorithm, and the lowest percentage of
throughput by using max SINR UA algorithm, which indicates
that the superiority of the proposed UA algorithm results from
offloading more users to the mmWave small cells.

V. CONCLUSIONS

In this paper, we took into account a two-tier hybrid het-
erogeneous network consisting of massive MIMO macro cells
and millimeter wave small cells. All the base stations were
powered by the harvested energy from the renewable energy
sources. These emerging techniques pose great challenges to
the user association designs. As such, we utilized a proportion-
ally fair network utility optimization approach and proposed
a novel distributed user association algorithm. Simulation
results showed that the proposed algorithm performs better
than the two typical user association schemes, namely max
SINR and max RSRP user association algorithms. In contrast
to these two schemes, the throughput will not decrease with
the increasing number of MBS antennas by using the proposed
algorithm. Increasing the number of mmWave base stations,
mmWave base station antennas or mmWave bandwidths brings
significant improvement of the throughput. In addition, we
demonstrated that mmWave small cells have larger contribu-
tion to the throughput in hybrid HetNets than massive MIMO.
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